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Abstract
We examined the association between plasma antioxidant levels and markers of inflammation, including C-reactive protein (CRP) and
fibrinogen (FG) in US adults. National Health and Nutrition Examination Survey participants examined between 2001 and 2002 were included,
if data on CRP or FG levels. Serum vitamins A and E, two retinyl esters, and six carotenoids were measured using HPLC with photodiode array
detection. Multivariable-adjusted linear regression analyses accounted for the survey design and sample weights. A total of 784 eligible
participants were included; 47·5% (n 372) were men. In multivariable linear regression models, serum α-carotene, trans-β-carotene, cis-β-
carotene, β-cryptoxanthin, combined lutein/zeaxanthin, trans-lycopene, retinyl palmitate, α-tocopherol, retinol and 25-hydroxy vitamin D
were negatively associated with serum CRP (P< 0·001 for all comparisons). Serum α-carotene, trans-β-carotene, cis-β-carotene, combined
lutein/zeaxanthin, trans-lycopene, α-tocopherol, retinol and 25-hydroxy vitamin D were negatively associated with serum FG levels
(P< 0·001 for all comparisons). In the same model, the risk of CVD, defined as CRP levels >3mg/l, decreased with increasing levels of
antioxidants (α-carotene, trans-β-carotene, cis-β-carotene, vitamins A and E). Furthermore, we found a moderate impact of adiposity on the
link between antioxidants and CRP. Our results suggest that the lower the antioxidants levels, the higher the inflammatory burden, based on
CRP and FG levels. Adiposity moderately affects this association. Furthermore, an inverse relationship between CVD risk and antioxidant
levels was observed. This finding suggests that reduced levels of vitamins with antioxidant properties may predispose to increased CVD risk.
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CVD and type 2 diabetes mellitus (T2DM) are typically char-
acterised by oxidative stress, endothelial dysfunction and sub-
clinical chronic inflammation(1). C-reactive protein (CRP) is an
acute-phase reactant protein released by hepatocytes following
stimulation by inflammatory cytokines, including IL-6(2). Circu-
lating markers of inflammation, such as CRP, TNF-α, IL-6 and
IL-1 are associated with a high risk of CVD(3). It has been
suggested that knowledge of CRP levels could improve the

prediction of CVD and T2DM occurrence(4). There is also
growing evidence that the influence of diet on CVD occurs
through mechanisms that include subclinical inflammation(3).
CRP might directly promote endothelial dysfunction by
decreasing endothelial nitric oxide synthase expression and
mRNA stability, stimulating endothelial lectin-like oxidised LDL
receptor 1 expression, promoting reactive oxygen species
production and enhancing endothelial apoptosis(5).

Abbreviations: 25(OH), 25-hydroxy; CRP, C-reactive protein; FBG, fasting blood glucose; FG, fibrinogen; NHANES, National Health and Nutrition Examination
Surveys; SUA, serum uric acid; TC, total cholesterol.
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Fibrinogen (FG) is involved in the process of blood coagu-
lation, serving as a major component in thrombosis, and is
regarded as one of the inflammatory markers(6). Correlations
between FG and CVD risk have been widely investigated.
Existing studies support the independent association of ele-
vated FG level with atherosclerotic CVD(7), as well as recurrent
CVD and mortality in patients with existing CVD(8,9).
A higher intake of fruits and vegetables is associated with a

lower risk of CVD(10), possibly due to the antioxidant prop-
erties of several phytochemicals and vitamins that are abun-
dant in fruits and vegetables(11). Antioxidants, including α-
tocopherol, retinol, β-carotene, vitamins D and E have been
reported to affect oxidative stress or inflammatory markers
in vitro(12), in rodent models(13) and in epidemiological stu-
dies(14). However, interventional studies in humans assessing
the effects of a single antioxidant on CVD risk factors have
been controversial(15–17).
In the present study, we aimed to evaluate the associations

between serum antioxidant levels and inflammatory markers,
including FG and CRP, in US adults aged ≥18 years, who took
part in the National Health and Nutrition Examination Surveys
(NHANES) between 2001 and 2002. Furthermore, we evaluated
the impact of adiposity (assessed by BMI) on the link between
serum antioxidant levels and inflammatory markers.

Methods

Population

The NHANES protocol has been extensively described(18). This
is an ongoing programme of cross-sectional surveys conducted
periodically by the US National Center for Health Statistics
(NCHS). Participants in NHANES (about 5000/year) are selected
using a multistage probability sampling approach, with where
relevant, oversampling of certain segments of the population.
Surveys are approved by the NCHS Research Ethics Review
Board and all participants provide informed consent. During
these surveys, data on demographics, dietary and behavioural
patterns are collected using questionnaires administered during
home visits. The interview consists of questions on socio-
demographic characteristics (age, sex, education, race and
health insurance) and history of diagnosed medical conditions.
Anthropometric measurements, physical examination and
sample collection for biomarkers assays are performed by
trained survey workers using mobile examination units. Height
and weight, measured with participants in underwear, are used
to calculate BMI as weight in kg divided by the square of height
in m. Based on self-reported smoking status, participants are
classified as current smokers or not(19). The NHANES data are
reported per 2-year cycles and are made publicly available for
any relevant purpose.

Biochemical assays

A blood sample was drawn from an antecubital vein. Serum
concentrations of vitamins A (retinol) and E (α-tocopherol), two
retinyl esters, and six carotenoids (α-carotene, trans-β-carotene,
cis-β-carotene, β-cryptoxanthin, combined lutein/zeaxanthin

and trans-lycopene) were measured using HPLC with photo-
diode array detection(20). Total serum 25-hydroxy (25(OH))
vitamin D was assayed using a RIA kit (DiaSorin)(21). The CV
was 7%(21). Glycated Hb was measured using a Tosoh A1C 2·2
Plus Glycohemoglobin Analyzer (Tosoh Bioscience). Fasting
blood glucose (FBG) was measured by using a hexokinase
enzymatic method. Insulin was measured using an ELISA
immunoassay (Mercodia)(22). Levels of total cholesterol (TC)
and TAG were measured enzymatically; LDL-cholesterol was
calculated according to the Friedewald equation(23). Serum CRP
concentrations were measured by latex-enhanced nephelo-
metry and serum uric acid (SUA) by the uricase–peroxidase
technique(19). Based on the NHANES Laboratory Procedures
Manual, total bilirubin concentration (mg/dl) in serum or
plasma was measured using a timed-endpoint Diazo method, a
colorimetric analysis at 520 nm, and the sensitivity was 0·1mg/
dl (1·71 μmol/l). Other laboratory-test details are available in the
NHANES Laboratory/Medical Technologists Procedures Man-
ual(19). CRP levels >3mg/l was considered as an indicator of
high CVD risk(24).

Statistical analysis

Data were analysed using SPSS complex sample module ver-
sion 22.0 (IBM Corp.). We followed the Centers for Disease
Control and Prevention guidelines for analysis of the complex
NHANES data, accounting for the masked variance and using
the proposed weighting methodology(25,26). We used mean and
standard error of mean for continuous measures and percen-
tages for categorical variables. Adjusted (for age, sex, race,
education, marital status, BMI, serum bilirubin, SUA, TAG, TC,
FBG and smoking) logistic regressions were used to investigate
the associations between antioxidants, CRP and FG, as well as
the likelihood of ‘CVD risk’ with quarters of serum antioxidants
(with the first quarter (Q1) considered as reference). Multi-
collinearity for the multiple linear regressions was assessed with
variance inflation factors (VIF) at each step(27). Multi-collinearity
was considered high for VIF >10(27). Groups were compared
using ANCOVA and χ2 tests.

The SPSS macro for moderation model by Preacher and
Hayes(28) was used to investigate the effects of adiposity on the
associations of antioxidants with CRP and FG. The application
of this macro allowed to simultaneously test the moderation
impact of adiposity, while adjusting for relevant extraneous
factors. The approach also allowed the visualisation of the
impact of each standard deviation change in the potential
moderator on the relationship between independent and
dependent variables. We tested for the presence of an effect of
the adiposity adjusted model (age, sex, race, education, marital
status, BMI, serum bilirubin, SUA, TAG, TC, FBG and smoking).
All tests were two sided and P< 0·05 was used to characterise
statistically significant results.

Results

Overall, 784 participants were eligible for this analysis, includ-
ing 372 (47·5%) men. The mean age was 46·9 years overall,
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with no difference between men and women (47·2 v. 46·6
years, respectively; P= 0·071). Demographic characteristics of
the participants across quartiles of CRP and FG are shown in
Table 1. Age increased from 40·9 (lowest quartile) to 48·1 (top
quartile) years across increasing quartiles of CRP and from 41·5
to 49·1 years across increasing quarters of FG (P< 0·0001 for all
comparisons). For both CRP and FG, the proportion of women
was higher in the top than in the lowest quartiles (P< 0·001 for
all comparisons). Significant differences were observed in the
distribution of race, marital status and education, across quar-
tiles of CRP and FG (Table 1).
Age, sex, race, education, marital status, BMI, serum bilirubin,

SUA, TAG, TC, FBG and smoking-adjusted mean serum levels
of antioxidants across quartiles of CRP and FG are shown in
Table 2. Levels of α-carotene, trans-β-carotene, cis-β-carotene,
β-cryptoxanthin, combined lutein/zeaxanthin and retinol
decreased across increasing quartiles of CRP and FG (P< 0·001
for all comparisons), whereas concentrations of trans-lycopene
and retinyl palmitate were reduced only across quartiles of CRP
(P< 0·001 for all comparisons). Levels of α-tocopherol and
25(OH) vitamin D significantly decreased only across increasing
quartiles of FG (P< 0·001 for all comparisons).
In multivariable linear regression models adjusted for age,

sex, race, education, marital status, BMI, serum bilirubin, SUA,
TAG, TC, FBG and smoking, a significant negative association
was observed for α-carotene, trans-β-carotene, cis-β-carotene,
β-cryptoxanthin, combined lutein/zeaxanthin, trans-lycopene,
retinyl palmitate, α-tocopherol, retinol and 25(OH) vitamin D
with CRP (P< 0·001 for all comparisons, Table 3). Furthermore,
α-carotene, trans-β-carotene, cis-β-carotene, combined lutein/
zeaxanthin, trans-lycopene, α-tocopherol, retinol and 25(OH)
vitamin D were negatively associated with FG levels (P< 0·001

for all comparisons). For example, a higher α-carotene level by
1 µmol/l correlated with 0·064mg/dl lower CRP and 0·043mg/dl
lower FG levels (P< 0·001 for all comparisons). Corresponding
values were 0·084 and 0·039mg/dl for each µmol/l higher
trans-β-carotene level, 0·073 and 0·049mg/dl for each µmol/l
higher cis-β-carotene, 0·070 and 0·022mg/dl for each µmol/l
higher combined lutein/zeaxanthin, and 0·067 and 0·048mg/dl
for each µmol/l higher trans-lycopene (Table 3).

Table 4 shows the adjusted logistic regression analysis to
determine CVD risk across quartiles of antioxidant vitamins
levels. For α-carotene, trans-β-carotene, cis-β-carotene,
vitamins A and E levels, the CVD risk decreased with increasing
levels of these antioxidants. For example, participants in the top
quartiles of vitamins A and E had 56% (95% CI 0·32, 0·55) and
51% (95% CI 0·41, 0·59) lower odds of CVD compared with
participants in the first quartiles (Table 4).

In adjusted logistic regression analysis, BMI was a significant
moderator of the link between CRP and α-carotene, trans-β-
carotene, cis-β-carotene, vitamins A and E. For example, when
levels of vitamin A (measured in µmol/l) changed from low
(1·48) to high (1·98), the CRP in the low BMI category (mean
−1SD, 22·4 kg/m2) changed from 0·31 to 0·96 (an increase
of 0·65). In contrast, in the high BMI category (mean 1SD,
36·1 kg/m2), vitamin A (measured in µmol/l) changed from 0·34
to 1·12 (an increase of 0·78), suggesting that obesity may
modulate the impact of vitamin A on CRP.

Discussion

In the present study, a significant inverse association was
observed between serum several antioxidant vitamins and
inflammatory markers (i.e. CRP and FG). Furthermore,

Table 1. Demographic characteristics of the participants across quartiles (Q) of C-reactive protein (CRP) and fibrinogen levels
(Mean values with their standard errors and percentages)

Quartiles of CRP (mg/dl)† Quartiles of fibrinogen (mg/dl)‡

Q1 (n 193) Q2 (n 190) Q3 (n 183) Q4 (n 199)

P*

Q1 (n 186) Q2 (n 192) Q3 (n 199) Q4 (n 187)

Variables Mean SEM Mean SEM Mean SEM Mean SEM Mean SEM Mean SEM Mean SEM Mean SEM P*

Mean (SEM) 0·03 0·01 0·14 0·04 0·33 0·07 1·2 0·89 278·3 34·2 353·3 14·8 403·2 15·4 498·3 16·9
Age (years) 40·9 0·3 45·2 0·2 47·3 0·3 48·1 0·5 <0·001 41·5 0·6 45·9 0·2 47·4 0·8 49·1 0·6 <0·001
Sex (%)
Male 59·4 56·3 43·7 32·2 <0·001 60·9 52·2 47·2 41·5 <0·001
Female 40·6 43·7 56·3 67·6 39·8 47·8 52·8 58·5

Race (%)
Mexican American 23·3 23·4 21·5 21·4 <0·001 20·1 16·7 18·7 16·3 <0·001
Other Hispanic 4·0 4·3 4·2 4·5 30·2 4·4 3·8 3·9
Non-Hispanic White 46·8 52·1 55·1 48·6 59·8 60·0 55·1 55·3
Non-Hispanic Black 21·1 16·4 16·8 23·1 13·9 16·3 20·2 22·0
Others 4·9 3·9 2·4 2·3 3·1 2·6 2·3 2·6
Marital status (%)
Married 43·4 57·7 57·2 52·1 <0·001 69·7 64·0 60·0 52·4 <0·001
Widowed 4·9 7·7 10·6 11·3 7·7 12·7 16·7 22·8
Divorced 4·9 7·8 7·1 9·4 9·5 10·9 10·8 10·6

Education (%)
Less than high school 27·1 30·5 27·4 34·2 <0·001 28·2 31·2 28·4 34·1 <0·001
High school 21·5 23·2 24·4 24·3 20·5 24·8 25·9 23··1
More than high school 26·3 24·2 27·3 27·4 25·3 23·6 27·4 26·5

Smoking (%) 19·6 21·2 20·3 20·8 <0·001 20·3 21·5 19·6 20·4 <0·001
BMI (kg/m2) 24·6 0·07 27·6 0·10 30·1 0·12 32·3 0·14 <0·001 23·9 0·01 26·5 0·09 30·9 0·15 32·9 0·12 <0·001
Serum bilirubin (mg/dl)§ 0·96 0·75 0·63 0·45 <0·001 0·98 0·52 0·73 0·42 0·234
Serum uric acid (mg/dl)‖ 4·2 5·3 6·1 6·5 <0·001 3·9 4·7 5·6 6·3 <0·001

* Variables were compared across quartiles of CRP and fibrinogen using ANOVA or χ2.
† To convert CRP in mg/dl to mg/l, multiply by 10.
‡ To convert fibrinogen in mg/dl to μmol/l, multiply by 0·0294.
§ To convert bilirubin in mg/dl to μmol/l, multiply by 17·1.
‖ To convert uric acid in mg/dl to μmol/l, multiply by 59·48.
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individuals with a higher level of serum antioxidants had a
lower risk of CVD (defined by CRP level). These observations
were unaffected by the adjustment for several confounding
factors, suggesting a potential protective effect of antioxidants
against pathological processes involving subclinical inflamma-
tion. Furthermore, the link between CRP and antioxidant vita-
mins levels was mediated by BMI, suggesting a determining role
of obesity in the occurrence of subclinical inflammation.

Consumption of selected fruits, vegetables, herbs and spices
rich in antioxidants improved markers of oxidative stress and
inflammation in a previous review(29). However, there are data
not supporting the use of these vitamins to reduce CVD risk(30). In
the Women’s Health Study(31), no overall benefit was found for
vitamin E in relation to major CVD events and total mortality. The
Heart Outcomes Prevention Evaluation trial in people aged ≥55
years with CVD risk factors, showed no overall effect of anti-
oxidant vitamins on CVD outcomes(32). Daily multivitamin con-
sumption did not decrease major CVD events during a decade of
follow-up of US men in the Physicians’Health Study II(33). A meta-
analysis of randomised trials also reported no effect of antioxidant
vitamin supplementation on major fatal and non-fatal CVD, as
well as all-cause mortality(34). Furthermore, vitamin E supple-
mentation (at doses ≤400 IU/d) had no significant impact on
inflammatory markers in postmenopausal women(35). In contrast,
ex vivo studies reported that vitamin E at doses of 600–1200 IU/d
can significantly decrease the levels of inflammatory factors(36,37).

In all, two studies examined the effects of the combination of
vitamins C and E on CRP; none found a significant effect on CRP
levels(38,39). However, they used different doses, that is, 182mg
α-tocopherol and 500mg vitamin C(39), 371mg α-tocopherol
and 515mg vitamin C(38). Hartel et al.(40) found that vitamin C
inhibits the lipopolysaccharide-induced IL-6 and TNF-α pro-
duction, as well as IL-2 production after phorbol 12-myristate
13-acetate/ionomycin stimulation. It was suggested that
vitamin C could decrease the level of oxidative stress and
consequently inflammation, as oxidative damage leads to an
inappropriate activation of the transcription NF-κB and
subsequently to an overexpression of inflammatory proteins(41).
Similarly, vitamin C was shown to inhibit NF-κB activation(42–44).

β-Carotene is the most investigated carotenoid for its anti-
oxidant activity(45,46). A study which included 14 470 current
smokers, ex-smokers and never smokers aged ≥18 years who
participated in the third NHANES, evaluated the relationship
between serum β-carotene and CRP and reported a strong and
inverse association of serum β-carotene levels with CRP
levels(47). Another study that used data from the MacArthur
studies of successful aging (n 672), found a negative link
between β-carotene and CRP concentrations(48). Recently, a
study on eighty individuals (mean age= 66·9 years) reported
that the dietary intake of β-carotene does not significantly affect
plasma or salivary CRP levels(49). Another study examined
cross-sectional correlations between CRP and plasma levels of
α-tocopherol and β-carotene, reporting no association between
plasma levels of α-tocopherol and CRP(50). In contrast, plasma
β-carotene was inversely related to CRP(50).

Vitamin A plays a role in both pro-inflammatory cytokines
such as IL-6 and upregulating IL-4 production (which is
an anti-inflammatory marker)(51,52). In this context, vitamin ATa
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supplementation (25 000 IU/d) was shown to reduce CRP levels
in obese women(53). In contrast, Filteau et al.(54) reported
increased serum CRP concentrations after supplementation of
200 000 IU/d retinyl palmitate for 4 months in children with
marginal vitamin A deficiency.
A study involving non-smoking participants from the third

NHANES (n 4557 aged 25–55 years) reported that β-cryptox-
anthin and FG were inversely associated(55). β-Cryptoxanthin is
plentiful in foods that also tend to be high in vitamin C, which
itself has been shown to be inversely related to FG levels(56).
Furthermore, Iribarren et al.(57) found that sialic acid, which is
elevated during the acute phase response, and white blood cell
count, but not FG levels, were inversely associated with serum
β-carotene levels. In multiple regression analysis, including a

number of correlates of β-carotene levels, sialic acid remained
inversely associated with β-carotene levels(57).

Due to the sampling strategy of NHANES, our findings can be
generalised to the US population. However, a principal limitation
of this analysis is its cross-sectional nature which cannot allow
reliable definition of the direction of the effect of the observed
associations. Although we accounted for several lifestyle factors,
the possibility of the effect of unmeasured confounders remains.
We included on CRP and FG, which may not capture all major
inflammatory pathways. Although the sample size was accep-
table, it included only a sub-sample of participants who took part
in the targeted NHANES surveys. A major strength of this study is
the use of objectively measured biomarkers in the analysis rather
than relying on self-reported dietary intake.

Table 3. Adjusted (for age, sex, race, education, marital status, BMI, serum bilirubin, serum uric acid, TAG, total cholesterol, fasting blood glucose and
smoking) linear regression for the association between C-reactive protein (CRP) and fibrinogen levels with serum antioxidant vitamins
(β-Coefficients and 95% confidence intervals)

CRP Fibrinogen

Variables β 95% CI β 95% CI

α-Carotene (µmol/l) − 0·06 − 1·09, −0·39 −0·04 − 0·63, −0·045
trans-β-Carotene (µmol/l) − 0·08 0·38, −0·19 −0·03 − 0·18, −0·005
cis-β-Carotene (µmol/l) − 0·07 − 6·18, −2·78 −0·04 − 3·78, −0·52
β-Cryptoxanthin (µmol/l) − 0·07 0·73, −0·31 − 0·02 0·35, 0·096
Combined lutein/zeaxanthin (µmol/l) − 0·10 − 1·02, −0·52 −0·07 0·68, −0·22
trans-Lycopene (µmol/l) − 0·06 − 0·55, −0·23 −0·04 − 0·41, −0·052
Retinyl palmitate (µmol/l) − 0·02 − 0·72, −0·03 −0·01 − 0·46, 0·23
Retinyl stearate (µmol/l) −0·02 2·23, 0·24 − 0·00 − 1·03, 0·92
Retinol (vitamin A) (µmol/l) − 0·12 0·28, −0·18 −0·05 − 0·14, −0·029
α-Tocopherol (vitamin E) (µmol/l) − 0·11 0·27, −0·17 −0·05 − 0·44, −0·056
25-Hydroxy vitamin D (ng/ml) − 0·06 0·005, −0·001 −0·05 0·004, −0·001

Table 4. Multivariable logistic regression (adjusted for age, sex, race, education, marital status, BMI, serum bilirubin, serum uric acid, TAG, total cholesterol,
fasting blood glucose and smoking) for the risk of CVD across quartiles (Q) of antioxidant vitamin levels
(Odds ratios and 95% confidence intervals)

CVD risk CVD risk

Variables OR 95% CI Variables OR 95% CI

α-Carotene (µmol/l) Q1 1·00 – trans-Lycopene (µmol/l) Q1 1·00 –

Q2 0·64 0·53, 0·77 Q2 0·99 0·96, 1·02
Q3 0·65 0·54, 0·79 Q3 1·49 0·88, 2·50
Q4 0·47 0·38, 0·58 Q4 1·27 0·86, 1·88

trans-β-Carotene (µmol/l) Q1 1·00 – Retinyl palmitate (µmol/l) Q1 1·00 –

Q2 0·64 0·52, 0·79 Q2 1·12 0·52, 1·35
Q3 0·64 0·56, 0·76 Q3 1·22 0·95, 1·63
Q4 0·66 0·43, 0·71 Q4 1·10 0·98, 1·42

cis-β-Carotene (µmol/l) Q1 1·00 – Retinyl stearate (µmol/l) Q1 1·00 –

Q2 0·69 0·52, 0·79 Q2 1·02 0·76, 1·28
Q3 0·64 0·48, 0·75 Q3 1·14 0·99, 1·32
Q4 0·44 0·32, 0·55 Q4 1·09 0·99, 1·23

β-Cryptoxanthin (µmol/l) Q1 1·00 – Retinol (µmol/l) (vitamin A) Q1 1·00 –

Q2 0·85 0·73, 1·03 Q2 0·69 0·52, 0·79
Q3 0·98 0·77, 1·13 Q3 0·64 0·48, 0·75
Q4 0·81 0·67, 1·09 Q4 0·44 0·32, 0·55

Combined lutein/zeaxanthin (µmol/l) Q1 1·00 – α-Tocopherol (µmol/l) (vitamin E) Q1 1·00 –

Q2 0·95 0·78, 1·12 Q2 0·84 0·71, 1·03
Q3 0·88 0·75, 1·29 Q3 0·72 0·58, 0·86
Q4 0·89 0·74, 1·25 Q4 0·49 0·41, 0·59
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In conclusion, the present study supports a possible bene-
ficial effect of antioxidant vitamins on subclinical inflammation,
mediated at least in part by the overall adiposity. To what
extent, the observed associations may translate into a protective
effect of antioxidant vitamins against pathological conditions
involving subclinical inflammation, needs to be further
investigated.
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