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NEGATIVE RESULTS ON PRECIPITOUS IDEALS ON �1

GRIGOR SARGSYAN

Abstract. We show that in many extender models, e.g., the minimal one with infinitely many Woodin
cardinals or the minimal with a Woodin cardinal that is a limit of Woodin cardinals, there are no generic
embeddings with critical point �1 that resemble the stationary tower at the second Woodin cardinal. The
meaning of “resemble” is made precise in the paper (see Definition 0.3).

Given an ideal I on a cardinal κ, let PI = ℘(κ)/I. Forcing with PI adds a
V -ultrafilter on κ. An ideal I on κ is called precipitous if whenever G ⊆ ℘(κ) is
a PI-generic ultrafilter, Ult(V,G) is well-founded. I is �-complete if for any � < �
and (Aα : α < �) ⊆ I, ∪α<�Aα ∈ I. If I is a �-complete precipitous ideal on κ then
the generic embedding, j : V → Ult(V,G), produced by I has a critical point ≥ �.

It is mentioned in [2] that Jech asked whether supercompact cardinals imply that
the non-stationary ideal on some cardinal κ is precipitous. Theorem 33 of [2] shows
that this is not the case, as any normal precipitous ideal can be destroyed in a forcing
extension. However, the following question remained open.

Question 0.1. Do large cardinals imply that there exists a precipitous ideal on
�1 or on other regular cardinals?

It is in fact not hard to show that sufficiently nice extender models do not carry
precipitous ideals on �1. Theorem 0.2 was independently discovered by many inner
model theorists. The proof generalizes to obtain stronger results on non-existence
of precipitous ideals. To the author’s best knowledge, these results are unpublished
and not due to the author. Because of this we will not dwell on them and will just
give the prototypical argument.

Theorem 0.2. SupposeW is a countable�1 + 1-iterable mouse and κ is a successor
cardinal of W such that W � “κ+2 exists” and there is E ∈ �EW such that crit(E) >
(κ++)W . Then W � “κ doesn’t carry a κ-complete precipitous ideal.”

Proof. Let φ be the following sentence (in the language of premice, �E is used
for the extender sequence): there exists 	 such that:

1. 	 is a successor cardinal,
2. 	++ exists,
3. there is an extender E ∈ �E with crit(E) > 	++,
4. there is a 	-complete precipitious ideal on 	.
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NEGATIVE RESULTS ON PRECIPITOUS IDEALS ON �1 491

Towards a contradiction assume that in W , I is a κ-complete precipitous ideal on
κ. Let E ∈ �EW be the least such that crit(E) > (κ++)W and let 
 = indexW(E).
Then I ∈ W||
 . It follows that without loss of generality we can assume that W =
W||
 , W is sound and ��(W) = � and if W ′ �W then W ′ � ¬φ.

Let j : W → N ⊆ W[g] be a generic embedding given by I. Set � = (κ++)W and
let  be the predecessor of κ. We have that:

(1) � is a cardinal of W[g] as |℘(κ)|W = (κ+)W .
(2) j(�) = � and j(κ) = (+)N .
(3) W|� �� j(W|�).
Notice that in V there is a real x that codes a premouse Q and an elementary

embedding � : Q → j(W|�) such that:

1. W| � Q,
2. � � ( + 1) = id ,
3. Q �� j(W|�),
4. �(�) = �.

Take for instance a real that codes (W|�, j � W|�). It follows by absoluteness that
there is such a real in NColl(�,j(�)).

Let h ⊆ Coll(�, �) be W-generic. It follows from elementarity that there is a pair
(R, �) ∈ W[h] such that:

1. W| � R,
2. � : R → W|� is elementary,
3. � � ( + 1) = id ,
4. R �= W|�, and
5. �(�) = �.

Because W is �1 + 1-iterable, it follows that the phalanx (W ,R,  + 1) is �1 + 1-
iterable. We then compare W with (W ,R,  + 1). Let T and U be the iteration trees
on W and (W ,R,  + 1) that this comparison process produces. Because ��(W) =
� and W is sound, the last model of U is on the top of R. Let R′ be the last model
of U and W ′ be the last model of T .

Because � : R → W|� is elementary, it follows that (++)R is the largest cardinal
of R. We now want to argue that R′ = R. Assume not. Let E be the first extender
of U that is used on the R-to-R′ branch. Then because crit(E) > , we must have
that there is a drop on the R-to-R′ branch of U , and hence R′ is not sound. It
follows that we must have that W ′ = W and W � R′ implying that W � R. But
then �(W)�W contradicting the minimality of W .

We thus have that R′ = R and R � W ′. We now want to argue that R � W .
Assume that this is false. Let F = ET

0 and let 
 = indexW(F ). It follows that:
(4) 
 ≥ (+)R1 and 
 < Ord ∩R = �,
(5) 
 is a cardinal of W ′,
(6) W ′|
 = W|
 , and
(7) 
 ≤ (++)R.
(7) is a consequence of (4), (5), and (6). Thus, it follows from (6) that we have

two possibilities: either 
 = (+)R or 
 = (++)R .

1Because crit(�) is a cardinal of R, crit(�) ≥ (+)R.
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Suppose now that 
 = (++)R and set 	 = (+++)Ult(W ,F ). Since 
 < �, we have
that 	 < �. Since 	 ′ =def (+++)W

′ ≤ 	2 and (++)R is the largest cardinal of R, we
have that R � W ′|	 ′. Thus, � ≤ 	 ′ ≤ 	 < �, contradiction.

Assume then that 
 = (+)R. Notice that R cannot be an initial segment of
Ult(W , F )|� because �F (crit(F )) ∈ (, �) is an inaccessible cardinal ofUlt(W , F )|�
whereas (++)R is the largest cardinal of R and � ⊆ R. Thus,G =def ET

1 is defined
and if � is the index of G in MT

1 then
(8) R|(++)R � MT

1 |� (notice that MT
1 |� = W ′|� and � is a cardinal of W ′).

(8) now implies that R � MT
2 |(+++)M

T
2 , and therefore, � ≤ (+++)M

T
2 . How-

ever, as it was the case with 
 , � < � implying that (+++)M
T
2 < �.

We thus have shown that W ′ = W and that consequently, R � W . Therefore,
R = W|� contradicting the fact that R �= W|�. 


Woodin showed that strong condensation, an axiom that he formulated, implies the
non-existence of precipitous ideals on �1 and cardinals below the least inaccessible
cardinal. The proof is very similar to the one we gave above (see [22, Definition
8.5] and [22, Corollary 8.9]). The authors of [10] say that Steel showed that in some
extender models, κ carries a precipitous ideal if and only if it is measurable. The
authors of [10] showed that in the minimal extender model with Woodin cardinal
that is itself a limit of Woodin cardinals �1 does not carry precipitous ideal (see [10,
Corollary 4]). The authors of [1] showed that if the extender model is a model of
V = K then κ carries a precipitous ideal if and only if it is a measurable cardinal
(see [1, Theorem 0.3]).

The proof of our main theorem, Theorem 0.5, uses a different type of argument
that is not based on condensation. It is not clear to us how to prove Theorem 0.5
via condensation-like arguments or arguments based on the core model.

It is a well-known result of Woodin that if there is a Woodin cardinal � then
letting Q� be the countable stationary tower forcing associated with � (see [3]), there
is G ⊆ Q� and an embedding j : V →M ⊆ V [G ] definable in V [G ] such that:

1. crit(j) = �1 and
2. V [G ] �M� ⊆M .
The question on the existence of precipitous ideals on �1 can be interpreted in

at least two ways. One, of course, is the most direct interpretation. However, it can
also be perceived as a question on the existence of generic embeddings that resemble
the stationary tower embedding but are produced via small forcing, smaller than the
size of the least Woodin cardinal.

In this paper, we investigate this interpretation of the question.

Definition 0.3. Suppose � is a Woodin cardinal which is not a limit of Woodin
cardinals. Let � be the supremum of Woodin cardinals < �. We say there is a
stationary-tower-like embedding (st-like-embedding) below � if there is a partial
ordering P such that whenever g ⊆ P is generic,

1. � < |P| < �,
2. (�+)V < �V [g]

1 ,

2Set (+++)W
′

= Ord ∩W ′ in case (+++)W
′

is undefined.
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3. in V [g], there is an elementary embedding j : V →M ⊆ V [g] with the
property that crit(j) = �1, RV [g] ⊆M and for some regular cardinal 	 < �,

M = {j(f)(s) : s ∈ [	]<�, f : [	]|s| → V and f ∈ V }.3

The last portion of clause 3 above implies thatM = Ult(V,E) where

E = {(s, A) : s ∈ j(A) ∩ [	]<� ∧ A ⊆ [	]|s|}.
It is worth noting that E may not be a short extender, and in the case of the countable
stationary tower, it is not a short extender. If Q<� is the countable stationary tower
at � and j : V →M is a generic ultrapower by some generic G ⊆ Q<� then setting
	 = �+, if E is the (	, 	) extender derived from j, we have thatUlt(V,E) and M agree
on subsets of j(�).4

The main question we deal with in this paper is the following.

Question 0.4. Assume there is a Woodin cardinal �. Is there an st-like-embedding
below �?

The following is the main theorem of this paper.

Theorem 0.5. Let M be the minimal mouse with a Woodin cardinal that is a limit
of Woodin cardinals. Let � be the second Woodin cardinal of M. Then there is no
st-like-embedding below �.

We will need the following proposition.

Proposition 0.6. Suppose � is a Woodin cardinal which is not a limit of Woodin
cardinals, and let � be the supremum of the Woodin cardinals < �. Let κ < � be the
least < �-strong cardinal and let � be the least such that there is a poset P ∈ V�
witnessing that there is an st-like-embedding below �. Then � < κ.

Proof. Let g ⊆ P be generic and let j : V →M be the st-like embedding in
V [g]. Let 	0 < � be such that

M = {j(f)(s) : s ∈ [	0]<�, f : [	0]|s| → V and f ∈ V }.
Let 	 ∈ (max(	0, �), �) be an inaccessible cardinal and let E be the (	0, 	0)-extender
derived from j. More precisely,

E = {(s, A) : s ∈ [	0]<�,A ⊆ [	0]|s| and s ∈ j(A)}.
Let F be an extender with critical point κ witnessing that κ is 	 strong. Set W =
Ult(V,F ). We writeWα for VWα . It follows that E ∈W [g] and becauseUlt(V,E) is
well-founded, Ult(W,E) is also well-founded.

It is now not hard to verify that�WE :W → Ult(W,E) is a st-like-embedding below
� (inW [g]). Because P ∈W�F (κ), we have that �F (�) < �F (κ). Hence, � < κ. 


Upon seeing the results of this paper, Woodin informed us that he already knew
that in extender models there is no st-like-embedding below the first Woodin cardinal
(in fact condensation style arguments give this). He also informed us that the answer
was not known for the second Woodin cardinal and beyond. We could have chosen

3This condition says thatM is an ultrapower.
4We have that for each α < 	,

∣∣j(α)
∣∣ V ≤ � implying that j(	) = 	.
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494 GRIGOR SARGSYAN

any Woodin cardinal � such that the least cardinal κ that is < �-strong is not a
limit of Woodin cardinals. Our proof has all the main ideas, and this is not a vanity
contest. Thus, we chose to work with the second Woodin cardinal.

We have not tried to prove results for overlapped Woodins, and believe that this
is an interesting project. The methods of [8] are probably relevant to this project.

Our methods are methods developed by inner model theorists for the last 60 years
or so. We rely heavily on the writings of Mitchell and Steel. Readers familiar with
the papers [5, 18] can see their influence on the current paper.

We started thinking about generic embeddings in extender models because of
Mathew Foreman. He informed us that it is not known if large cardinals imply the
existence of precipitous ideals on �1. We thank him for asking us this question.

Our motivation was just to show that inner model theory is a subject relevant
to combinatorial set theory in a sense that a great deal of combinatorics beyond
principles such as � and � can be investigated and understood inside inner models.
One only needs to try.

Nevertheless, we do agree with the view that the internal combinatorial structure
of extender models have not been very extensively studied beyond [11]. However,
there are several papers in print that do investigate the internal structure of mice in
different ways than [11] does. For instance, [14] characterizes homogeneously Suslin
sets in extender models, and [9] investigates grounds of certain types of extender
models.

§1. On S-reconstructible operators. Here we discuss some facts that describe the
internal structure of a large class of mice. Suppose that:

1. M is a class size mouse over some set x satisfying a sentence φ,
2. there is no active level R � M such that if E is the last extender of R then

R|crit(E) � φ and
3. there is an active mouse R such that if E is the last extender of R then

R|crit(E) � φ.
Clause 3 above implies that M has a club of indiscernibles. We then say M is the
minimal class size x-mouse satisfyingφ ifM is the hull of a club of indiscernibles. It is
one of the most celebrated theorems of inner model theory that if there is a minimal
class size x-mouse satisfying φ then it is unique. This can be shown via a standard
comparison argument (see, for instance, [20, Theorem 3.11]). Just notice that if M
and N are both minimal class size x-mice satisfying φ then their comparison has a
club of fixed points all of which are indiscernibles.

We say M : V → V is a mouse operator if for some formula φ,
1. dom(M) = {x : L�[x] � “x is well-ordered”} ∩ {x : there is a minimal class

size x-mouse satisfying φ},
2. for each x ∈ dom(M), M(x) is the minimal class size mouse satisfying φ.

We also say that M is determined by φ and denote it by Mφ . When φ is clear from
context we drop it from our notation, and for x ∈ dom(M), we let M(x) = M(x).
We say M is total on a set X if M(x) is defined for every x ∈ X ∩ {x : L�[x] � “x
is well-ordered”}.

We assume familiarity with [5] or with [20]. In particular, familiarity with [5,
Chapter 11] will be very helpful. Recall from [5, Chapter 11] that the extenders
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used in the fully backgrounded construction are total and, hence, have measurable
critical points in the sense that if N is a model appearing in the fully backgrounded
construction and E ∈ �EN is a total extender then crit(E) is a measurable cardinal
of N . Also, Lemma 11.1, Lemma 11.2, and Theorem 11.3 of [5] are very important
for us. When we talk about fully backgrounded construction done inside a structure
with a distinguished extender sequence, we tacitly assume that all extenders come
from this extender sequence.

Definition 1.1. We say Mφ is an S-reconstructible mouse operator if:
1. dom(Mφ) = {a ∈ HC : L�[a] � “a is well-ordered”},
2. for each a ∈ dom(Mφ), Mφ(a) has infinitely many Woodin cardinals the first
� of which are (�a,i : i ∈ �),

3. for each a ∈ dom(Mφ), for each i ∈ �, for each Mφ(a)-generic g for a poset
of Mφ(a)-size < �a,i , for each x ∈ (Mφ(a)|�a,i)[g], and for each  < �a,i such
that x ∈ (Mφ(a)|)[g], letting:
(a) P be the output of the fully backgrounded construction of (Mφ(a)|�a,i)[g]

done over x using extenders with critical points greater than  and
(b) N be the result of an S-construction that translatesMφ(a) into an x-mouse

over P ,

N � φ.

S constructions are standard constructions in inner model theory. They were
first considered by John Steel (hence the “S”). The first known full treatment of
S constructions was presented in [12], where, for some truly unfortunate though
fully understandable reasons,5 they were called P constructions where P stands for
nothing in particular. The reader can also consult [7, Chapter 3.8].

Our goal is to consider two particular kinds of mice, M� and Mwlw . The first is
the minimal class size mouse with�Woodin cardinals, and the second is the minimal
class size mouse with a Woodin cardinal � that is a limit of Woodin cardinals. We
will prove our theorems for S-reconstructible mice that have the internal covering
property (see Definition 2.1). It is straightforward to check that both M� and Mwlw

satisfy our definition of S-reconstructible. Later we will show that they also satisfy
the internal covering property (see Theorem 2.2).

Suppose Mφ is an S-reconstructible mouse operator. Given a ∈ dom(Mφ), we let

W(a) = Mφ(a)|(|a| +)Mφ(a).

We think of W as a function whose domain is dom(Mφ). Given a transitive set N, let
WN = W � N . The following is a corollary to our definition. In general, the results
of this section are not new and reformulations of similar results that appeared in [7,
18] (for example, see [7, Chapter 3.1] and [18, Theorem 5.1]).

Corollary 1.2. Suppose Mφ is an S-reconstructible mouse operator. Fix a ∈
dom(Mφ) and i ∈ �, and set M = Mφ(a) and � = �a,i . Then WM|� is uniformly
definable over M|�. Moreover, there is a formula � with the property that for any
poset P ∈ M|�, for any M-generic g ⊆ P, for any x ∈ HCM[g], and for any R,

R � W(x) if and only if R ∈ M|�[g] and M|�[g] � �[x,R].

5Notice the “S” in the last names of all the people involved in this business.
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It is clear what � must be, it is just the formula defining the fully backgrounded
constructions. Note that the language of M has a symbol for the extender sequence
ofM, and so�may mention the extender sequence ofM|�. Results of Schlutzenberg
suggest thatW maybe even be definable over the universe ofM|� (see [13]). However,
we do not need such fine calculations. Below we give an example of such a �. Set
�[x,R] : R is an x-premouse and there is � < � such that for every  ∈ (�, �), if P
is the output of the fully backgrounded construction of M|�[g] done over x using
extenders with critical points > , R � P .

It can be shown that � witnesses Corollary 1.2.
The next results show thatM(a) in fact knows some fragments of its own strategy.

The first lemma is a useful and easy lemma. We let �a,–1 = 0. We do not know
the origin of this lemma but it has probably been discovered by many authors
independently.

Lemma 1.3. SupposeMφ is an S-reconstructible mouse operator. Fix a ∈ dom(Mφ)
and i ∈ �, and set M = Mφ(a) and � = �a,i . Let P ∈ M|� and suppose g ⊆ P is M-
generic. Let x ∈ M|�[g] and � ∈ (max(�i–1, |P|M), �) be such that x ∈ M|�[g]. Let
P be the output of the fully backgrounded construction of M|�[g] done over x using
extenders with critical points > �. Then P � “there are no Woodin cardinals.”

Proof. Towards a contradiction, assume not. Let  be the least Woodin cardinal
ofP . ThenM| is generic overP for the extender algebra at  that uses -generators.
We claim that

Claim. P[M|] � “ is a Woodin cardinal.”

Proof. To see that P[M|] � “ is a Woodin cardinal,” let f :  →  be a
function in P[M|]. Because the forcing that adds M| has the -cc, there is
h :  →  in P such that for every α < , f(α) < h(α). Let E ∈ �EP be an extender
such that 	 =def 	E is a P-cardinal such that letting κ = crit(E),

�PE (h)(κ) < 	.

LetF ∈ Mbe the resurrection of E. LetS be the model appearing in the construction
producing P such that F is added to S. We have that no further model appearing in
the construction projects below 	 (as P|	 is an initial segment of the final model of
the construction). It follows that the canonical factor map k : Ult(P , E) → �MF (P)
has a critical point ≥ 	. Hence, k(�PE (h)(κ)) = �PE (h)(κ). It follows that

�MF (f)(κ) < 	 ≤ 	F .

If F �∈ �EM| then for some M-inaccessible � ∈ (	, ), F � � ∈ �EM|. It follows that
F � � witnesses Woodiness for f in P[M|]. 


Notice now that W(M|) ∈ P[M|] (this follows from S-reconstructibility).
Hence, W(M|) � “ is a Woodin cardinal.” It follows from [18, Remark 12.7] that
W(M|) is essentially the same as M|α where α = (+)M in the case  is a cutpoint
and α = lh(F ) where F ∈ �EM is the first extender such that  ∈ (crit(F ), lh(F )).
The point here is just that if there are partial extenders with critical point  then
they can be translated away.

Suppose now that  is a cutpoint. It follows from the above discussion that
W(M|) = M|(+)M and, hence,  is a Woodin cardinal of M, contradiction
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(there are no Woodin cardinals between � and �). Next, suppose  is not a cutpoint
and let F be the least extender overlapping it. Then, Ult(M, F ) � “ is a Woodin
cardinal.” Hence, M|crit(F ) �“there are unboundedly many Woodin cardinals.”
Since  is a cardinal of M, crit(F ) is also a cardinal implying that M has Woodin
cardinals in the interval (�, �), contradiction!

The next proposition shows that some fragments of the iteration strategy are
universally Baire inside the mouse operators. The proof is very much like the proofs
used in [7, Chapter 3.1]. Below given an iteration tree T on a premouse N , we
let C (T ) = ∪α<lh(T )MT

α |lh(ET
α ). Usually C (T ) is denoted by M(T ) which in this

paper has a different meaning.
Propositions 1.4–1.7 are all part of the standard literature. For example, see [18,

Lemma 5.1] and [14, Lemma 6.3].6

Proposition 1.4. Suppose Mφ is an S-reconstructible mouse operator and
a ∈ dom(Mφ). Fix i ∈ � and set � = �a,i and M = M(a). Let Σ be the unique
iteration strategy of M. Suppose κ ∈ (�a,i–1, �) is an M-cardinal and Λ is the
fragment of Σ that acts on non-dropping trees on M|κ that are above �a,i–1. Then, for
each j ∈ (i – 1, �), Λ � (M|�a,j) ∈ M and whenever g ⊆ Coll(�, κ) is M-generic,
Λ � HCM[g] ∈ M[g] and

M[g] � “Λ � HCM[g] is �a,j – uB.”

Furthermore, for every j ∈ (i – 1, �), whenever h is M[g]-generic for a poset of size
< �a,j , Λ � HCM[g∗h] is the canonical extension of Λ � HCM[g].

Proof. The representative case is when i = 0. When i > 0 we need to work over
M|�a,i–1. Here we assume i = 0. Also, the proof of the case when j > 0 is very
similar to the proof of the case when j = 0. The only difference is that for j > 0,
the fully backgrounded constructions we consider must use extenders with critical
points > �a,j–1.

The fact that Λ � HCM[g] ∈ M[g] follows from Corollary 1.2. Indeed, notice that
given a tree T on M|κ of limit length and according to Λ, Λ(T ) is the unique branch
b such that Q(b, T )7 exists and Q(b, T ) � W(C (T )). Thus, to define Λ in generic
extensions of M, it is enough to know that the function T �→ W(C (T )) is definable
on the domain of Λ. This follows from Corollary 1.2. For the rest of the argument
we assume that κ is a successor cardinal of M. This assumption doesn’t cause loss
of generality, since if κ is a limit cardinal then the conclusion of the proposition can
be reached by using the conclusion of the proposition for (κ+)M.

As pointed out by the referee, we could define Λ � HCM[g] ∈ M[g] as follows. Let
T be the tree of attempts to build a triple (x, y, z, �) such that x codes an iteration tree
T on M|κ, y codes a cofinal well-founded branch b of T such that Q(b, T ) exists, z
codes a countable N such that Q(b, T ) ∈ N , � : N → M|� and inside N , Q(b, T )
can be built via fully backgrounded constructions done over C (T ). In this paper,
especially in Propositions 1.5–1.7, we will need different sort of arguments, and so
we present a somewhat more involved proof that exploits the idea of “iterating to
the background constructions.”

6We thank the referee for providing these references.
7For the definition of Q(b, T ) see [20, Definition 6.11].
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Next we show that Λ is �-uB inM[g]. Our generically absolute definition of Λ will
also show the “furthermore” clause of the proposition. Let � ∈ (κ, �) be a cardinal,
and let �C = (S�,R�, F� : � < �) be the models of fully backgrounded construction
of M|� (or M|�[g]) done over a in which extenders used have critical points > �.
Let R� be the output of �C . Thus, for α < �, R� ||α is defined to be R�α ||α where �α
is the least such that for all � > �α , R� ||α = R�α ||α. We claim that

Claim 1. For some �, R� is an iterate of M|κ via a tree W such that �W exists.

Proof. Notice that as M|κ has no Woodin cardinals, if there was such a tree
W then W ∈ M. Now towards a contradiction assume our claim is false. We now
compareM|κ with the construction (S�,R�, F� : � < �).8 We use ΣM|κ on theM|κ-
side and Σ on the M-side. The comparison produces a tree T on M|κ according
to Λ with last model N and a non-dropping tree U on M according to Σ with last
model M1 such that �U (R�) � N .

Indeed, if M|κ-side lost then the comparison would have stopped before reaching
stage �U (�), and so there would be some � such that the second model of �U ( �C )(�)
was an iterate of M|κ. This fact would be witnessed inside M1, and hence by
elementarity our claim would be true in M.

Because M|κ has no Woodin cardinals, we must have that rud (N ) � “�U (�) is
not a Woodin cardinal.” Because all initial segments of M|κ are φ-small, we have
that if R is the result of S-construction that translates M1 into a mouse over �U (R�)
then N � R. However, because �U (�) is a Woodin cardinal of M1, we have that
R � “�U (�) is a Woodin cardinal,” contradiction. 


We now use branch condensation of Λ to get a generically absolute definition
of Λ.9 Let g ⊆ Coll(�, κ) be M-generic. For each � ∈ (κ, �), let �C� = (S�,R�, F� :
� < �) be the output of the fully backgrounded construction of M|�[g] done over a
in which extenders used have critical points> �. Let �� be such that R�� is an iterate
of M|κ. This iteration must be according to ΣM|κ. Let �� : M|κ → R�� .

Suppose now h is any M[g]-generic for a poset of size < �. Then given a non-
dropping tree T ∈ M|�[g][h] on M|κ we say T is correct if for all limit α < lh(T ),
for some  such that T ∈ M|[g][h] for all � ∈ (, �), there is an embedding � :
MT
α → R�� such that

�� = � ◦ �T0,α.
Given a correct tree T ∈ M[g ∗ h], we let φ[T , b,Q] be the statement that for some
 < � for all � ∈ (, �):

1. b is a cofinal well-founded branch of T such that Q = Q(b, T ) and
2. there is an embedding � : MT

b → R�� such that �� = � ◦ �Tb .
Let �[T , b,Q] be the statement that T is correct and φ[T , b,Q] holds. Notice that

(1) in M[g], whenever P is a poset of size < �, P forces that for any correct tree
T there is b,Q such that φ[T , b,Q].10

8Such comparison arguments were studied in [15]. But here we could also argue that the construction
side doesn’t move at all. The reader can consult [7, Lemma 2.11] and [16, Lemma 3.23].

9For more on branch condensation see [7, Definition 0.19].
10Notice that if h ⊆ P is M[g]-generic and (T , b,Q(b, T )) is as in (1) then (b,Q(b, T )) ∈ M[g][h]

because a fully backgrounded constructions of M[g][h] done over C(T ) must reach Q(b, T ) implying
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The branch condensation of Λ implies that such a pair (b,Q) must be unique. We
then get that � is a generically correct definition of Λ.

Claim 2. For a club of countable X ≺ M|(�+)M[g], letting �X : NX →
M|(�+)M[g] be the transitive collapse of X, and letting h ∈ M[g] be NX -generic
for a poset of size < �–1

X (�), for any (T , b,Q) ∈ NX [h],

NX [h] � �[T , b,Q] if and only if M[g] � �[T , b,Q].

Proof. Left to right direction is easy and we leave it to the reader. For the other
direction, suppose that (T , b,Q) ∈ NX [h] and M[g] � �[T , b,Q]. First we claim
that NX [h] � “T is correct.” Suppose otherwise. Then there is a limit α < lh(T )
such that NX [h] � “T � α is correct and T � α + 1 is not correct.” It follows from
(1) that there is c,Q ∈ NX such that c is not the branch of T � α in T and NX �
�[T � α, c,Q]. It follows that M[g] � �[T � α, c,Q] implying that c is the branch
of T � α in T . A similar argument shows that in fact NX � �[T , b,Q]. 




We now show that countable submodels also have universally Baire strategies.

Proposition 1.5. Suppose Mφ is an S-reconstructible operator, a ∈ dom(Mφ),
and i ∈ �. Set M =def Mφ(a) and � = �a,i . Let � : N → M|(�+)M be a countable
hull inside M. Then M � “N has a �-uB iteration strategy that acts on trees above
�–1(�a,i–1).”

Proof. Again, we only do the proof of the representative case i = 0. Let Σ be
the unique iteration strategy of M, and let (S�,R�, F� : � < �) be the models of the
fully backgrounded constructions of M|� over a. We claim that for some � < � there
is an embedding � : N → R� . To build such an embedding, we compare N with the
aforementioned construction of M|�. We use the �-pullback of Σ to iterate N . We
claim that the construction side wins the comparisons.

To see this, assume not. We then get a tree T on N and a tree U on M|� with last
models N1 and M1 respectively such that �U exists and �U (R�) � N1. As there are
no Woodin cardinals in R� (see Lemma 1.3), (T � lh(T ) – 1) ∈ M1. It follows that
there is a tree W ∈ M on N such that C (W) = R� . It follows that M|(�1)M � N ,
contradicting the fact that N is countable in M. This contradiction shows that there
is � : N → R� for some � < �. The rest follows from Proposition 1.4.11 It is not hard
to show that the �-pullback of the strategy of R� induced by Σ is �-uB in M. 


We state, without a proof, a somewhat stronger version of Proposition 1.5.

Proposition 1.6. Suppose Mφ is an S-reconstructible mouse operator, a ∈
dom(Mφ), and i ∈ �. Set � = �a,i and M = Mφ(a). Let Σ be the unique iteration
strategy of M. Suppose g is M-generic for a poset of size < �, and let � : N [ḡ] →
M|(�+)M[g] be a countable hull in M[g]. Then M[g] � “N has a �-uB iteration
strategy acting on trees that are above �–1(�a,i–1).”

that both b,Q(b, T ) ∈ M[g]. The proof of Claim 1 and the Dodd–Jensen property can be used to show
the existence of �.

11Here we use the fact that the strategy of R� is reducible to the portion of the strategy of the
background universe that acts on non-dropping iteration trees. See [5, Chapter 11].

https://doi.org/10.1017/jsl.2022.70 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2022.70


500 GRIGOR SARGSYAN

The next lemma shows that for any x, proper initial segments of W(x) have
universally Baire iterations strategies (inMφ(a)). However, the function x → W(x)
cannot be universally Baire. For this we need to collapse the first strong cardinal of
M(a). The reason is that W(x) is the set of all OD subsets of x in the derived model
of M(a) computed at �a,� , and this derived model is a model in which all sets are
ordinal definable from a real. For more on this we refer the reader to [18].

Proposition 1.7. Suppose Mφ is an S-reconstructible mouse operator. Let a ∈
dom(Mφ) and i ∈ �. Set M = Mφ(a) and � = �a,i . Let g be M-generic for a poset
of size < �, x ∈ M|�[g] ∩ dom(W), and Q � W(x) be such that ��(Q) = �. Let Λ
be the unique strategy of Q. Then Λ � HCM[g] ∈ M|�[g[ and is �-uB in M in the
stronger sense that for any M[g]-generic h, Λ � HCM[g∗h] is the canonical extension
of Λ � HCM[g].

Proof. We again do the proof in the representative case of i = 0. To prove the
claim fix g, x,Q as in the statement of the proposition. Let P be the output of the
fully backgrounded construction ofM|�[g] done over x using extenders with critical
points > � where � is some cardinal < � bigger than the size of the poset. We have
that Q � P . Thus, again, the iterability of Q reduces to the iterability of some M|κ
for non-dropping trees where κ > � is a regular cardinal of M. The rest of the claim
follows from Propositions 1.4 and 1.5. 


§2. The internal covering property. We will need to deal with S-reconstructible
operators with a stronger property. Recall the W(x) function given by W(x) =
M(x)|(|x| +)M(x).

Definition 2.1. Suppose Mφ is an S-reconstructible mouse operator. We say
Mφ has the internal covering property if for any a ∈ dom(Mφ) and i ∈ �, letting
M = M(a) and � = �a,i , for any P ∈ M|�, M-generic g ⊆ P, x ∈ M|�[g], and
� ∈ (�a,i–1, �) such that:

1. a ∈ L�[x],
2. L�[x] � “x is well-ordered,”
3. x ∈ M|�[g],
4. M|�a,i–1 is generic over W(x),
5. P ∈ M|�.

Letting P be the output of the fully backgrounded construction of M|�[g] done
over x using extenders with critical points greater than �, for unboundedly many
κ < �, (κ+)P = (κ+)M.

Let M be either x → M�(x) or x → Mwlw(x). Both of these operators are S-
reconstructible. Here we show that they also have the internal covering property.

Suppose M is a mouse, κ is an inaccessible cardinal of M such that ��(M) ≥ κ,
and T is an iteration tree on M|κ. We then let T M be the iteration tree on M that
has the same tree structure as T and uses the same extenders as T .12 Similarly, given
an iteration tree on M that is below κ, we let T � (M|κ) be the iteration tree on
M|κ that has the same tree structure and uses the same extenders as T .

12We ignore issues involving ill-founded models as in cases where this notation is relevant the models
are iterable.
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Theorem 2.2. M has the internal covering property.

Proof. We show thatM =def M(∅) satisfies the internal covering property. Here
the representative case is i = 1, so we assume i = 1. Let �0 = �∅,0 and � = �∅,1. Let
φ be the obvious defining formula of M.13

Let � be the sup of the Woodin cardinals of M and g ⊆ Coll(�,< �) be generic
over M. Let W be the derived model of M as computed in M[g]. More precisely,
W = L(Γ,R∗) where R∗ = ∪κ<�RM[g∩Coll(�,<κ)] and Γ is the collection of all those
sets of reals A of M(R∗) such that L(A,R∗) � AD+. Woodin’s celebrated derived
model theorem says that L(Γ,R∗) � AD+ and in M(R∗), ℘(R∗) ∩W = Γ. In the
case of M = M� , W is just L(R∗) (see [19]).

Working in W, let 	 be the supremum of ODW prewellorderings of R. Below
we collect some facts that can be proved using HOD-analysis done inside W. The
reader should consult [21]. Giving the complete proofs of these facts is beyond this
paper. Let H = HODWM|�0 and let Σ be the unique iteration strategy of M.

1. VH
	 can be represented14 as a Σ-iterate of M|� via an iteration that is above �0.

2. H � “	 is a Woodin cardinal.”
3. Suppose P ∈ H|	 is a poset and g ⊆ P is H-generic. Then H[g] � “H|	 is
	 + 1-iterable15 for trees that are in L[H|	][g].”

4. Let S be the iterate of M such that H|	 � S and if i : M → S is the
iteration embedding then the generators of i are contained inside 	. Then
the aforementioned strategy of H|	 is ΣS � (L[H|	][g]).

Let now S be as in clause 4 above. We want to prove now that S satisfies the internal
covering. We have that S|	 = H|	.

Fix � ∈ (�0, 	) and let P ∈ S|� be a poset. Let g ⊆ P be S-generic and x ∈ M|�[g]
be such that M|�0 is generic over W(x) and L�[x] � “x is well-ordered.” Let P be
the output of the fully backgrounded construction of M|�[g] done over x using
extenders with critical points greater than �. Let W be the output of the fully
backgrounded construction of P[M|�0] done over M|�0 in which extenders used
have critical points > �. It is enough to show that in S, W computes unboundedly
many successors correctly.

We now compare H|	 with W . On H|	 side we use the (	 + 1)-strategy in H that
acts on iteration trees in L[H|	][g]. Let Λ be this strategy (which is a fragment of
ΣS|	). Notice that Λ induces a strategy for W (via the resurrection process described
in [5, Chapter 12]). Let then Ψ be the strategy of W induced by Λ. Both Λ and Ψ
act on trees of length ≤ 	 that are in L[H|	][g].

The aforementioned comparison process lasts at most 	 + 1 steps.16 Suppose first
that the comparison process stops in< 	-steps. Let T and U be the trees on H|	 and
W respectively with last models H1 and W1 respectively. We must have that both �T

and �U exist. It follows that there is a club of � such that �T (�) = � = �U (�). For

13For instance, in the case of M�(x), φ is “there are infinitely many Woodin cardinals.”
14We say “represented” rather than “is” because M is a structure in a different language. In particular,

M|� has the extender sequence of M|� as a predicate.
15Here iterability refers to iterability with respect to the extender predicate of H.
16This is a standard comparison argument for weasels. For example, see Theorem 2.10 of [4].
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any such � we have that

(�+)H = (�+)H1 = (�+)W1 = (�+)W ,

which is what we wanted to show.
Suppose next that the comparison process lasts 	-steps. Let T and U be the trees

on H|	 and W respectively. In order to apply Λ and Ψ we must first show that
both T ,U ∈ L[H|	][g]. Notice that for any limit α < 	, the branch chosen by T
and U at stage α is determined by the corresponding Q-structures. More precisely,
if b = Λ(T � α) and c = Ψ(U � α) then both Q(b, T � α) and Q(c,U � α) exist and
are equal to respectively Q(T � α) and Q(U � α). However, sinceC (T ) = C (U), we
must have that Q(T ) = Q(U). Thus, the comparison process is definable over H|	
(for instance, see Corollary 1.4). It follows that indeed T ,U ∈ L[H|	][g].

Let N be the output of the S-construction that translates S into a mouse over W .
We have that N � φ. Set b = Λ(T ) and c = Ψ(U).

Notice that N has an iteration strategy induced by ΣS , and if Ψ+ is this strategy
then Ψ+(UN ) = c. Similarly, ΣS(T S) = b. Let T + = T S and U+ = UN .

Claim 1. MT
b = MU

c .

Proof. Because 	 is inaccessible in H, we have that either MT
b �MU

c or MU
c �

MT
b .17 Because both cases are symmetric let us deal with the case MU

c �MT
b and

leave the other case (which actually is easier as T is a tree on the universe itself) to
the reader.

Again, the usual comparison argument for weasels (see, for example, Theo-
rem 2.10 of [4]) implies that either �T

+

b (	) > 	 or there is a drop on b. To
see this, assume that �T

+

b exists and �T
+

b (	) = 	. As MU
c �MT

b , we have that
Ord ∩MU

c < 	 which implies that there is a drop in c. But then W side cannot lose
the comparison (once again see Theorem 2.10 of [4]).

We thus have that either �T
+

b (	) > 	 or there is a drop on b. In both cases, Q(b, T )
is defined. Now the usual comparison argument for weasels implies that c doesn’t
have a drop and �Uc (	) = 	. It follows that MU+

c � “	 is a Woodin cardinal.” It then
also follows that Q(b, T ) cannot have extenders overlapping 	 as otherwise there
will be Woodin cardinals in MU

c . Hence, Q(b, T ) � M(MU
c ). But since N � φ, we

have that MU+

c � φ, implying that in fact Q(b, T ) � MU+

c . Hence, MU+

c � “	 is not
a Woodin cardinal,” contradiction. 


We thus assume that MT
b = MU

c . In fact, the proof of the claim above shows that
both Q(b, T ) and Q(c,U) do not exist. Hence, both �T

+

b and �U
+

c are defined and
�T

+

b (	) = 	 = �U
+

c (	). We then have that there is, in H[g], an �-club C of � < 	
such that:

1. �Tb (�) = � and
2. �Uc [�] ⊆ �.

Claim 2. For each � ∈ C , �Uc (�) = �.

Proof. The claim follows from the following subclaim.

17This follows from the usual comparison argument for weasels. For example, see Theorem 2.10 of [4].
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Subclaim. For each � ∈ (�, 	) such that cfH[g](�) = �, cfW(�) is not a
measurable cardinal of W whose measurability is witnessed by an extender on
the sequence of W .

Proof. To see this, fix � as above and suppose cfW(�) = � and there is a total
extender E ∈ �EW such that crit(E) = �. Let (Kα,K′

α, Fα : α < 	) be the models
of the fully backgrounded construction producing W . Let α be such that for all

 ∈ [α, 	), K′

α |(�+)K
′
α = W|(�+)W . It then follows that E, as it is total over W , has

been added after stage α and, therefore, � is an inaccessible cardinal of H. But as
cfH[g](�) = �, cfH[g](�) = �. As � > �, we get a contradiction! 


Thus, since for � ∈ C , cfW(�) is not a measurable cardinal of W , sup(�Uc [�]) =
�Uc (�) implying that for � ∈ C , �Uc (�) = �.

We now have that for each � ∈ C ,

(�+)H = (�+)M
T
b = (�+)M

U
c ≥ (�+)W .

However, since �Uc is continuous at each (�+)W , we must indeed have that

(�+)H = (�+)M
T
b = (�+)M

U
c = (�+)W ,

which is what we wanted to prove.18

The above proof shows that in fact covering holds on a stationary set. The referee
has pointed out that the proof of Theorem 2.2 uses arguments similar to those
appearing in Chapter 3 of [17].

§3. No towers resembling the stationary tower.

Theorem 3.1. Suppose Mφ is an S-reconstructible mouse operator with the internal
covering property. Let α ∈ dom(M) and set M = M(a) and � = �a,1. Then there is
no st-like-embedding below �.

Proof. Towards a contradiction supposeP ∈ M|� is such that �a,0 < |P| < � and
whenever g ⊆ P is generic, there is an elementary embedding j : M → N ⊆ M[g]
in M[g] with the property that:

1. crit(j) = �M
1 ,

2. RM[g] ⊆ N ,
3.

∣∣∣(�+
a,0)M

∣∣∣M[g] = �,

4. for some M-regular cardinal 	0 < �,

N = {j(f)(s) : s ∈ [	0]<�, f : [	0]|s| → M and f ∈ M}.

Fix such a tuple (g,N , j). Let κ = �M
1 and let � = �M[g]

1 . Let Σ be the unique
iteration strategy of M. Recall that we have set W(x) = M(x)|(|x| +)M(x). We
assume that P has the smallest possible rank.

Let R∗ � N be the least such that ��(R∗) = � and M|κ �R∗. Let Φ be the
�-strategy of R∗ in N . Corollary 1.2 implies that W � M|� is definable over M|�.

18We could have also argued using a pressing down argument instead of the argument given in the
proof of Claim 2.
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It then makes sense to write WN for the function given by the same definition
over N|�.

Claim 1. Suppose x ∈ HCM|�[g] is a transitive set such that L�[x] � “x is well-
ordered.” Then

W(x) � WN (x).

Proof. Let W∗ � W(x) be such that ��(W∗) = Ord ∩ x. The proof of
Proposition 1.7 shows that for some � ∈ (|P| , �), W∗ appears as a model of the fully
backgrounded construction of M|(�+)M done using extenders with critical points
> |P|. Working in M[g], let � : M̄[ḡ] → (M|(�+)M[g]) be such that x ∈ M̄[ḡ],
� ∈ rng(�) and M̄ is countable in M[g]. Let �̄ = �–1(�). We then have that

(*) the iterability of W∗ reduces to the iterability of M̄|(�̄+)M̄ for non-dropping
trees that are above

∣∣�–1(P)
∣∣ M̄.

By absoluteness we have � : M̄|(�̄+)M̄ → j(M|(�+)M) in N . It follows from
Proposition 1.4 that j(M|(�+)M) is � + 1-iterable inN (for non-dropping iterations
that are above �a,0), and hence W∗ is �-iterable in N (see (*)). Therefore, W∗ �
WN (x).19 


The proof of Claim 1 is a prototypical argument that we will use again
below. Recall that given an iteration tree T on a premouse N , we let C (T ) =
∪α<lh(T )MT

α |lh(ET
α ).

Claim 2. There is a premouse X ∈ HCM[g] such that:

1. M|(�+
a,0)M is generic over X ,

2. there is an iteration tree K on M|(�+
a,0)M such that K is according to Σ and

either:
(a) the iteration embedding �K exists and X is the last model of K, or
(b) K is of limit length, W(C (K)) � “�(K) is a Woodin cardinal” and X =

W(C (K)),
3. there is a sound X -premouse R ∈ M[g] such that Ord ∩ X is a cardinal of

R and M[g] � “R is not �-iterable above Ord ∩ X ,” letting 	 be the Woodin
cardinal of X ,

4. R � “	 is a Woodin cardinal,”
5. rud (R) � “Ord ∩ X 20 is not a cardinal,” and
6. X and R are countable in M[g].

Proof. Let Y = M|(�+
a,0)M. Working inside M[g], we compare Y with R∗. Y is

not �-iterable insideM[g].21 However, it follows from Corollary 1.2 that the fragment
of ΣY � (M[g]) that acts on short trees, i.e., trees T for whichQ(T ) exists, is inM[g].

19This follows from the universality of the fully backgrounded constructions, for example, see [7,
Lemma 2.12].

20This essentially says that 	+ of X is definably not a cardinal over R.
21To see this, notice that if 	 is the least< �a,1-strong cardinal of M, then because P was chosen to be

of smallest rank, P ∈ M|	 (see Proposition 0.6). Then, there is an iteration tree U on Y of limit length
such that �(U) = (	+)M. U is the iteration to make M|	-generic. U cannot have a branch in either M
or M[g]. For more on these kinds of arguments, see, for example, [9] or [6, Chapter 5.1].
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We then want to use the aforementioned fragment of ΣY for the comparison that we
would like to perform. Finally, we would like to incorporate Y-genericity iteration
into the above mentioned comparison. More precisely, working inside M[g] we first
iterate the least Y-measurable cardinal �a,0 + 1-times and get Y1 and then construct
iteration trees T and U on Y1 and R∗ respectively such that:

1. T is according to the short fragment of ΣY � (M[g]),
2. U is according to Φ (recall that our hypothesis is that RM[g] = RN ),
3. for α < �, given T � α + 1 and U � α + 1 we let:

(a) ET
α,0 be the least extender, if it exists, on the sequence of MT

α that violates
an identity in the relevant extender algebra,

(b) ET
α,1 be the least extender, if it exists, that causes disagreement between

MT
α and MU

α ,
4. ET

α is defined if either ET
α,0 or ET

α,1 is defined and

ET
α =

{
ET
α,0 : lh(ET

α,0) ≤ lh(ET
α,1),

ET
α,1 : lh(ET

α,1) ≤ lh(ET
α,0),

5. if ET
α = ET

α,1 then EU
α = �EMU

α (lh(ET
α )) and otherwise EU

α = ET
α .

Because R∗ �� M we must have that R∗-side must win any successful coiteration
with Y . Notice that Claim 1 implies that the construction of (T ,U) can be carried
out inside N . It follows that our construction of T and U can last at most �N

1 many
steps producing trees T and U . If now U is of limit length then because Φ acts on U ,
we can let c = Φ(U). Let then R1 be either the last model of U (in case it has a last
model) or MU

c .
We then must have one of the following cases (in M[g]): either:
1. T has a last model Y2, �T exists, Y is generic over the extender algebra of Y2

at �T (�a,0), and Y2 �R1, or
2. T is of limit length, Q(T ) does not exist, and letting Y2 = W(C (T )), Y2 � R1.
Set X = Y2. Notice that because ��(R∗) = �, we must have that rud (R1) � “�

is not a Woodin cardinal” where � is the Woodin of X . Let R2 � R1 be the longest
such that R2 � “� is a Woodin cardinal.” Let R � R2 be the longest such that
R � “Ord ∩ X is a cardinal.” We claim that (X ,K,R) is as desired where K is the
iteration tree on M|(�+

a,0)M producing X . It follows from our construction that it is
enough to show that:

(a) R is not �-iterable in M[g] above Ord ∩ X , and
(b) X and R are countable in N .
Assume that (a) fails. Let  ∈ (�a,0, �) be an M-cardinal such that P ∈ M|.

Let P be the output of the fully backgrounded construction of M|�[g] done
over X using extenders with critical point > . Then R �� P which means that
R must outiterate P (this can be shown by considering the comparison of R
with the construction producing P). We then have a tree U ′ on R such that
C (U ′) = P implying thatP cannot compute unboundedly many successors correctly
contradicting Theorem 2.2.22

22For example, fix large enough inaccessible cardinal � such that (�+)P = (�+)M. Let α be the least
such that P|� � MU′

α (if � is chosen large enough, we must have that � = α and � is a cardinal of M[g]).
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Finally we need to show that X and R are countable in N . Assume not. We then
must have that the construction of T and U lasts �N

1 steps. We now claim that we
must also have a branch for T in N . Indeed, let � : H → N|(�N

2 ) be countable in N
such that T ,U , c ∈ rng(�). Then �–1(c) ∈ H is the branch of �–1(U). Let � = �H1 .
Notice that Q(T � �) exists and the branch of T � � chosen in T for T � � is the
unique branch d such that Q(d, T � �) exists and is equal to Q(T � �). But we have
that �–1(R2) = Q(T � �), and because �–1(R2) ∈ H , the branch of T � � is in H. Let
d be this branch. It then follows that �(d ) is a branch of T . The usual comparison
argument now implies that the iteration must have lasted < �N

1 steps. 

Let Λ be the strategy of R in N . We have that Λ is a (�, �)-strategy. We would like

to find a Λ-iterate S of R such that S is a minimal counterexample to �-iterability.
Below we define what this notion means.

Given a finite stack of normal trees �T ∈ M|�[g] on R, we say �T is Λ-correct if in
M[g], there is a club of countable X ≺ M|(�+)M[g] such that letting �X : NX →
M|(�+)M[g] be the transitive collapse, �–1

X ( �T ) is according to Λ. We now look for
an iterate of R that is a minimal counterexample to < �-iterability among Λ-correct
iterates of R. Below we make the notion more precise.

Suppose �T ∈ M|�[g] is a finite Λ-correct stack on R with last model K. Let
S � K. We say ( �T ,S) is a minimal counterexample to �-iterability if there is an
S-cardinal  such that:

1.  is a strong cutpoint in S,23

2. ��(S) ≤  and S is -sound,
3. in M|�[g], S is not �-iterable above ,
4. whenever U ∈ M|�[g] is a normal tree on S above  with last model W∗

such that �T �U is Λ-correct, for any W such that S| �W �W∗ and for any
W-cardinal 	 such that 	 is a strong cutpoint ofW and��(W) ≤ 	,M[g] � “W
is �-iterable above 	.”

It is not difficult to see that there is a minimal counterexample to �-iterability.
Towards a contradiction, assume there is no minimal counterexample to �-iterability.
We know that R is not a minimal counterexample to �-iterability. We can then
construct a sequence (R+

i ,Ri , Ti , 	i : i ∈ [1, �)) such that:24

1. Ri is a 	i -sound mouse over Ri |	i such that ��(Ri) ≤ 	i ,
2. 	i is a strong cutpoint of Ri ,
3. Ti is a tree on Ri above 	i such that ⊕k≤iTk is Λ-correct,
4. R+

i+1 is the last model of Ti ,
5. Ri+1 �R+

i+1 is such that for some 	i+1, Ri+1 is a 	i+1-sound mouse over
Ri+1|	i+1 such that ��(Ri+1) ≤ 	i+1 and Ri+1 is not �-iterable above 	i+1 in
M[g].

Let 
 be the index ofEU′
α . We have that 
 > � and 
 is a cardinal ofC (U ′) and therefore, (�+)M < 
 (as


 is not a regular cardinal of MU′
α ). Thus, we must have that P|(�+)P � MU′

α and, therefore, for some
α′ ∈ [0, α)U′ , (�+)M ∈ rge(�U

′
α′ ,α). As iteration embeddings are continuous at successor cardinals, we

have that (�+)M is not a regular cardinal in M[g], contradiction.
23This means that for all E ∈ �ES , if lh(E) ≥  then crit(E) > .
24As pointed out by the referee, arguments similar to this one have appeared in the literature. For

example, [12, Lemma 1.8] is similar to our argument.
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Suppose then X ≺ M|(�+)M[g] is such that it witnesses that for each i, ⊕k≤iTk is
Λ-correct. It follows that �–1

X (⊕i∈�Ti) witnesses that Λ is not an iteration strategy
for R.

Let now S be a minimal counterexample to �-iterability and let �T be the finite Λ-
correct stack on R producing S. Thus, S is an initial segment of the last model of �T .
Let  be anS-cardinal witnessing thatS is a minimal counterexample to �-iterability.
We then have that  is a strong cutpoint of S, S is -sound, and ��(S) ≤ .

Assume that S has a Woodin cardinal > . Let 	 be its least Woodin cardinal > .
LetP be the output of the fully backgrounded construction ofM|�[g] done overS|
using extenders with critical points> . We now compare S|	 with the construction
producing P . The P-side of such a comparison doesn’t move (for instance, see
Lemma 2.11 of [7]). However, since S is not fully iterable, we need to describe a
strategy for picking branches on the S-side. Let (P∗

� ,P�, E� : � < �) be the models
of the aforementioned construction.

Suppose then U ∈ M|�[g] is a tree of limit length that has been built on S via
the aforementioned comparison process. We would like to describe a branch for it.
As an inductive hypothesis, we maintain that �T �U is Λ-correct. Thus, the branch
b we pick for U has to have the property that �T �U�{b} is Λ-correct. There can be
at most one such branch. It is then enough to show that there is such a branch. The
description of b splits into two cases.

First recall the definition of a fatal drop [7, Definition 1.27]. Given a tree W on a
premouse Q we say W has a fatal drop if there is α < lh(W), �, and K �MT

α such
that � is a strong cutpoint of K, ��(K) ≤ �, and T≥α is an iteration of K above �.

Case 1: U doesn’t have a fatal drop.
We have that there is some � < � such that C (U)� P� . Because �(U) < �, we

have that M � “�(U) is not a Woodin cardinal.” It follows that there is a mouse Q
over C (U) that is obtained via the S-construction that translates M into a mouse
over P� |�(U) such that Q is �(U)-sound, ��(Q) ≤ �(U), and rud (Q) � “�(U) is not
a Woodin cardinal.” We claim that

Claim 3. There is a branch b of U such that Q(b,U) exists and Q(b,U) = Q.

Proof. Indeed, letX ≺ M|(�+)M[g] be countable such that �T ,S,U ,P�,Q ∈ X ,
and letting �X : NX → M|(�+)M[g] be the transitive collapse of X, �–1

X ( �T �U) is
Λ-correct. Set Q̄ = �–1(Q). Notice that it follows from Claim 1 and Proposition 1.7
that Q̄ is �-iterable in N . Let then c = Λ(�–1

X ( �T �U)). We must have that Q(c, Ū)
exists and Q(c, Ū) = Q̄. By absoluteness c ∈ NX . It is now not hard to check that
b =def �X (c) is as desired. b is the unique branch of U such that Q(b,U) exists and
Q(b,U) = Q. 


Case 2: U has a fatal drop.
Let � < lh(U) be such that the fatal drop happens at MU

� . Let � and W �MU
�

be such that MU
� |� �W , ��(W) = � , � is a strong cutpoint of W , and U≥� is an

iteration tree on W above � . Because S is a minimal counterexample to �-iterability,
we have that W is �-iterable in M|�[g]. Let then b be the branch of U according to
the unique strategy of W . Again a Skolem hull argument and Claim 1 show that
�T �U�{b} is Λ-correct.
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This finishes our description of branches that player II plays in the comparison
game between S|	 and the construction producing P . Let then U be the tree on S|	
of maximal length constructed in the manner described above.

Notice that for unboundedly many � < �,P computes �+ correctly. This is because
X ∈ P and if P∗ is the output of the fully backgrounded construction of P done
over X with large enough critical points then P∗ computes unboundedly many
successors correctly (this is a consequence of the internal covering property).

It now follows that lh(U) �= � as then C (U) = P . Also, U must have a last model
S∗. Indeed, if U doesn’t have a last model then it is of limit length. Because �(U) < �,
we have that M � “�(U) is not a Woodin cardinal,” implying that our method of
picking branches of U does produce a branch for U . Because the S|	-side lost the
comparison, �U must exist. Let � = �U (	) (because �T �U is Λ-correct, U can be
applied to S).

Because M � “� is not a Woodin cardinal,” we can find sound S∗|�-mouse W ∈
M|�[g] such that ��(W) ≤ � , W � “� is a Woodin cardinal” and rud (W) � “� is
not a Woodin cardinal.” Because we are in the no-fatal drop case, W = S∗.

We claim that in M[g], W is �-iterable above � . Notice that because W is obtained
via S-constructions, for some 
 , W is the result of the translation of M||
 into a
mouse over S∗|� via S-constructions. It follows that ��(M|
) ≤ � . Since M||
 is
�-iterable above � , W is also �-iterable above � (see Proposition 1.4). It follows
from S-reconstructibility that for any � ∈ (�, �), W can also be built by the fully
backgrounded construction of M|�[g] that uses extenders with critical points > �.
Let now �0 < �1 be M-successor cardinals such that S∗|� can be built by the fully
backgrounded construction of M|�0[g] that uses extenders with critical points> ,
and W can be built by the fully backgrounded construction of M|�1[g] that uses
extenders with critical points > �0. It follows that iterability of W can be reduced
to the iterability of M|�1 for non-dropping trees that are above . Proposition 1.4
then implies that W is �-iterable in M[g].

This is a contradiction as in M[g], S is not �-iterable above , while because
�U : S → W , we get that in M[g], S is in fact �-iterable above .

The case when S has no Woodin cardinals is very similar. Now we compare
S with the fully backgrounded constructions producing a tree U on S such that
�T �U is Λ-correct. Because S has no Woodin cardinals, handling limit stages of
the construction of U is very similar. Assuming U has been built up to stage �, we
consider, as above, two cases. If U � � has no fatal drops then we proceed as in the
“no fatal drop case” of the above argument. Otherwise, we proceed in the “fatal
drop” case of the above argument. We leave the details to the reader.

We believe that the project of characterizing in mice the exact cardinals κ that
permit stationary tower like embeddings with critical point κ is a very nice project.
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