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Lyapunov Theorems for the Asymptotic
Behavior of Evolution Families on the
Half-Line

Ciprian Preda and Petre Preda

Abstract. Two theorems regarding the asymptotic behavior of evolution families are established in

terms of the solutions of a certain Lyapunov operator equation.

1 Introduction and Preliminaries

Let X be a Hilbert space and B(X) the Banach algebra of all bounded linear operators

acting on X. Consider the Cauchy Problem

du(t)

dt
= A(t)u(t), u(0) = x ∈ X, t ≥ 0

with A(t) ∈ B(X), for each t ≥ 0, and A( · ) locally integrable on R+.

A modern instrument to analyze the asymptotic behaviour of the above system

u̇(t) = A(t)u(t)) is to associate a two-parameter family of bounded and linear oper-

ators, the so-called evolution family. We refer the reader to [4] for details.

Definition 1.1 An operator-valued two variables function

Φ : {(t, s) ∈ R × R : t ≥ s ≥ 0} 7→ B(X)

is called an evolution family if the following properties hold:

(e1) Φ(t, t) = I, for all t ≥ 0;

(e2) Φ(t, s)Φ(s, r) = Φ(t, r), for all t ≥ s ≥ r ≥ 0;

(e3) Φ( · , s)x is continuous on [s,∞), for all s ≥ 0, x ∈ X;

Φ(t, · )x is continuous on [0, t), for all t ≥ 0, x ∈ X;

(e4) Φ
∗( · , s)x is continuous on [s,∞), for each s ≥ 0, x ∈ X;

(e5) there are M, ω > 0 such that

‖Φ(t, s)‖ ≤ Meω(t−s), for all t ≥ s ≥ 0.

Remark 1.2 If Φ(t, s) = Φ(t − s, 0), then the one-parameter family of linear oper-

ators {T(t)}t≥0 defined by T(t) = Φ(t, 0) is a C0-semigroup. For a general presenta-

tion of C0-semigroups theory, see for instance [10].
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Definition 1.3 An evolution family Φ = {Φ(t, s)}t≥s≥0 is called exponentially un-

stable if there exist N, ν > 0 such that

‖Φ(t, s)x‖ ≥ Neν(t−s)‖x‖ for all t ≥ s ≥ 0 and x ∈ X.

Recall now that the widely known theorem of A. M. Lyapunov establishes that if A

is an n × n complex matrix, then A has all its characteristic roots with real parts neg-

ative if and only if for any positive definite Hermitian matrix H there exists a unique

positive definite Hermitian matrix W satisfying the equation (LH) A∗W +WA = −H

(where ∗ denotes the conjugate transpose of a matrix) (see [1]). Daletskiĭ and Krein

extend this result for one-parameter semigroups etA with bounded generators (see

[4]), and later R. Datko approaches the general case of linear time-invariant sys-

tems u̇(t) = Au(t), where A is an unbounded linear operator that generates a C0-

semigroup (see [5]).

Theorem (R. Datko, 1970) A C0-semigroup T = {T(t)}t≥0 is exponentially stable if

and only if there exists W ∈ B(X), W ∗
= W, W ≥ 0 such that

(1.1) 〈Ax,W x〉 + 〈W x, Ax〉 = −‖x‖2

for all x ∈ D(A), where A denotes the generator of {T(t)}t≥0.

See also C. Chicone and Y. Latushkin [2], A. Pazy [9], J. Goldstein [6], and L. Pan-

dolfi [8] for the Lyapunov equation with unbounded A. Let us go back for a moment

to the finite-dimensional case. Taking into account the spectral mapping theorem

we can deduce that an n × n complex matrix A has all its characteristic roots with

real parts contained in the open right half-plane if and only if the above Lyapunov

equation (1.1) holds for a unique negative definite Hermitian matrix W . From here

we are led to a first model to obtain a Lyapunov equation for the exponential in-

stability of {etA}t≥0 with A a n × n complex matrix. Naturally, this model can be

extended to the infinite-dimensional case when the matrix A is replaced by a linear

and bounded operator A. Unfortunately, the spectral mapping theorem fails for the

general case of C0-semigroups generated by an unbounded linear operator A and

thus to get a similar Lyapunov equation for the exponential instability is no longer

straightforward, as in the case of {etA}t≥0 with A ∈ B(X). For the time-varying

finite-dimensional systems we have firstly the work of Coppel [3] where it is stated

that if the non-stationary Lyapunov equation W ′(t) + A∗(t)W (t) + W (t)A(t) = −I

has a bounded self-adjoint solution, then the system u̇(t) = A(t)u(t)) has an expo-

nential dichotomy. Note that Coppel [3] involves essentially the finite-dimensional

assumption, since his proof uses the compactness of the unit ball. Also, this subject

is touched on by Massera and Schaffer in [7] even in the infinite-dimensional con-

text but with the additional assumption that the subspace which induces dichotomy

has finite codimension. Thus, to identify a corresponding Lyapunov operator equa-

tion for the exponential instability is not at all trivial even for the particular case of

time-invariant systems u̇(t) = Au(t) where A is an unbounded linear operator that

generates a C0-semigroup. In order to solve this problem in the most general setting,

we will deal with the abstract evolution families (see Definition 1.1) not necessarily
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arising from a differential system, and we attempt to propose a Lyapunov approach

for their exponential instability. Beside the intrinsic interest of this topic in the ab-

stract Cauchy problems theory, we should mention that instability for steady states

for partial differential equations is a topic of current interest. Usually one looks for

linear instability (by computing the spectrum of an appropriate generator) and then

tries to prove instability in the nonlinear PDE. We think that this approach can be of

some interest in this topic also, if the PDE can be cast as an abstract Cauchy prob-

lem and if we take into account the connection between the time-dependent linear

problems and the time-invariant nonlinear problems.

2 Results

Since our approach is developed in the most general setting of the abstract evolu-

tion families, the main issue here is to deal with the absence of the differentiability

assumption (which is heavily exploited in the proofs of the Lyapunov equation in

the case of C0-semigroups or time-varying differential systems). The best way to ex-

plain our approach is to go back to the C0-semigroups particular case and to look at

Datko’s Theorem again (see the Introduction). Since we do not have a “generator”

for two-parameters evolution families and since we want to avoid any differentiabil-

ity assumption, we want now to derive an equivalent form of equation (1.1) from

Datko’s Theorem which does not contain the generator A and from here to attempt

to transfer a “Lyapunov-type” equation for the general case of evolution families. For

this reason we will assume for the moment that (1.1) holds and let fx : R → C, the

function defined by fx(t) = 〈W T(t)x, T(t)x〉, for x ∈ D(A). One can easily see that

fx is differentiable and we have that

f ′
x (t) = 〈WAT(t)x, T(t)x〉 + 〈W T(t)x, AT(t)x〉 = −‖T(t)x‖2

(as it is known, T(t)x ∈ D(A) whenever x ∈ D(A) (see for instance [10])). From

here we get that

〈W T(t)x, T(t)x〉 − 〈W x, x〉 = −

∫ t

0

‖T(s)x‖2ds,

which is equivalent to

〈

T∗(t)W T(t)x +

∫ t

0

T∗(s)T(s)xds, x
〉

= 〈W x, x〉,

for all x ∈ D(A). Using the fact that the generator has dense domain we obtain that

〈

T∗(t)W T(t)x +

∫ t

0

T∗(s)T(s)xds −W x, x
〉

= 0,

for all x ∈ X which implies that

(2.1) T∗(t)W T(t)x +

∫ t

0

T∗(s)T(s)xds = W x
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for all t ≥ 0, x ∈ X. It is easy to check that if (2.1) holds, then (1.1) is also true.

Keeping this in mind and taking into account Remark 1.2, we define

L(t, t0)x =

∫ t

t0

Φ
∗(τ , t0)Φ(τ , t0)xdτ

(from Definition 1.1 we have that L is well defined), and we propose a Lyapunov-type

approach for the abstract evolution families, as shown in Theorems 2.1 and 2.5.

Theorem 2.1 Let Φ be an evolution family acting on the Hilbert space X. If there exist

m > 0 and a bounded operator-valued function W : R+ → B(X) with W ∗(t) = W (t)

for each t ≥ 0, such that:

(i) Φ
∗(t, t0)W (t)Φ(t, t0) + L(t, t0) ≤ W (t0), for each t ≥ t0 ≥ 0;

(ii) m‖x‖ ≤ ‖Φ(t + 1, t)x‖, for each t ≥ 0 and x ∈ X;

(iii) 〈W (t)x, x〉 ≤ 0, for each x ∈ X and t ≥ 0;

then Φ is exponentially unstable.

Proof Let x ∈ X and t ≥ t0 ≥ 0. Then

∫ t

t0

‖Φ(τ , t0)x‖2dτ ≤ 〈W (t0)x, x〉 − 〈W (t)Φ(t, t0)x,Φ(t, t0)x〉

≤ |〈W (t)Φ(t, t0)x,Φ(t, t0)x〉| ≤ k‖Φ(t, t0)x‖2,

for all t ≥ t0 ≥ 0, where k = supt≥0 ‖W (t)‖. Denoting ϕ(t) =
∫ t

t0
‖Φ(τ , t0)x‖2dτ ,

we get that ϕ(t) ≤ kϕ̇(t), for all t ≥ t0 ≥ 0, and thus

(2.2) ϕ(t0 + 1)e
1
k

(t−t0−1) ≤ ϕ(t) ≤ k‖Φ(t, t0)x‖2, ∀ t ≥ t0 + 1, ∀ x ∈ X.

But

m‖x‖ ≤ ‖Φ(t0 + 1, t0)x‖ ≤ ‖Φ(t0 + 1, τ )‖ ‖Φ(τ , t0)x‖ ≤ Meω‖Φ(τ , t0)x‖,

for all τ ∈ [t0, t0 + 1].

Thus
m2

M2e2ω
‖x‖2 ≤

∫ t0+1

t0

‖Φ(τ , t0)x‖2dτ = ϕ(t0 + 1).

Using now (2.2) we obtain

m2

M2e2ωk
e−

1
k e

1
k

(t−t0)‖x‖2 ≤ ‖Φ(t, t0)x‖2, for all t ≥ t0 + 1, for all x ∈ X.

Denoting N ′
=

m

Meω
√

k
e−

1
2k we get

N ′e
1
2k

(t−t0)‖x‖ ≤ ‖Φ(t, t0)x‖, for all t ≥ t0 + 1, for all x ∈ X.
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If t0 ≤ t < t0 + 1, then

m‖x‖ ≤ ‖Φ(t0 + 1, t0)x‖ ≤ ‖Φ(t0 + 1, t)‖ ‖Φ(t, t0)x‖ ≤ Meω‖Φ(t, t0)x‖

= Meωe−
1
2k

(t−t0)e
1
2k

(t−t0)‖Φ(t, t0)x‖ ≤ Meωe−
1
2k

(t−t0)e
1
2k ‖Φ(t, t0)x‖.

From here it follows that ‖Φ(t, t0)x‖ ≥ m
Meω e−

1
2k e

1
2k

(t−t0)‖x‖. Denoting by N =

min{1, 1√
k
} m

Meω e−
1
2k and by ν =

1
2k

, we get

‖Φ(t, t0)x‖ ≥ Neν(t−t0)‖x‖, for all t ≥ t0 ≥ 0, x ∈ X.

Remark 2.2 Although condition (ii) from the above theorem is automatically sat-

isfied for the evolution families arising from differential systems (see for instance [4,

Lemma 2.4, p. 111]), it still imposes a certain restriction. For example, in the particu-

lar case of a C0-semigroup {T(t)}t≥0, this assumption means that ‖T(1)x‖ ≥ m‖x‖.
Since m > 0, this means that T(1) has a continuous inverse on its range, which is not

necessarily the whole space X, as it can be seen in the example below (see Remark

2.4). Thus assumption (ii) is verified not only by C0-groups.

Remark 2.3 It is obvious to see that the conclusion of the above theorem still holds

if instead of condition (ii) we only impose that m‖x‖ ≤ ‖Φ(t + δ, t)x‖, for some

δ > 0;

Remark 2.4 We want to note that an exponentially unstable evolution family is

not a particular case of a hyperbolic evolution family, not even in the particular

case of C0-semigroups. Recall that an evolution family is called hyperbolic if there

exists P : R+ → B(X) a continuous and bounded projection-valued function and

N1, N2, ν > 0 such that

• Φ(t, t0)P(t0) = P(t)Φ(t, t0), for all t ≥ t0 ≥ 0
• Φ(t, t0) : KerP(t0) → KerP(t) is an isomorphism for all t ≥ t0 ≥ 0;
• ‖Φ(t, t0)P(t0)x‖ ≤ N1e−ν(t−t0)‖P(t0)x‖, for all x ∈ X and t ≥ t0 ≥ 0;
• ‖Φ(t, t0)(I − P)(t0)x‖ ≥ N2eν(t−t0)‖(I − P)(t0)x‖, for all x ∈ X and t ≥ t0 ≥ 0.

For details, we refer the reader to [11]. Now if we take for instance the right shift

semigroup

(T(t) f )(s) =

{

f (s − t), s ≥ t ≥ 0,

0, t > s ≥ 0,

on L2(R+, R), and if we define the semigroup S(t) = et T(t), then {S(t)}t≥0 is an

exponentially unstable C0-semigroup, but S(t) is not onto, for each t ≥ 0.

Theorem 2.5 Let Φ be an evolution family acting on the Hilbert space X. If there exist

m > 0 and a bounded operator-valued function W : R+ → B(X) with W ∗(t) = W (t)

for each t ≥ 0, such that:

(i) Φ
∗(t, t0)W (t)Φ(t, t0) + L(t, t0) ≤ W (t0), for each t ≥ t0 ≥ 0;

(ii) 〈W (t)x, x〉 ≤ −m‖x‖2, for each t ≥ 0 and x ∈ X,
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then Φ is exponentially unstable.

Proof Let x ∈ X and t ≥ t0 ≥ 0. Then

〈

W (t)Φ(t, t0)x,Φ(t, t0)x
〉

+

∫ t

t0

‖Φ(τ , t0)x‖2dτ ≤ 〈W (t0)x, x〉,

hence
〈

W (t)Φ(t, t0)x,Φ(t, t0)x
〉

≤
〈

W (t0)x, x
〉

≤ −m‖x‖2, for all t ≥ t0 ≥ 0.

Thus

m‖x‖2 ≤
∣

∣

〈

W (t0 + 1)Φ(t0 + 1, t0)x,Φ(t0 + 1, t0)x
〉∣

∣ ≤ k‖Φ(t0 + 1, t0)x‖2,

for all t0 ≥ 0 and x ∈ X, where k = sup
t≥0

‖W (t)‖.

Hence we get that
√

m

k
‖x‖ ≤ ‖Φ(t0 + 1, t0)x‖, for all t0 ≥ 0, for all x ∈ X.

By Theorem 2.1 we obtain that Φ is exponentially unstable.
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