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PARALLEL METRICS AND REDUCIBILITY
OF THE HOLONOMY GROUP

RICHARD ATKINS

In this paper we investigate the relationship between the existence of parallel semi-
Riemannian metrics of a connection and the reducibility of the associated holonomy
group. The question as to whether the holonomy group necessarily reduces in the
presence of a specified number of independent parallel semi-Riemannian metrics is
completely determined by the the signature of the metrics and the dimension d of
the manifold, when d / 4. In particular, the existence of two independent, parallel
semi-Riemannian metrics, one of which having signature (p, q) with p / q, implies
the holonomy group is reducible. The (p,p) cases, however, may allow for more
than one parallel metric and yet an irreducible holonomy group: for n = 2m, m ^ 3,
there exist connections on Rn with irreducible infinitesimal holonomy and which have
two independent, parallel metrics of signature (m,m). The case of four-dimensional
manifolds, however, depends on the topology of the manifold in question: the presence
of three parallel metrics always implies reducibility but reducibility in the case of
two metrics of signature (2,2) is guaranteed only for simply connected manifolds.
The main theorem in the paper is the construction of a topologically non-trivial
four-dimensional manifold with a connection that admits two independent metrics of
signature (2,2) and yet has irreducible holonomy. We provide a complete solution to
the general problem.

1. INTRODUCTION

This paper investigates the relationship between two fundamental types of objects
associated with a connection on a manifold: the existence of parallel semi-Riemannian
metrics and the associated holonomy group. Typically in Riemannian geometry a metric
is specified, which determines a Levi-Civita connection. Here we consider the connection
as more fundamental and allow for the possibility of several parallel metrics. Holonomy
is an old geometric concept, which is enjoying revived interest in certain branches of
mathematical physics, in particular loop quantum gravity and Calabi-Yau manifolds in
string theory. It measures, in group theoretic terms the connection's deviation from
flatness and takes the topology of the manifold into account.
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It is well known that for a Riemannian manifold, the reducibility of the holonomy
group of the Levi-Civita connection implies the existence of multiple independent parallel
Riemannian metrics on the manifold [5]. In this paper we look at the converse: when does
the existence of multiple independent semi-Riemannian metrics on a manifold, parallel
with respect to a linear connection, imply the reducibility of the holonomy group of
the connection? We do not necessarily assume that the connection is symmetric in our
solutions to this problem. If g is a semi-Riemannian metric on M, which is parallel
with respect to the connection V, then the holonomy group $(i) , at i e M, preserves
9- ^*(p) — 9> f°r aU V1 G \P(x). Thus the existence of parallel metrics places algebraic
restrictions on \P(x); these restrictions will be the subject of our investigations. For
manifolds of dimension d / 4 the problem has a purely algebraic solution. For four-
dimensional manifolds the relationship of the parallel metrics of the connection to the
reducibility of the holonomy group is not entirely algebraic but depends also on the
fundamental group of the manifold: the presence of three parallel metrics always implies
reducibility but reducibility in the case of two metrics of signature (2,2) is guaranteed only
for simply connected manifolds. The central theorem in this paper is the construction of
a topologically non-trivial four-dimensional manifold with a connection that admits two
independent parallel metrics of signature (2,2) and yet has irreducible holonomy. d = 4
is the critical dimension with respect to reducibility of the holonomy group.

It is interesting to note that d = 4 appears as the critical dimension in other con-
texts as well. In quantum field theory, for instance, infinite divergences appear in the
calculation of scattering amplitudes as the dimension of spacetime approaches four. Also,
it has been shown that R4 has the remarkable property of admitting exotic differentiable
structures [1, 2]. In superstring theory spacetime is ten or eleven dimensional but only
four dimensions are observed in nature. Therefore some unique characteristic of four-
dimensional manifolds must be involved in explaining this mismatch of dimensions.

In Section 2 we state the main results of the paper. Section 3 gives the proofs
relating to the reducibility of the holonomy group for d ^ 4. Section 4 provides proof of
the existence of connections with irreducible holonomy in the presence of parallel metrics
for d 7̂  4. The final section deals with four-dimensional manifolds.

The problem of non-uniqueness of parallel metrics, largely for Lorentzian connec-
tions, has been investigated by several authors [3, 4, 6, 7].

2. STATEMENT OF RESULTS

Let V be a vector space over a field F, which will be either R or C. Let G be a group
which acts on V on the left. A subspace W of V is said to be G-invariant if g-£ 6 W, for
all g 6 G and £ 6 W. If there exists a proper, non-trivial G-invariant subspace of V we
say that G acts reducibly on V, or more simply, that G is reducible. In our applications,
G shall be a subgroup of Aut(V), the group of linear automorphisms of V. The holonomy
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group * ( i ) of a linear connection V on a connected manifold M, at x € M, is a subgroup
of Aut(TzM). For any two points x,y € M, the holonomy groups \&(x) and ty(y) are
isomorphic, since M is connected. If for some point (and hence all points) x € M, ^(x)

is reducible (respectively, irreducible) then we say that the connection V has reducible

(respectively, irreducible) holonomy.

We begin with a theorem that provides sufficient conditions, with regard to the
existence of parallel semi-Riemannian metrics, to ensure the reducibility of the holonomy
group of the connection.

THEOREM 2 . 0 . 1 . (i) Let g\ and g2 be two independent semi-Riemannian met-

rics on a connected manifold M, parallel with respect to a linear connection V on M.

Suppose that one of gi, g2 has signature (p, q) with p ^ q. Then V has reducible holon-

omy.

(ii) Let g\ and g2 be two independent semi-Riemannian metrics on a connected,

two-dimensional manifold M, parallel with respect to a linear connection V on M. Then

V has reducible holonomy.

(iii) Suppose n ^ 0 mod 4. Let g\, g2 and g3 be three independent semi-Riemannian

metrics on a connected, n-dimensional manifold M, parallel with respect to a linear

connection V on M. Then V Las reducible holonomy.

(iv) Let glt g2, g% and </4 be four independent semi-Riemannian metrics on a con-

nected manifold M, parallel with respect to a linear connection V on M. Then V has
reducible holonomy.

It is possible to construct examples of connections on manifolds that show that the
numbers of parallel semi-Riemannian metrics in the above theorem are sharp. Specifically
we have the following.

THEOREM 2 . 0 . 2 . (i) Letn = 2m and m > 3. There exist two independent

semi-Riemannian metrics on Rn of signature (m,m), parallel with respect to a linear

connection having an irreducible holonomy group.

(ii) Let n = 2m, m = 2r and r ^ 2. There exist three independent semi-
Riemannian metrics on R" of signature (m,m), parallel with respect to a linear con-
nection having an irreducible holonomy group.

In four dimensions we have the following results.

THEOREM 2 . 0 . 3 . (i) Let M be a connected, simply connected, four-dimensional

manifold. Let g\ and g2 be two independent semi-Riemannian metrics on M, parallel with

respect to a linear connection V on M. Then V has reducible holonomy.

(ii) Let M be a connected, four-dimensional manifold. Let g\,g2 and 53 be tiree

independent semi-Riemannian metrics on M, parallel with respect to a linear connection

V on M. Then V has reducible holonomy.

(iii) There exists a connected, non-simply connected, four-dimensional manifold M
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with two independent semi-Riemannian metrics of signature (2,2), parallel with respect

to a linear connection V on M, where V has irreducible holonomy.

3. PROOF OF THEOREM 2.0.1

V shall always denote an n-dimensional vector space. If n is even then we set n = 2m
and if m is even we set m = 2r. When n is even, K and L shall always denote the matrices
in GL(n; R) defined by

•Imxml

K and L may be regarded as symmetric bilinear forms on J?" with signature (m,m).

Proofs of the less technical lemmas and corollaries shall be left to the reader in what
follows.

3.1. Two SYMMETRIC BILINEAR FORMS. In this subsection we examine the case of
a subgroup of Aut(F) preserving two independent, symmetric, non-degenerate bilinear
forms on V.

Let G be a subgroup of GL(n;F). G acts on V := F" on the left by matrix
multiplication:

for all g £ G and £ £ Fn. The essence of the following lemma may be found in [5, p. 277].

LEMMA 3 . 1 . 1 . Let G be a subgroup ofGL(n; F) which acts irreducibly on Fn

and let A £ gl(n; F) commute with each element ofG.

(1) The minimal polynomial of A (over F) is irreducible (over F).

(2) Let F = R.

(i) A = al, for some a £ R, when n is odd, and

(ii) A = al + bJ, for some a,b £ R and J £ GL(n;R), which satisfies
J2 = —I, when n is even.

Let 771 and % be two independent, symmetric, non-degenerate bilinear forms on V
and let 771 have signature (p, q). Let Q be a subgroup of the automorphism group of
V whose elements preserve 771 and 772: fl'fo) = 77;, for all g £ Q and i — 1,2. Let
KPtq £ GL(n; R) be defined by

KB.a:=(^ °
Y p- '- ' 0 - / ,«x«;

LEMMA 3 . 1 . 2 . Suppose that Q acts irreducibly on V. Let 0 be any basis in

which T)I is represented by KVA. Then in this basis Tfr is represented by aKPiQ + bKp>qJ,

where a,b € R and J € GL(n;R) satis&es J2 = - / .
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P R O O F : Let ft be a basis of V in which 771 has the form KVA. 772 will be represented

by a symmetric matr ix A € GL(n;R), with respect to /J. Q may be identified with a

subgroup H of GL(n; R) whose elements H EH satisfy

**HKMH = KMt and
lHAH = A.

Now <H = KPiqH-lKPiq, for each H E U. Therefore, A = lHAH = KMH~lKp>qAH.

That is,
H{KMA) = {KMA)H,

for all H EH. By Lemma 3.1.1, we see that n must be even and that Kp<qA = al + bJ,
where a,b E R and J E GL(n;R) satisfies J2 = - / . Thus A = aKPA + bKPAJ. D

LEMMA 3 . 1 . 3 . Suppose that one ofrfi, 772 has signature (s, t) with s ^ t. Then
Q acts reducibly on V.

PROOF: Suppose Q acts irreducibly on V. Without loss of generality we may suppose
that p 7̂  q. By Lemma 3.1.2, we have a basis of V in which 771 is represented by KPA and
772 is represented by A = aKp<q + bKPtqJ, where a,b E R and J2 = —/. Since A and KPA

are symmetric, KPAJ is symmetric. We have

t J Ts J t / IS" 7 \ 7 IS 7 7 If
J X\pAJ — yJ\PiqJ )J — J\pAJ J — — l \ p A .

Now, the signature of KPA is (p,q) and must be equal to the signature (g,p) of tJKPAJ

= —KPA. Therefore p = q. This is a contradiction. D

This proves Theorem 2.0.1 (i).

3.2. TWO SYMMETRIC BILINEAR FORMS OF SIGNATURE (m,7n). Let Tft and 772 be two

independent, symmetric bilinear forms on V of signature (771,771), where n = 2m. Let Q
denote a subgroup of Aut(V) preserving 771 and 772. In this subsection we find a normal
form for 771 and 772 when Q acts irreducibly on V.

LEMMA 3 . 2 . 1 . Suppose that Q acts irreducibly on V. Then there exists a basis

/? ofV in which 771 is represented by K and 772 is represented by A = aK + bKJ where

a,b E R, J2 = —I and J has the form

I tT n I 'I — 1 ~UiJ

where D\ and D2 are diagonal matrices.

PROOF: Follows from Lemma 3.1.2 and a standard diagonalisation argument. D

Let M be an 771 x m matrix. With respect to M, we define two equivalence relations
~M i 1 and ~M-2 on { 1 , . . . , m} as follows, i ~M>1 j if and only if i = j or there exists a
sequence of non-zero elements

M* MPl MPl MP2
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We set i ~M>2 j if and only if i = j or there exists a sequence of non-zero elements

MPl MPl Mn MP2 Mw MP3 MPk MPk

J « t i i v l q i ' " l q i ' 1 Y 1 n ' 9 2 ' 9 3 ' • " • ' J J ? * - l > * j '

We shall denote by [i]M<1 (respectively, [i]M'2) the elements which are ~M]1 (respectively,
~M'2) equivalent to z.

LEMMA 3 . 2 . 2 . Suppose that M) £ 0.

(1) Let p e [i]M>1 and g 0 L?']M'2. Then Mp = 0.

(2) Let p 0 [i]"-1 and g 6 [;]M'2. Tien Mp = 0.

LEMMA 3 . 2 . 3 . Suppose that G acts irreducibly on V. Then there exists a basis
fiofV in which rji is represented by K and 772 is represented by A = aK + bKJ, where
a,b e R, J2 — —I and J has the form

J = (_*r _£>J '
wiere D is a diagonal matrix and T is a block diagonal matrix of the form

faxl 0 • • • 0 \ M 0 ••• 0 \

D = 0 a2/

0
0

0

and T =
0 B2

0
0

0

and tie blocks in D corresponding to those in T have the same dimension.

PROOF: By Lemma 3.2.1, there exists a basis 0 of V whereby r)i and % are repre-
sented, respectively, by K and A = aK + bKJ where a,b € R, J2 = —/ and J has the
form

J = DL

where D\ and £>2 are diagonal matrices.
The equation J2 = -I gives TT = D2 + I. Thus (detT)2 = det(£>2 + /) > 0.

Therefore T is invertible. Let [ti]7"'1,.. •, [i\]T>l be the ~T>1 equivalence classes. For each
A € { 1 , . . . , A}, there exists a jk G {1 , . . . , m} such that Tj* ^ 0, since T is invertible. By
Lemma 3.2.2,

(1) for p € [ikf'1 and 9 * \jk]
T>2, we have Tp = 0, and

(2) for p $ [I*]7*'1 and q € \jk]Ta, we have T? = 0.

Set

• := card [i*]Tl1, 1 < k ^ A; /XQ := 0, and

: : = c a r d \jk]
T'2, l^k^X; u Q : = 0 .
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Let q £ {l,...,m}. Since T is invertible, there exists p € { l , . . . , m } such that
T£ ^ 0. Now, p 6 [i*]Tl1 for some ifc 6 {1, . . . ,A}. It follows that q £ \jk\T>2- There-
fore every element q £ { 1 , . . . ,m} belongs to one of the equivalence classes [j*]7'2, with
k £ { 1 , . . . , A}. That is, \ji]Ta,..., \jx]T'2 is a partition of { 1 , . . . , m}. We have

Mo + • • • + MA = m = i>o + • • • + vx.

Let P,Q £ O(m; R) be the permutation matrices defined as follows. The j i h column
of a matrix M will be denoted by M,. Set

(•P/io+-+(it-i+l> • • • >-f/«o+-+/i*) : = (etn •• • iet(.»)'

where *i < • • • < t w and {*x,... , t w } = [i*]T'\ for 1 ^ A; < A. ej denotes the ith standard
basis vector in R™. Also,

\Qvtt-\-•• +i/t_i+ii • • • >Qv«+-+i/fc) : = \etii

where ^ < • • • < tVk, and {«!, ...,*„>} = [jfc]
T-2, for 1 < A;

Set 5 := lPTQ. 5 has a block diagonal form

A.

0

B2

0 \

0 0

where Bk is a ^ x i/fc matrix, 1 ^ k < A. Since 5 is invertible we must have fik = i>k for
all 1 ^ k ^ A, and so each Bk is an invertible square matrix. Owing to the permutation
matrices P and Q, it is not difficult to see that the ~s>1 and ~5>2 equivalence classes are
identical and are given by

{Mi + • • • + MA-I + 1 , . . . , MI + • • • + MA}-

Define F £ O(n; R) by

F:=
0 Q,

Let ^ ' be the basis of V defined by setting 0' := /JF. T71 is again represented by K and
% is represented by A' = lFAF = aK + bKJ', where f := *FJF satisfies (J ')2 = - / .
Moreover J' has the form

f =
\-*S -E2)'
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where E\ = tPDiP and E2 = lQD2Q. Since P and Q are permutation matrices, Ex and

E2 are diagonal matrices. The equation (J')2 = -I gives us EiS - SE2 = 0. Therefore,

for alH, j € { 1 , . . . , m}. It follows that (£i)| = (E2)] when S] ^ 0. Hence

(E1)\ = (E1)i w

(£*){ =

when i ~s>1 j , and

when i ~ 5 ' 2 ?'.

Therefore

0

a2/
0 \

0 0

and ^2 =

0

hi

0

for some a<, fy € i?. Since E\S — SE2 = 0 and each Bk is an invertible square matrix, it
follows that Ey — E2. This proves the lemma. D

LEMMA 3 . 2 . 4 . Suppose that Q acts irreducibly on V. Then there exists a basis
pofV in which 771 is represented by K and 772 is represented by A = aK + bKJ where
a,b € R, J2 = —I and J has the form

where D and D' are diagonal matrices of the form

0

0 0

0 N

0

a\IJ 0

D
and the blocks in D corresponding to those in D' have the same dimension.

PROOF: Follows from Lemma 3.2.3 and a standard diagonalisation argument.

We finally arrive at the following normal form for 771 and T)2.

LEMMA 3 . 2 . 5 . Let T)X and % be two independent, symmetric bilinear forms on

V of signature (m,m), where n = 2m. Let Q be a subgroup of Aut(V) whose elements

preserve 771 and %. Suppose that Q acts irreducibly on V. Then there exists a basis of

V with respect to which 771 and 772 are represented, respectively, by K and aK + bL, for

some a,b G R.
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P R O O F : By Lemma 3.2.4, there exists a basis /? of V with respect to which 771 is
represented by K and 772 is represented by A — aK + bKJ where J has the form

3 = \-U -D) '

where D and D' are diagonal matrices as given by the lemma. Set E := D + D'. E is
a diagonal matrix with positive entries along the main diagonal. Let T be the diagonal
matrix with positive entries such that T2 = E. Define F € GL(n; R) by

We define the basis /?' of V by /3' = (5F. A calculation will verify that with respect to /?',
Tji is represented by lFKF = K and % is represented by A1 = lFAF = aK + bL. D

3.3. COMPLEXIFICATION OF THE HOLONOMY GROUP. Let T be the subgroup of
GL(n; R) whose elements F are of the form

The map <j>:T^ GL(m; C) defined by

:=A + iB

is a group monomorphism. Observe that 0('F) = t<f>{F), for all F € !F, where the
bar denotes complex conjugation. Let Q be any subgroup of T. We denote by Qc the
subgroup <f>(Q) of GL(m; C). <f>: Q -> Gc is a group isomorphism.

The following three lemmas may be proved.

LEMMA 3 . 3 . 1 . HQC acts reducibly on Cm then Q acts reducibly on R".

Let CR denote the vector space of m-tuples of complex numbers over the real field.

LEMMA 3 . 3 . 2 . Q acts redutibly on R11 if and only if Qc acts reducibly on C%.

LEMMA 3 . 3 . 3 . Let ~H be the subgroup ofGL(n; R) whose elements H satisfy

lHKH =K, and
lHLH = L.

is a subgroup of F. Moreover, He = O(m; C).
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3.4. TWO-DIMENSIONAL MANIFOLDS. We now turn our attention to the case n = 2.

LEMMA 3 . 4 . 1 . Let rji and % be two independent, symmetric bilinear forms on

V of signature (1,1). Let Q be a subgroup of Aut(V) which preserves rfr and r^. Then Q

acts reducibly on V.

P R O O F : Suppose that Q acts irreducibly on V. By Lemma 3.2.5, there exists a basis
of V in which 771 and 772 are represented, respectively, by K and aK + bL, where a, b € R.

Q may therefore be identified with a subgroup 7i of GL(2\ R) whose elements H satisfy

\lHKH = K, and
lHLH = L.

\

By Lemma 3.3.3, H may be identified with Uc and "He Q 0(1; C) = {-1,1}. Therefore
H C {—/,/}, which acts reducibly on R2. Therefore Q acts reducibly on V and we obtain
a contradiction. D

This proves Theorem 2.0.1 (ii)

3.5. T H R E E SYMMETRIC BILINEAR FORMS OF SIGNATURE (m,m). Let 77!, 772 and 773
be three independent, symmetric bilinear forms on V of signature (771,771). Let Q be a
subgroup of Aut(V) which preserves 771,772 and 773. In this section we find normal forms
for 77!, 772 and 773 when Q acts irreducibly on V. Moreover, we show that if m is odd then
Q acts reducibly on V.

LEMMA 3 . 5 . 1 . Let rji, 772 and 773 be three independent, symmetric bilinear forms
on V of signature (m, m), where n = 2m. Let Q be a subgroup of Aut(V) whose elements
preserve rji, 772 and 773. Suppose that Q acts irreducibly on V. Let 0 be a basis ofV with
respect to which r}X and 772 are represented, respectively, by K and a\K + a2L, for some
ai,a2 £ R. With respect to /?, 773 is represented by bxK + biL + b3M where bx,b2,b3 € R,
(KM)2 = -I and M has the form

M =

where A is symmetric and B is skew-symmetric.

PROOF: Let /3 be a basis of V with respect to which 771 and 772 are represented,
respectively, by K and a,\K + a2L, for some ai , a2 € R. 773 is represented by a symmetric
matrix N. By Lemma 3.1.2, N = b^K + f^KJ, where bu h. £ R and J2 = -I. J has the
form
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where S and U are symmetric. Q may be identified with a subgroup H of GL(n; R) whose
elements H satisfy

\lHKH = K,
lHLH = L, and

^HKJH = KJ.

Let H e U. Then H commutes with KL, J and LKJ.

By Lemma 3.1.1, the minimum polynomial p = p(x) of LKJ is irreducible over R.

Suppose p were linear: p(x) = x ~ a, for some a E R. Then LKJ = al. That is,
KJ = aL, which contradicts the independence of %, rfy and %. Therefore the minimum
polynomial of LKJ has degree 2: p(x) = x2 + ax + b, where a, b e R.

The equations p(LKJ) = 0 and J2 = —/ give

bT + 'T = - a / ,

T + 6'T = - a / ,

S = bU, and'

tf = 6S.

If U = 0 then 5 = [/. Suppose that U # 0. We have U = bS = \?U. Consequently,
6 = ±1. Since p(x) = x2 + ax + b is irreducible, 6 = 1, and again S = U. Therefore in
either case we have S = U.

The first two among the four equations above gives us (1 + b)(T + tT) = —2a/.
Consequently T + *T = 2c/, where c = - a / ( l + b).

Set E := KJ - cL. E is given by

where 5 is symmetric and T' := T — cl is skew-symmetric. Now LKJ + JLK = 2c/. It
follows that,

{KE)2 = (J + cLAT)2 = J 2 + c(L/irj + JLAT) + (?{LK)2 = -I + 2c2/ - c2/ = (c2 - 1)/.

The polynomial g(x) := x2 4- (1 — c2) annihilates A"i?. Since every element H oiH com-
mutes both with J and with i<X, H commutes with KE. By Lemma 3.1.1, the minimal
polynomial of KE is irreducible over R. Now, since K, L and KJ are independent, KE

is not a multiple of the identity matrix. It follows that q is the minimal polynomial of
KE. Since q is irreducible over R, 1 — c2 > 0. Now define the matrix M by

M:=

Then (A"Af)2 = - / . Moreover, M has the required form. D
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LEMMA 3 . 5 . 2 . Let T}I, % and 773 be tiree independent, symmetric bilinear forms
on V of signature (m, m), where n = 2m. Let Q be a subgroup of Aut(V) whose elements
preserve 771, 772 and 773. Suppose that Q acts irreducibly on V. There exists a basis ofV
with respect to which 771, 772 and 773 are represented, respectively, by K, a.\K + a2L and
61K + &2-k + b3M, where au 02,61,62. h € R, (KM)2 = -I and M has the form

M =

where D is diagonal and B is skew-symmetric.

PROOF: Follows from Lemma 3.2.5, Lemma 3.5.1 and a standard diagonalisation
argument. D

COROLLARY 3 . 5 . 3 . Let 771,772 and 773 be three independent, symmetric bilinear
forms on V of signature (m,m), where n = 2m. Let Q be a subgroup of A\it(V) whose
elements preserve T)i, 772 and 773. Ifm is odd then Q acts reducibly on V.

PROOF: Suppose that Q acts irreducibly on V and that m is odd. By Lemma 3.5.2,
there exists a matrix J = KM satisfying J2 = —I and of the form

where D is diagonal and B is skew-symmetric. Since B is a skew-symmetric m x m
matrix with m odd, we have detS = 0. On the other hand, we have the equation
D2 + I = —B2. Since D is diagonal, — B2 is diagonal, with positive entries along the
main diagonal. Consequently, det 5 / 0 and we obtain a contradiction. Therefore Q acts
reducibly on V. D

This proves Theorem 2.0.1 (iii).

3.6. FOUR SYMMETRIC BILINEAR FORMS OF SIGNATURE (m,m). Let 771,772,773 and
774 be four independent, symmetric bilinear forms on V of signature (m,m). Let Q be
a subgroup of Aut(V) which preserves 771,772,773 and 774. We shall show that Q acts
reducibly on V. Suppose therefore that Q acts irreducibly on V. By Lemma 3.2.5
and Lemma 3.5.1, there exists a basis of V in which 771,772,773 and 774 are represented,
respectively, by K, aiK+a^L, biK+faL+bsM and C1K+C2L+C3N, where a,j,bj,Cj £ R,
(KM)2 = (KN)2 = -I, and M and N are of the form

M= * Z and N =

https://doi.org/10.1017/S0004972700035565 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700035565


[13] Parallel metrics and reducibility 57

where P and 5 are symmetric and Q and T are skew-symmetric. Q may be identified
with a subgroup H of GL(n; R) whose elements H satisfy

lHKH = K,
lHLH = L,
lHMH ~ M, and
lHNH = N.

By Lemma 3.3.3, % may be identified with %C- Let x := 4>{M) and y := <j>{N).

LEMMA 3 . 6 . 1 . txx = tyy = -Imxm.

PROOF: We consider 0 as an isomorphism <j>:% —• %<?• Since P is symmetric and Q
is skew-symmetric, ATM AT = ^{'x). Now, - / n x n = (ATM)2 = (KMK)M = 4rlf*x)M.
Therefore,

*mxm — V{. *nxn) :

The proof for *yy = —Imxm is similar. D
It follows from Lemma 3.3.3, that tic is a subgroup of GL(m; C) whose elements ft

satisfy

' h = J,

'ftxft = x, and

,yh = y.

Now 'ft = xft"1!"1. Therefore y = 'ftyft = xh~1x~lyh. Hence

ft(x"1y) = (x"1y)ft,

for all ft € Tic- By Lemma 3.3.1, Uc acts irreducibly on Cm. By Lemma 3.1.1, the
minimal polynomial for x~*y (over C) is irreducible (over C). Therefore x-1y = al, for
some a e C. That is, y = ax. By Lemma 3.6.1, —Imxm = *yy = *(ax)(ax) = a2('xx)
= -a2. Therefore a = ±1. Hence N = ±M. This contradicts the independence of
»?i.»toi»?3 and 774. Therefore Q acts reducibly on V. This proves Theorem 2.0.1 (iv).

4. PROOF OF THEOREM 2.0.2

In this section we provide examples of connections with irreducible holonomy and
more than one parallel semi-Riemannian metric.

4.1. THE CASE n = 2m, m ^ 3. Let n = 2m and m ^ 3. Consider S0(m;C), the
subgroup of GL(m; C) consisting of elements ft which satisfy

lhh = / , and

det ft = 1.
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For f e Cm, let (£) denote the smallest i?-subspace of C% containing £, which is
m

SO{m\ C)-invariant. For two vectors &,& € Cm we let f 1 • 6 = £ fif2> denote the
fc=i

dot product. The norm of a vector f € i f with respect to the dot product on if" will
be denoted by ||xi||. For A € C, set

LEMMA 4 . 1 . 1 . Let m Js 3. For 0 j£ f e Co
m, ( $ g CJ".

P R O O F : Let 0 # £ e CJ*. Then with f = £R + ifr, where £R

• €i • £/ = 0 , and

= 0.

Therefore ( s ^ 0
that

where K := \\£R\\
have h£ = «;(ei +

£/. Since m ^ 3, we may choose h € SO(m;R) C S0(m;C) such

/i£fl = «ei and h£i = /ce2,

£/||. Here e,- denotes the j * * vector of the standard basis of Rm. We
) . Let g € 5O(m; i?) be the element defined by

9-=

0
1

0

1

0
0

0

0
0
-1

0

I

\

J
where / is the (m — 3) x (m — 3) identity matrix. Now gb£, = n{ie\ + e2). Hence

«(1 + t)(ei + e2) = (1 + g)h£ e (£)• Moreover, «(1 + i)(d + e2) 0 Co
m. D

LEMMA 4 . 1 . 2 . Let 0 / A e C. 5O(m; C) acts transitively on C™.

PROPOSITION 4 . 1 . 3 . Let m ^ 3. 5O(m; C) acts irreducibly on C%.

PROOF: Let £ e C m . By Lemma 4.1.1, there exists f e (£), where £' € CjJ1 and

A 7̂  0. Let {6,•••,&>} be a basis of C% for which £j € CJ1, for each 1 < j ^ n. By

Lemma 4.1.2, £ e (f) for all 1 ^ j ^ n, and so (0 = C£. D

Let Tin denote the subgroup of GL(n; R) whose elements H satisfy

<HKH = K, and
fHLH = L.

Let %° be the identity component of Hn- By Lemma 3.3.3, we have a group isomorphism

<j> : Hn -*• 0(m;C). The identity component of 0(m;C) is S0(m;C) and so <j> : U°n

-*• SO(m; C) is an isomorphism of groups.
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COROLLARY 4 . 1 . 4 . Let m > 3. %a
n acts irreducibly on R".

P R O O F : This follows from Lemma 3.3.2 and Proposition 4.1.3. D

We are now able to demonstrate the existence of connections with irreducible holon-
omy that have two independent, parallel semi-Riemannian metrics. Let 9 be a generic
nx n matrix of 1-forms on R" that takes its values in h,,, the Lie algebra of ~Hn- Define
the connection V on Rn by

1=1

where X{ denotes the vector field d/dx\ for 1 ̂  i ^ n. The curvature form with respect
to the moving frame (Xi,..., Xn) is given by 0 = d9 + 9 A 9. Owing to the genericity
of 9, the Lie algebra of the infinitesimal holonomy group of V, at each x € R11, is b ,̂.
Therefore the infinitesimal holonomy group of V at x contains a subgroup isomorphic to
V.°n and so acts irreducibly on TxR", by Corollary 4.1.4.

Let 51 and g2 be, respectively, the metrics on R" represented by K and L with
respect to the moving frame (X\,...,Xn). We have

'9 + l9K = 0, and

9 + l9L = 0.

A metric 9 = J2 Qjdx1 ® dxj, where C € GL(n; R), is parallel with respect to V if and

only if C9 + l9C = 0, and so 51 and g2 are parallel metrics. This proves Theorem 2.0.2

4.2. THE CASE n = 4r, r > 2. Let n = 2m, as before, and let m = 2r and r ^ 2.
Define M e GL(n; R) by

M - = { - T 0)'
where T € GL(m; R) is given by

T : ^-/rxr 0 J '

Note that <f>{M) = iT. Let Tn denote the subgroup of GL(n; R) whose elements F satisfy

''FKF = K,
lFLF = L, and
lFMF = M.
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By Lemma 3.3.3, !Fn may be identified with the subgroup Qm of GL(m; C) whose elements
g satisfy

lgg = I, and

= Tg.

Now g is an element of Qm if and only if %gg = / and it has the form
C

Let J^ denote the identity component of Tn and let Q^ denote the identity component
of Qm- <i> '• F% -> Qm is a group isomorphism. Denote by gm the Lie algebra of Qm.
D e 5/(771; C) is an element of gm if and only if it has the form

••(±i)-
where A = -lA and B = *B.

LEMMA 4 . 2 . 1 . Let % be a Lie subgroup of GL{m; C) and let h be the corre-
sponding Lie algebra. 7i and h act on CJj on the left. IfW is an H-invariant subspace
ofC% then it is also h-invariant.

Let {0} / W C C% be a ^-invariant subspace (over R). By Lemma 4.2.1, W is
also gm-invariant. Using Proposition 4.1.3 and the form for elements of Qm and gm given
above one can demonstrate the following lemma.

LEMMA 4 . 2 . 2 .

(1) There exist elements

such that Xi,..., Xm 6 C are R-linearly independent.
(2) There exist elements

© (£)•"
such that V\,..., Vm e Cr are R-linearly independent. Moreover, if

for some 0 ^ X € C, then we may take Yx = • • • — Ym = 0 and

COROLLARY 4 . 2 . 3 . If

for some 0 # X € Cr, then W = C%.
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COROLLARY 4 . 2 . 4 . IfW / C£, then dimR W = m.

P R O O F : Suppose that dimjjW > m. Then there exist elements

G?)
which are linearly independent over R. Let a? 6 R, 1 ^ j ^ m + 1, be such that
m+l m+l

£ a?Yj = 0 and a' ^ 0 for some I 6 { 1 , . . . , m + 1}. We must have X := £ a-'Xj ^ 0.

Now
m+l

By Corollary 4.2.3, W — C m , which contradicts our hypothesis. Consequently,
^ m. By Lemma 4.2.2, dimjj W ^ m and so we have dim^ W = m. D

COROLLARY 4 . 2 . 5 . Suppose that W # C m . Let Y € C r . Then there exists a
unique X e C such that

PROOF: Existence follows from Lemma 4.2.2 and uniqueness from Corollary 4.2.3. D

Henceforth we shall suppose that W ^ 0%. This will lead to a contradiction.

Let s,t e {!,...,r}. We let &>t denote the unique element in C such that

e, + ety

and we let £J t denote the unique element in C such that

^(e , + et),

where e,,et are standard basis vectors in iT (see Corollary 4.2.5.)

LEMMA 4 . 2 . 6 .

(1) £»,« = a»,t(e» + et), for some at>t € C.

(2) f»,t = ^»,t*(e» + et)> ^or s o m e «̂,t € C.

Furthermore, using Corollary 4.2.5 and Lemma 4.2.6 we can prove the following.

LEMMA 4 . 2 . 7 . a3tt = -b,,t forl^s^t^r.

Now let Yx := ex + e2 e iT. Extend Yx to a real basis Yi , . . . , YT of RT over /?. Then
Yx,..., YT, iYx,..., iYT is a basis of Cr

R. By Corollary 4.2.4 and Corollary 4.2.5, there exist
unique Xx,..., Xr, X[,..., X'r e C, such that
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is a basis for W over R. For convenience, set c := a1)2. Then X\ = cY\ and X{ = — ciYi,

by Lemma 4.2.6 and Lemma 4.2.7. Now

Therefore,

must be a real, linear combination of elements in the basis /?. That is, there exists
aj, V € R,l^j ^r, such tha t

r
In particular, cYx = J3(aJ + ilP)Yj. Since Yi,..., Yr e / f is a basis of if" over i?, it is a

basis of CT over C. It follows therefore, that c = a1 + ib1 and a? = fr7 = 0, for 2 ^ j ^ r.
Hence CR = a1 and c/ = ft1, where c« and C/ denote the real and imaginary parts of c,
respectively. Now,

3=1

where || || denotes the norm of the standard inner product on C. Thus ||c||2 = - 1 , which
is a contradiction. Therefore W = CR. We have shown the following.

PROPOSITION 4 . 2 . 8 . <?jj, acts irreducibly on C%.

COROLLARY 4 . 2 . 9 . T^ acts irreducibly on Rn.

P R O O F : The corollary follows from Proposition 4.2.8 and Lemma 3.3.2. D

A linear connection with irreducible holonomy group that has three parallel semi-
Riemannian metrics can be constructed in a manner analogous to the prior case with
two parallel metrics described at the end of Subsection 4.1. This demonstrates Theorem
2.0.2 (ii).

5. FOUR-DIMENSIONAL MANIFOLDS

5.1. SIMPLY CONNECTED FOUR-DIMENSIONAL MANIFOLDS. We have seen in Proposi-
tion 4.1.3 that for m ^ 3, SO(m;C) acts irreducibly on CR. By contrast, for the case
m = 2, we have the following.

LEMMA 5 . 1 . 1 . 50(2; C) acts reducibly on C\.

Let <7i and g^ be two independent semi-Riemannian metrics of signature (2,2) on

a connected, simply connected four-dimensional manifold M, parallel with respect to a
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linear connection V on M, and let Q denote the holonomy group of V based at some
point m € M. Suppose that Q acts irreducibly on TmM. By Lemma 3.2.5, there exists
a basis 0 of TmM in which gi(m) and 92{m) are represented, respectively, by K and
aK + bL, where a,b £ R. Q may be identified with a subgroup H of GL(4;R) whose
elements H satisfy

flHKH = K, and
'HLH = L.V

By Lemma 3.3.3, H may be identified with He, a subgroup of 0(2; C). However, the
holonomy group of a connection on a connected, simply connected manifold consists of
only one component (see [5, p. 73]). Therefore He is in fact a subgroup of SO{2; C). By
Lemma 5.1.1, He acts reducibly on C\. It now follows from Lemma 3.3.2 that H acts
reducibly on R4 contradicting the assumption that Q acts irreducibly on TmM. This,
along with Lemma 3.1.3, proves Theorem 2.0.3 (i).

5.2. T H R E E SYMMETRIC BILINEAR FORMS OF SIGNATURE (2,2). Let 771,772 and 773 be
three independent, symmetric bilinear forms on V of signature (2,2). Let Q be a subgroup
of Aut(K) which preserves 771,772 and 773. Suppose that Q acts irreducibly on V. We shall
obtain a contradiction. By Lemma 3.5.2, there exists a basis /3 of V in which 77!, 772 and 773
are represented respectively by K, aiK + a^L and b\K + &2L + 63M, where {KM)2 — -I
and M has the form

where D is diagonal and 5 is skew-symmetric. Q may be identified with a subgroup H
of GL(A; R) whose elements satisfy

! •

lHKH = K,

HLH = L, and

{'HMH = M.

Let x := (j>{M) = D + iS. In light of Lemma 3.3.3, H may be identified with He, a
subgroup of GL{2; C) whose elements h satisfy

\lhh = / , and

i hx = xh.

Set

D =
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where p,q,s G R. Now (KM)2 = —I gives us

q2 - s2 = - 1 , and

s = 0 implies p2 = — 1 which would be a contradiction. Hence s ^ 0 and so p = q. We

therefore have

V
where s2 = p2 + 1. Let /i G "We- Since *hh = I, h has one of the following two forms:

where, in either case, a2 + b2 = 1, for a, b G C.

C A S E 1. Suppose that h G He has the form given by (1). The equation hx = xh is
equivalent to

t

sbi = 0, and
saj — ipbj = 0.

It follows that ai = br- 0. That is, a,b G R. Therefore heHc has the form (1) if and
only if heSO(2;R).

C A S E 2. Suppose that /i e We has the form given by (2). The equation hx = xh is
equivalent to

| par + sbR = 0, and

saR-pbi = 0.

Hence p2 = ^(a2 + b2) = - ( a ^ + bR), and so OR = bR = 0. However, this contradicts the

requirement a? + b2 = 1. Therefore there are no elements h G %c of the form (2).

We have shown that He is a subgroup of SO(2;R). By Lemma 5.1.1, Hc acts
reducibly on CR. By Lemma 3.3.2, H acts reducibly on R4 contradicting the assumption
that Q acts irreducibly on V. We have shown the following corollary.

COROLLARY 5 . 2 . 1 . Let T]I, % and r)3 be three independent, symmetric bilinear

forms on V of signature (2,2). Let Q be a subgroup of Aut(V) which preserves %, % and

773. Then Q acts reducibly on V.

Theorem 2.0.3 (ii) follows from Lemma 3.1.3 and Corollary 5.2.1.
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5.3. IRREDUCIBILITY OF THE HOLONOMY GROUP. In this section we shall construct
an example of a (non-simply connected) four-dimensional manifold endowed with two
independent semi-Riemannian metrics of signature (2,2), which are parallel with respect
to a linear connection having an irreducible holonomy group.

Let G € GL(4; R) be defined by

G:=

' y/2 0
0 -y/2

0 - 1
v - l 0

1
0

y/2 0
0 -y/2 )

and define g € GL[2;C) by g :- <I>(G). Now g2 = I = lgg, and so by Lemma 3.3.3, we

have
= / ,

[lGKG = K, and

= L.

Let Q denote the group consisting of the two elements / and G: Q := {/, G}. The
characteristic polynomial p of G is given by p(x) = (x2 - I)2 . The eigenspace E of
G corresponding to the eigenvalue A = 1 is a two-dimensional subspace of R4. Set
M' := R* - E. Q acts properly discontinously (see [5, Vol. I, pp. 43-44]) on the left of
M', by matrix multiplication. Let <?i and g^ denote the semi-Riemannian metrics on M'

represented, respectively, by K and L in the moving frame (dx1,..., dxA) on M'. We see
that L*G(gi) = gu for i = 1,2, where LG denotes left multiplication by G.

Define the 1-forms a and /? on M' by

a:=xldxi-x*dx1 and 0 := x2dx3 - x3dx2.

Define the matrix of 1-forms 0 by

6:=

f

\

0

—a

0

P

a

0

-P
0

0

-p
0

—a

P
0

a

0

\

/

The following two lemmas may be demonstrated by a direct calculation.

LEMMA 5 . 3 . 1 . G6 = -6G.

LEMMA 5 . 3 . 2 . LG(6) = -6.

Define the linear connection V on M' by
4

for 1 < », j ^ 4, where Xt = d/dx\

i=\
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LEMMA 5 . 3 . 3 . gx and g2 are parallel with respect to V.
4

PROOF: A metric g = £ C^dx* ®dxj on M', with C e GL(4;R), is parallel

with respect to V if and only if CO + l9C = 0. The lemma follows from the fact that
K9 + t9K = 0 and L9 + l9L = 0. D

For a vector field X on M', we let LQ{X) denote the push-forward of X:

LG(X)(X):=LG.(X(LQ(X)J),

for x g M'.

LEMMA 5 . 3 . 4 . Let X,Y be vector fields on M'. Then

Y) = VLolx)LG(Y).

PROOF: It suffices to consider X = X{ = d/dx* and Y = X:, = d/dxj.

4 4

3=1 t=l
4 4

= - £ 2 G'A(Xi\ax)Xt(x), by Lemma 5.3.1

4 4

= S Z! GlLaffliXtlGMx), by Lemma 5.3.2
»=i t=i

In summary, the left group action of Q on M' preserves g\, g2 and V. It follows that
gi, g2 and V project to the quotient manifold

M := M'/Q.

We denote the projections of gi, g2 and V to M by the same symbols.
Now let 7 : [0,1] - • M' be the smooth curve defined by

1-2*

t{t - 1)
\(V2+l)(2t-l)J

Set x0
 : = 7(0) aQd X\ := 7(1). Since X\ = Gx0, 7 is a closed loop in M. Let r ' :

TX0M' -> TXlM' denote parallel translation along 7 in M' and let T : TX0M -> TZ0M
denote parallel translation along 7 in M. Let a?Xj\Xa € TXoM', where we have used
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the summation convention. Then r'(aJXj|Xo) = fj(l)Xj\xl, where / : [0,1] -> R* is the
unique curve satisfying

= 0, and

f'(Q) = a?, 1 ^ 3 ^ 4.

Now 9(7) = 0 and so / = /(t) is constant. Therefore
that

= a?Xj\Xl. It follows

We identify TX0M with R4 by means of the basis (Xi,..., X4) and hence the holonomy
group ^(x0) of V at XQ € M is identified with elements of GL(4; R). We have shown
above that G £ * ( 4

The curvature form Cl of V is

f 0
-da

0
d^

da

0

-d/3
0

0
-dp

0
- d a

d/9 ^
0

da

0 J

Now da = 2dx1 A dxA and d/3 = 2di2 A dx3. The Lie algebra T/>in/(z0) of the infinitesimal
holonomy group ^tnf(xo) of V at x0 6 M consists of elements of the form

5:=
1 °

—a

0

V «>

a
0

- 6
0

0
-b

0
—a

6
0

a
0

\

where a, 6 € i?. The Lie algebra ip™f(x0) of the complexified infinitesimal holonomy
group $£'(z0) consists of elements of the form

• ( • : ) •

where o £ C. That is, Vc/(xo) = so(2; C) and so ^^(xo) = 50(2; C).
Let .4 denote the i?-subalgebra of gl(2; C) generated by the matrices g and 5O(2; C)

over R. It is not difficult to demonstrate the following lemma.

LEMMA 5 . 3 . 5 . A = gl(2-,C).

Let H be the subgroup of GX(4; R) such that Hc is the subgroup of GL{2; C)
generated by g and 50(2; C). By Lemma 5.3.5, He acts irreducibly on C\. By Lemma
3.3.2, H acts irreducibly on R4. Since ?{ C *(i0) , #(zo) acts irreducibly on TIOM. This
proves Theorem 2.0.3 (iii).
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