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Turbulent flow in curved channels
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Fully developed turbulent flow in channels with mild to strong longitudinal curvature
is studied by direct numerical simulations. The Reynolds based on the bulk mean
velocity and channel half-width δ is fixed at 20 000, resulting in a friction Reynolds
number of approximately 1000. Four cases are considered with curvature varying from
γ = 2δ/rc = 0.033 to 0.333, where rc is the curvature radius at the channel centre.
Substantial differences between the mean wall shear stress on the convex and concave
walls are already observed for γ = 0.033. A log-law region is absent and a region
with nearly constant mean angular momentum develops in the channel centre for strong
curvatures. Spanwise and wall-normal velocity fluctuations are strongly amplified by
curvature in the outer region of the concave channel side. Only near the walls, where
curvature effects are relatively weak, do the mean velocity and velocity fluctuation
profiles approximately collapse when scaled by wall units based on the local friction
velocity. Budgets of the streamwise and wall-normal Reynolds-stress equations are
presented and turbulence structures are investigated through visualizations and spectra.
In the case with strongest curvature, the flow relaminarizes locally near the convex
wall. On the concave channel side, large elongated streamwise vortices reminiscent of
Taylor–Görtler vortices develop for all curvatures considered. The maximum in the
premultiplied two-dimensional wall-normal energy spectrum and co-spectrum shifts
towards larger scales with increasing curvature. The large scales substantially contribute
to the wall-normal velocity fluctuations and momentum transport on the concave channel
side.
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1. Introduction

Turbulent flows with streamline curvature are found in many engineering applications with
curved walls. Streamline curvature has a surprisingly large influence on turbulent shear
flows and causes a significant change in turbulence intensity and structure even when the
extra strain rate induced by streamline curvature is much smaller than the mean shear rate
(Bradshaw 1973; Hunt & Joubert 1979), implying that streamline curvature directly affects
the turbulence.

Effects of wall curvature on turbulent boundary layers has been studied quite extensively
experimentally. Muck, Hoffmann & Bradshaw (1985) measured reduced skin friction and
Reynolds stresses in a turbulent boundary layer on a convex wall with a mild curvature
of rc/δ ≈ 100, where rc is the curvature radius and δ the boundary layer thickness, and
found that the flow rapidly responds when curvature is imposed. Gillis & Johnston (1983)
accordingly found that turbulent length scales were immediately reduced after the onset of
strong convex wall curvature with rc/δ ≈ 10.

Whereas convex wall curvature acts to stabilize, concave curvature acts to destabilize.
Hoffmann, Muck & Bradshaw (1985) observed significant changes in turbulence structure
and distinct longitudinal large-scale vortices in a boundary layer on a mildly concave
wall with rc/δ ≈ 100. These longitudinal vortices are reminiscent of Taylor–Görtler (TG)
vortices produced by centrifugal instability in a concave laminar boundary layer. Barlow
& Johnston (1988) studied the effect of strong concave wall curvature with rc/δ ≈ 15
on a turbulent boundary layer, and observed significantly increased skin friction and
turbulence intensities, especially of wall-normal fluctuations, compared with a flat plate
boundary layer. The concave curvature also led to a growth of the large turbulent scales,
but Barlow & Johnston (1988) did not observe distinct longitudinal vortices; the large
scales were unsteady and lacked streamwise coherency. They suggested that spanwise
inhomogeneity in the inflow caused by e.g. vortex generators triggers the formation
of coherent longitudinal TG-like vortices. The absence of distinct longitudinal vortices
in their experiment were likely a result of a more homogeneous inflow. Large-eddy
simulations by Lund & Moin (1996) accordingly showed that an inflow with coherent
structures leads to stronger and more distinct TG vortices and higher Reynolds stresses in
a concave wall boundary layer.

Fully developed turbulent flow in strongly curved and wide ducts with rc/δ = 9 to 19,
where from now on rc is the curvature radius at the channel centreline and δ the channel
half-gap width, was experimentally studied by Wattendorf (1935) and Eskinazi & Yeh
(1956). In the channel core region rU was approximately constant and therefore the mean
flow nearly irrotational. Here, U is the mean streamwise velocity and r the curvature
radius. Wattendorf (1935) observed only a slight increase in flow resistance as a result
of curvature, although Eskinazi & Yeh (1956) found that the wall shear stress is much
larger and turbulence stronger on the outer channel side, in accordance with concave and
convex wall effects, respectively, on turbulent boundary layers. Hunt & Joubert (1979)
experimentally investigated the effect of weak curvature with rc/δ = 200 on turbulent
flow in a curved channel with a length of 150δ. No irrotational mean flow was observed
but instead a noticeable difference in the shear stress on the inner and outer walls of
approximately 20 %, a secondary flow in the centre region caused by TG vortices and
change in turbulence anisotropy.

Direct numerical simulation (DNS) of fully developed turbulent flow in a mildly curved
channel with rc/δ = 79 at a friction Reynolds number Reτ = uτ δ/ν = 168 where uτ is
the friction velocity and ν the viscosity was carried out by Moser & Moin (1987). The
computational domain was 12.64δ long and 4π/3δ wide and could accommodate one pair
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Turbulent flow in curved channels

of counter-rotating TG vortices. The TG vortices contributed noticeably to the turbulent
shear stress on the concave side, but no drastic growth in wall-normal velocity fluctuations
was observed. Nagata & Kasagi (2004) performed DNSs of mildly to strongly curved
channel flows with rc/δ = 77 to 5 at Reτ = 150 with a domain 2.5πδ long and πδ wide.
A strong growth of wall-normal velocity fluctuations and an approximately irrotational
mean flow in the centre were observed but they claimed rather surprisingly that the TG
vortices contributed to turbulence production on the convex and not the concave side.
Matsubara & Miura (2017) and Matsubara & Muromoto (2019) studied a developing flow
in a strongly curved channel with planar inflow with Reτ up to 550 by DNS. Large-scale
structures grow and intensify going downstream according to visualizations, spectra and
two-point correlations. Patel & Sotiropoulos (1997) further reviewed earlier studies of
streamline curvature effects on turbulent shear flows.

Concave and convex streamline curvature have similar (de)stabilizing effects on
turbulent wall flows as anticyclonic and cyclonic rotation about the spanwise axis,
respectively, as noted by Bradshaw (1969) and Hunt & Joubert (1979). Moreover,
the irrotational mean flow observed in strongly curved channels (Wattendorf 1935) is
analogous to the absolute-zero-mean-vorticity region observed in rotating channel flow
(Brethouwer 2017) as both correspond to neutral stability (Brauckmann, Salewski &
Eckhardt 2016), and anticyclonic rotation and concave streamline curvature both cause
an energy transfer from the streamwise to wall-normal Reynolds stresses (Hunt & Joubert
1979; Brethouwer 2017). Since system rotation and streamline curvature have a significant
impact on turbulent flows in many engineering applications, it is important to incorporate
their effects in turbulence models. Durbin (2018) reviews methods to include rotation and
curvature effects in a unified way in turbulence models. However, their effects on Reynolds
stresses and turbulent structures are not fully equivalent and the extent of the similarities
between turbulent wall flows subject to streamline curvature and rotation has to be assessed
yet.

Although streamline curvature effects on shear flows have been studied quite a lot, we
nevertheless have a limited understanding of how the flow, turbulence and TG vortices
change with curvature since previous studies were mostly limited to a narrow curvature
range or low Reynolds numbers. Here, we present a DNS study of fully developed turbulent
flows in mildly to strongly curved channels with a larger computational domain and higher
Reτ ≈ 1000 than in previous DNS studies. In this geometry there are no ambiguities
about inflow conditions, as in some experimental studies, or questions as to whether
or not the flow is fully developed, i.e. one-point statistics vary only in the wall-normal
direction. However, some interaction between the inner and outer wall regions occurs,
which prevents a complete separation of convex and concave streamline curvature effects,
as in boundary layers on curved walls. Further, the use of streamwise periodic boundary
conditions leads to an inflow with more coherent structures. As such, the TG vortices may
be stronger and more coherent than in flows with a more incoherent inflow. The use of
quite restricted computational domains in Moser & Moin (1987) and Nagata & Kasagi
(2004) may have contributed to the formation of unnaturally coherent TG vortices with an
enforced spanwise wavelength. Using larger computational domains may alleviate these
problems. We study mild to strong streamline curvature effects on the turbulent stresses
and large-scale structures at high enough Reτ to have a separation between turbulence
scales related to the near-wall cycle and TG vortices. We also discuss similarities between
curved and spanwise rotating channel flows. With this study, we aim to advance our
understanding of curvature effects and to aid turbulence modelling efforts. The results
of this study can be used to further explore similarities between turbulent flows subject to
streamline curvature and rotation.
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Concave wall

Flow
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Figure 1. Illustration of the computational domain for curved channel flow. The wall-normal direction y is
from the convex (inner) wall towards the concave (outer) wall.

2. Numerical set-up

We have carried out four DNSs of fully developed turbulent flows in mildly to strongly
curved channels. The incompressible Navier–Stokes equations in cylindrical coordinates
are solved in a domain bounded by sectors of two concentric cylinders, as in Moser &
Moin (1987), see figure 1 for an illustration of the computational domain. Streamline
curvature effects on turbulent flow in curved channels as in figure 1 are similar to
rotation effects on turbulent plane channel flows subject to clockwise rotation about the
spanwise axis. Fourier representations with periodic boundary conditions are used in the
homogeneous streamwise (azimuthal) and spanwise (axial) directions and a sixth-order
compact-finite-difference scheme is used in the wall-normal (radial) direction with no-slip
conditions at the walls (Boersma 2011; Peeters et al. 2016). The solution is advanced
by a pressure correction method together with a fourth-order Runge–Kutta method for
time integration. The Poisson equation for the pressure is solved directly using Fourier
transforms in the streamwise and spanwise directions and LU factorization of the matrix
resulting from the discrete Poisson equation in the radial direction. The computational
domain has a streamwise length of 12πδ along the centreline and a spanwise width of
3πδ, which is equally wide but 1.5 times longer than in recent DNS of plane channel flow
(Lee & Moser 2015) to accommodate the long structures, and three times longer and more
than two times wider than in the DNS by Moser & Moin (1987). In the DNS with strongest
curvature the domain captures an entire cylinder circumference.

The bulk Reynolds number Re = Ubδ/ν is fixed at 20 000 by enforcing a constant mass
flow rate, giving a Reτ = uτ δ/ν of approximately 1000. Here, Ub is the bulk mean velocity,
uτ friction velocity defined later and ν viscosity. The number of grid points, resolution,
curvature and friction Reynolds numbers together with the reference names of the four
DNSs are listed in table 1. From now on, curvature refers to γ = 2δ/rc, where rc is again
the curvature radius at the channel centreline. Run R0 is a DNS of plane channel flow at
the same Re with a domain 8πδ long and 3πδ wide, taken from Brethouwer (2017). Here,
Rei

τ and Reo
τ are the friction Reynolds numbers based on the friction velocities uτ i and uτo

for the inner and outer walls, respectively.
The streamwise and spanwise resolutions in all DNSs are r�θ+ ≤ 13 and �z+ ≤ 6.5,

respectively, in viscous wall units and Fourier modes, comparable to the resolutions used
by Lee & Moser (2015). The resolution is coarsest near the outer wall since, there, the
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Turbulent flow in curved channels

Run rc/δ γ Reτ Rei
τ Reo

τ Nx × Ny × Nz

R0 ∞ 0 1000 1000 1000 2560 × 385 × 1920
R1 60 0.033 1022 927 1103 3840 × 382 × 1920
R2 30 0.067 1030 905 1126 3840 × 382 × 1920
R3 12 0.167 1030 852 1135 3840 × 382 × 1920
R4 6 0.333 1020 764 1109 4096 × 382 × 1920

Table 1. Run name, channel curvature, friction Reynolds numbers and number of streamwise, wall-normal
and spanwise grid points Nx, Ny, Nz, respectively.

friction velocity is higher and the domain longer. Grid points in the radial direction are
clustered near the wall with at least 7 grid points in the viscous sublayer y+ ≤ 5 and the
first grid point at y+ < 0.5. Some validations of the numerical methodology are presented
in Appendix A.

The balance between mean streamwise pressure gradient dP/(rc dθ ), the total mean wall
shear stress τtot and friction velocities is given by

u2
τ = τtot

ρ
= − δ

ρrc

dP
dθ

= r2
i u2

τ i + r2
ou2

τo

2r2
c

, (2.1)

where ri and ro is the inner and outer wall radius, respectively, P the mean pressure and
ρ the density. The total mean shear stress obeys

τ̄ = ν

(
∂U
∂r

− U
r

)
− uv = 1

4r2rcδ
[r2

i (r
2
o − r2)u2

τ i + r2
o(r

2
i − r2)u2

τo], (2.2)

where U is the mean streamwise velocity, u and v streamwise and wall-normal velocity
fluctuations and an overline implies averaging in time and homogeneous azimuthal and
axial directions. The derivation is given in Appendix B.

The DNSs are run for a sufficiently long time to reach a statistically stationary state and
then run for at least 280δ/Ub to obtain well-converged statistics.

3. Flow statistics

First, mean flow, wall shear stress and turbulent fluctuation statistics are presented. In the
next sections, Reynolds-stress budgets and flow structures are studied. In the following
figures y = (r − rc)/δ, with y = −1 and 1 at the inner (convex) and outer (concave) wall,
respectively. Many figures include results of plane channel flow case R0. Similarities
between the present curved channel flow cases and plane channel flow rotating about the
spanwise axis are expected, as noted in the Introduction, and also further discussed. The
mean streamline turning rate is U/r in curved channel flow, with U the mean streamwise
velocity. This suggests replacing the rotation rate Ω in the rotation number Ro = 2Ωδ/Ub
of spanwise rotating channel flow by Ub/rc to obtain that an equivalent rotation number
for curved channel flow of Ro = 2δ/rc = γ . Thus, it appears meaningful to compare
rotating and curved channel flows for Ro = γ when rotation and curvature effects are
comparable. In Brethouwer (2017), results of spanwise rotating channel flow DNS at
Re = 20 000 are reported, but only one case with Ro = 0.15 has a Ro that falls into the
range of curvatures γ � Ro ≤ 0.333 considered here. The other cases have Ro ≥ 0.45,
corresponding to much stronger curvatures. Results of the rotating channel flow DNS
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at Re = 20 000 and Ro = 0.15 are included in some figures to make a few comparisons
possible.

Figure 2(a) shows mean streamwise velocity profiles U/Ub in the curved channel flow
DNSs. The mean shear is remarkably weak for 0 � y � 0.6 and the velocity gradient is
even slightly positive at the centreline in the mild curvature cases R1 and R2 but the
profiles become more oblique for increasing curvature. This is owing to the development
of a core region in runs R1 to R4 with a nearly constant mean specific angular momentum
rU, see figure 2(b), as observed in previous experiments of strongly curved duct flows
with rc/δ ≤ 19 (Wattendorf 1935; Eskinazi & Yeh 1956). Here, we see that an irrotational
mean flow region tends to emerge for rc/δ ≤ 30, skewed towards the outer concave
side and expanding with increasing curvature. Fluid elements thus tend to preserve
angular momentum when being displaced by eddies in the radial direction. A core
region with nearly constant angular momentum also develops in turbulent Taylor–Couette
flows and implies a trend towards neutral stability according to Rayleigh’s inviscid
criterion for centrifugal instability (Brauckmann et al. 2016). A similar phenomenon
occurs in spanwise rotating plane Couette and channel flow, in which a neutrally stable
zero-absolute-mean-vorticity region emerges (Brauckmann et al. 2016; Brethouwer 2017).
Constant angular momentum furthermore implies that the total production of streamwise
Reynolds stress uu given by Puu = −2uv(r∂(U/r)/∂r + 2U/r) (Hunt & Joubert 1979)
becomes zero. Here, the first term on the right-hand side is the shear production term
and the second term an additional production term owing the curvature strain. This
additional production term 4uvU/r is present as well in the wall-normal Reynolds-stress
vv transport equation, although with an opposite sign. It can be seen as a redistribution
term between the normal Reynolds stresses since it influences turbulence anisotropy, as
we see later, but it is absent in the turbulent kinetic energy transport equation (Hunt &
Joubert 1979). In the mild curvature cases a small extra production term due to curvature
is still able to offset the shear production term in Puu because the mean shear is very
weak, as shown in figure 2(a). The shear production and additional production owing
to curvature are studied in the next section. Again, similarities with spanwise rotating
shear flows show up: the Coriolis term redistributes energy between the normal Reynolds
stresses but does not directly contribute to turbulent kinetic energy. Furthermore, the sum
of shear production and Coriolis term in the uu transport equation becomes zero in the
zero-absolute-mean-vorticity state (Brethouwer 2017).

Figure 2(c,d) shows the mean streamwise velocity U∗ on the inner and outer channel
side, respectively, as functions of wall distance y∗ in local scaling. Local scaling, denoted
by a superscript ∗, implies scaling based on the local friction velocity uτ i and uτo at the
inner and outer channel wall, respectively. The curved channel profiles away from the
wall lie above and below the plane channel flow profile on the convex and concave sides
as a result of the reduced and enhanced turbulent shear stresses, respectively (Moser &
Moin 1987), and depart earlier from the R0 profile for stronger curvature. On the concave
side all profiles approximately collapse for y∗ � 50 but on the convex side the R3 and
R4 profiles diverge at smaller y∗, indicating that strong curvature affects the flow even
near the walls. An identifiable log layer is thus absent in these mildly to strongly curved
channels. At a given y+ in the log layer the curvature related production to shear production
ratio (U/r)/(∂U/∂r) ∼ δ/(Reτ rc). The log layer therefore likely reappears at higher Reτ

when the boundary layer becomes thinner and shear production grows relative to curvature
related production near the wall. Hunt & Joubert (1979) observed a log-layer profile on
both sides in experiments with Reτ ≈ 700 to 2700, but their channel was only weakly
curved with rc/δ = 200.
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Figure 2. Profiles of the (a) normalized mean streamwise velocity U/Ub and (b) specific angular momentum
rU scaled by its maximum value. Panels (c) and (d) show U∗ as functions of y∗ on the convex (inner) and
concave (outer) channel side, respectively.

Figure 3(a) shows computed total mean shear stress τ̄ profiles, i.e. the sum of viscous
and turbulent shear stresses, scaled by τtot defined in (2.1). The profiles show the expected
growth and decline of shear stress magnitude on the convex and concave side, respectively,
and collapse on the derived profile given by (2.2), implying that the statistics are well
converged. The mean wall shear stresses τw on the inner and outer walls, shown in
figure 3(b), deviate significantly from that of the plane channel flow case R0 already for
the weakest curvature considered. For curvatures larger than in case R2, τw does not grow
much more and actually starts to decline on the concave side whereas on the convex side
τw declines monotonically with curvature owing to a continuing weakening of turbulence.
The total mean wall shear stress τtot and related flow resistance in the present curved
channel flows, on the other hand, are only moderately higher than in plane channel flow,
consistent with observations by Wattendorf (1935). Data of spanwise rotating channel flow
DNS at Re = 20 000 and Ro = 0.15 (Brethouwer 2017) are also included in figure 3(b).
Figure 3(b) indicates that, at least for moderate Ro, the effects of rotation and curvature on
mean wall shear stresses are comparable.

Root-mean-square profiles of all velocity fluctuation components and Reynolds shear
stresses in global scaling, i.e. scaled by uτ , are shown in figure 4. In the convex near-wall
region the velocity fluctuations monotonically decline with curvature, concurrently with
the mean wall shear stress, whereas the near-wall peak of the streamwise and wall-normal
fluctuations does not vary much with curvature on the concave side. On the other
hand, spanwise and especially wall-normal fluctuations drastically grow and streamwise
fluctuations decline in the outer concave region for strong curvatures. This growth and
decline can be explained by the action of the extra curvature production term, which
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Figure 3. (a) Total mean shear stress τ̄ profiles scaled by τtot. Thin solid lines are DNS data and thick dashed
lines show τ̄ given by (2.2). (b) Mean wall shear stresses τw on the inner (green) and outer walls (red) and τtot
(blue) scaled by the mean wall shear stress τ0 in plane channel flow (run R0). Each dot represents a DNS. The
triangles are corresponding rotating channel flow data at the same Re and Ro = 0.15.
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Figure 4. Root-mean-square profiles of (a) streamwise, (b) wall-normal and (c) spanwise velocity
fluctuations and (d) profiles of the mean turbulent shear stress uv in global scaling.

transfers energy from streamwise to wall-normal fluctuations, as discussed before. Energy
transfer between the velocity components due to the extra curvature production is studied
in the next section and shown to be relatively small in the near-wall region but significant
in the outer region. The growth of wall-normal and spanwise fluctuations comes along
with a structural change of turbulence and amplification of large-scale structures on the
concave side, as shown later.
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Figure 5. Root-mean-square profiles of the (a) streamwise and (b) wall-normal velocity fluctuations and (c)
correlation coefficient ρ on the convex (dashed lines) and concave sides (solid lines) in local scaling. Included
in (a,b) are profiles in local scaling (labelled as ‘rot’) from DNS of spanwise rotating channel flow at Re =
20 000 and Ro = 0.15 (Brethouwer 2017) on the cyclonic (dashed line) and anticyclonic sides (solid line).

In local scaling, by contrast, streamwise and wall-normal velocity fluctuations are
very similar in the convex and concave near-wall region for different curvatures, see
figure 5(a,b), suggesting that the near-wall dynamics is mostly unaffected by wall
curvature. On the convex side the similarity to plane channel flow extends quite far,
up to y∗ ≈ 200. On the concave side the similarity ends earlier because profiles of the
strongly curved cases diverge beyond the buffer layer. In run R4 the near-wall peak of the
wall-normal component disappears as a result of the strong growth of the fluctuations in
the outer region caused by a fundamental change in the outer layer dynamics. Near-wall
similarity, also observed in experiments of a turbulent boundary layer on a concave wall
by Barlow & Johnston (1988) and in DNS by Moser & Moin (1987), is to be expected
since the strain-rate ratio (U/r)/(dU/dr) decreases and thus curvature effects vanish
approaching the wall. Curvature effects on the Reynolds stress budgets are accordingly
small to moderate in the near-wall region, as shown in the next section, which further
supports the expectation that velocity fluctuations display near-wall similarity in local
scaling. The present results suggest that turbulence models and wall-modelled large-eddy
simulations (Bose & Park 2018) do not have to take into account curvature effects on
turbulence in the near-wall region up to quite strong curvatures and that changes in the
wall shear stresses are driven by changes in the turbulence dynamics further away from
the walls.
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Figure 5(a,b) also includes local scaling profiles of streamwise and wall-normal
fluctuations in rotating channel flow DNS at Re = 20 000 and Ro = 0.15 on the cyclonic
and anticyclonic channel sides. Although rotation and curvature effects differ in the
near-wall regions (note that the mean streamline turning rate varies as U/r and vanishes
approaching the wall whereas Ω is constant), the profiles basically collapse, implying that
rotation and curvature effects are similar and less significant in the near-wall region at
least up to Ro = 0.15. However, stronger rotation with Ro ≥ 0.45 starts to affect near-wall
turbulence (Brethouwer 2017), indicating that also stronger curvatures could start to
influence near-wall turbulence.

Nagata & Kasagi (2004), however, did not observe near-wall similarity in their DNSs
of curved channel flow; the profiles on the convex and concave sides and for different
curvatures showed substantial differences in local scaling, although that was possibly a
consequence of a low Reτ = 150. In the present DNSs, near-wall similarity also holds
less well for the correlation coefficient ρ = |uv|/(uu vv)1/2 on the convex side in the
strongly curved cases (figure 5c), which may explain the early departure of the mean
velocity profiles in R3 and R4 seen in figure 2(c). The figure further shows that u and
v fluctuations are highly correlated in the outer layer of the concave side in R1 to R4,
contributing to the high shear stresses on the concave side. This high correlation points to
the presence of coherent turbulent structures.

4. Reynolds-stress budgets

To obtain further insights into the effect of curvature on the turbulence, we consider in
this section the budget terms of the Reynolds-stress equations. Budgets at lower Reτ have
been studied by Moser & Moin (1987) for a mildly curved channel. The streamwise and
wall-normal components of the non-dimensional Reynold-stress equations for the present
case read, respectively (Hunt & Joubert 1979; Moser & Moin 1987)

∂u2

∂t
= −2uvr

∂U/r
∂r

− 4uv
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− 2
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. (4.2)

Here, p is the pressure fluctuation. On the right-hand side of these equations, the
terms represent shear production, an additional production resulting from curvature,
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Figure 6. Budgets of the streamwise Reynolds-stress equation (4.1) on the (a) convex and (b) concave sides
and budgets of the wall-normal Reynolds-stress equation (4.2) on the (c) convex and (d) concave sides in local
wall units. Solid lines: case R3, dashed lines: case R0.

velocity–pressure gradient, turbulent diffusion, viscous diffusion and dissipation,
respectively. The shear production term in the equation for vv is naturally zero.

Figure 6 shows the budgets of (4.1) and (4.2) in local wall unit scaling near the convex
and concave walls in R3. The budgets in R0 are also shown for comparison to elucidate
the curvature effect. Only small differences exist in the budgets of uu in R0 and R3 on the
convex and concave sides and the additional production term in R3 is negligible near the
walls. The additional production term is, however, noticeable in the balance equation of
vv, as seen in figure 6(c,d). On the concave side it is positive and produces wall-normal
Reynolds stresses while on the convex side it reduces them owing to the different sign of
uv. Concave curvature leads to a moderate reduction of the velocity–pressure gradient and
dissipation term and augmentation of turbulent diffusion of vv while convex curvature
has the opposite effect. Similar curvature effects are seen in the other runs and not shown
here. To summarize, curvature effects on the Reynolds-stress budgets are small to quite
moderate in the near-wall regions.

Figure 7 shows the budgets of (4.1) and (4.2) in R0, R3 and R4 in global wall unit
scaling with uτ . The focus is here on the core region, where curvature effects are most
prominent. Viscous diffusion is not shown since it only contributes in the viscous sublayer
and buffer layer, see figure 6. The additional production term ±4uvU/r resulting from
curvature is significant in R3 and R4 and to a lesser extent in R1 and R2 (not shown
here) and basically offsets the shear production of uu on the concave side until y ≈ −0.3
to -0.4. The underlying reason is the development of an irrotational mean flow region in
curved channel flow DNSs, which implies that the total production, i.e. the sum of shear
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and additional productions, of uu becomes zero and the shear production contribution is
basically transferred to the vv-stress component, as discussed before, see figure 7(d, f ).
The velocity–pressure gradient term in the balance equation of uu is negative in R0 but
becomes positive in the core region for strong curvatures and contributes to streamwise
stresses. In the balance equation of vv this term is positive or nearly zero around the
centre in R0 but becomes negative in the core region in R3 and R4. In addition, the
magnitude of turbulent diffusion of uu and vv in the core region grows with curvature.
This growth is presumably caused by coherent large-scale motions, which are studied in
the next section. Turbulent diffusive transport of kinetic energy by large-scale motions
presumably contributes to the strong turbulence in the core region even when, as in R1
and R2, mean shear (figure 2a) and accordingly shear production are small. It can be
further noticed that the additional production term owing to curvature is negative for vv

and positive for uu on the convex side in R3 and R4 and, consequently, transfers energy
from wall-normal to streamwise stresses.

5. Large-scale structures

Large-scale structures develop in curved channel flows but their characteristics and
importance for different curvatures remain elusive. In this section, we therefore study
turbulence structures and specifically the large ones as well as their contribution to the
Reynolds stresses.

Figure 8 shows visualizations of instantaneous flow fields in planes at a constant
radius, i.e. at a constant wall distance. Flow field visualizations of case R0 and rotating
channel flow are added for comparison. On the convex side no large-scale structures are
visible in R4 (figure 8a) and the other curved channel cases (not shown here). In R4 the
curvature is strong enough to cause local flow relaminarization near the convex wall since
laminar-like patches without small-scale turbulence develop (figure 8a), similar to rotating
channel flow where the flow relaminarizes on the cyclonic side at sufficiently high rotation
rates. This indicates that curvatures as strong as in R4 and stronger start to affect the
near-wall dynamics on the convex side at this Re. No large-scale structures are seen in the
wall-normal flow field in the outer layer of plane channel flow case R0 (figure 8b), whereas
in R2 (figure 8c) and R1 (not shown here) streamwise streaks are visible with some of them
spanning the whole domain in the outer layer of the concave side. The streaks indicate the
presence of pairs of large counter-rotating longitudinal vortices, transporting fluid away
from the wall, in the mildly curved cases. In R4, streamwise streaks are visible as well but
these are less coherent and do not span the whole domain (figure 8d), suggesting that the
large-scale structures are less coherent for strong curvatures. A visualization of the outer
layer wall-normal flow field on the anticyclonic side of plane rotating turbulent channel
flow at Re = 20 000 and Ro = 0.15 (figure 8e, data from Brethouwer (2017)) shows similar
streaks caused by large longitudinal vortices as in the curved channel flow cases.

Figures 9 and 10 show premultiplied two-dimensional energy spectra kxkzΦvv(kx, kz)
of the wall-normal fluctuations and uv-co-spectra kxkzΦuv(kx, kz), respectively, on the
concave side at y = 0.8 as functions of the streamwise and spanwise wavelengths λx
and λz normalized by δ. Here, kx and kz are the streamwise and spanwise wavenumbers,
respectively. The energy spectrum kxkzΦvv(kx, kz) in R1 is similar to that for a plane
channel (del Álamo et al. 2006) with a spectral maximum at smaller scales, but also
showing contributions from larger scales (figure 9a). For increasing curvature, the spectral
energy of the smaller scales declines whereas that of long and wide scales with λz ≈ 1.5
grows. The spectral peak also moves from small towards large scales and even very
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Figure 7. Budgets of the (a,c,e) streamwise Reynolds-stress equation (4.1) and (b,d, f ) wall-normal
Reynolds-stress equation (4.2) in global wall units; (a,b) R0, (c,d) R3 and (e, f ) R4.

long scales with λx > 10 have significant energy in R3 and R4, confirming that concave
curvature leads to a substantial amplification of larger scales.

Energy spectra measured by Barlow & Johnston (1988) in the outer layer of a concave
boundary layer with rc/δ ≈ 15 (with δ the boundary layer thickness) also show enhanced
energy of low frequency, long modes compared with flat boundary layer spectra. The
typical length of the large-scale motions was estimated by Barlow & Johnston (1988) as
3δ to 5δ. Spectra in R3 and R4, however, show significant energy in modes with λx > 10,
indicating that structures observed in the current DNSs are longer than in Barlow &
Johnston (1988). This could be the result of more homogeneous inflow in the experiments.
Longitudinal vortices develop in concave wall boundary layers if the inflow contains

931 A21-13

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

95
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.953


G. Brethouwer

4

2

0

0 5 10 15 2520

0 5 10 15 2520

30

0 5 10 15 2520 30 35

0 5 10 15 2520

0 5 10 15 2520

30 35 35

–2

–4

4

2

0

–2

–4

4

2

0

–2

–4

4

2

0

–2

–4

4

2

0

–2

–4

(a)

(b)

(c)

(d)

(e)

Figure 8. Visualizations of (a) the instantaneous streamwise velocity field near the inner convex wall at y∗ = 4
in R4 (red: high velocity), and instantaneous wall-normal velocity field on the concave side at y = 0.6 in (b)
R0, (c) R2, (d) R4 and (e) anticyclonic side at y = 0.6 of rotating channel flow at Re = 20 000 and Ro =
0.15 (Brethouwer 2017) (red: negative wall-normal/radial velocity). The horizontal and vertical axes are the
streamwise and spanwise directions, respectively.

coherent structures whereas large-scale turbulence structures are enhanced but do not
develop into clearly identifiable longitudinal vortices if the inflow lacks coherency (Barlow
& Johnston 1988; Lund & Moin 1996). In the DNSs the periodic boundary conditions can
result in augmented longitudinal vortices (Moser & Moin 1987).

However, in DNS of a developing flow in a curved channel by Matsubara & Miura
(2017) longitudinal vortices develop as well, even though the turbulent plane channel
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Figure 9. Value of kxkzΦvv(kx, kz) at y = 0.8 in (a) R1, (b) R2, (c) R3 and (d) R4. Vertical line at λx =
6π. Horizontal line at (a) λz = 3π/5, (b) λz = 3π/7, (c) λz = 3π/6, (d) λz = 3π/7. Red dashed line: λz =
(0.1λx)

0.4. Contour levels at 0.8, 0.6, 0.4, 0.28, 0.2, 0.1, respectively, times the maximum value.

inflow lacks clear coherency. The vortices in their DNS have a wavelength λz = 2.4
according to spanwise wall-normal velocity spectra, somewhat wider than in the DNSs
here, where the spectral maximum in R3 and R4 suggests a wavelength λz ≈ 1.5. Also,
in DNS of weakly curved channel flow by Moser & Moin (1987) the longitudinal vortices
are considerably larger with a spanwise wavelength of 4π/3 than in the present DNSs.
This difference could be caused by a low Reτ = 168 and constraints resulting from a
quite small computational domain in Moser & Moin (1987). In the current study, we
see that large-scale modes are present but these are seemingly less coherent, possibly
owing to a higher Reτ , stronger curvature and larger computational domain. Augmented
large-scale modes are also obvious in spanwise spectra of the unstable side of spanwise
rotating channel flow at Ro = 0.15 (Brethouwer 2017). The large-scale modes become
less coherent and smaller at higher Ro, demonstrating that they reach a maximum size for
a certain Ro. In the present study, the large modes do not appear to grow in size for stronger
curvatures than in R3 since they are not larger in R4 according to the spectra.

The energetic spectral ridge in figure 9 follows for all curvatures approximately λz ≈
(0.1λx)

0.4, indicated by the red dashed line, meaning that turbulence structures become
longer yet not much wider with size. Structures with self-similar behaviour, i.e. λz ∼ λx,
are not evident in the spectra, but self-similarity is not expected of TG-like vortices.
We should further note that streamwise velocity spectra of turbulent plane wall flows
at similar Reτ are also approximately bounded by λz ∼ λ1/2

x (del Álamo et al. 2006;
Hwang, Lee & Sung 2020) and self-similar spectral scaling becomes apparent only at
higher Reτ (Chandran et al. 2017). Deshpande et al. (2020) demonstrate that self-similar
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Figure 10. Value of kxkzΦuv(kx, kz) at y = 0.8 in (a) R1, (b) R2, (c) R3 and (d) R4. Vertical line at λx = 6π.
Horizontal line is at (a) λz = 3π/5, (b) λz = 3π/7, (c) λz = 3π/6, (d) λz = 3π/7. Red dashed line: λz =
(0.1λx)

0.4. Contour levels at 0.8, 0.6, 0.4, 0.28, 0.2, 0.1, respectively, times the maximum value.

scaling λz ∼ λx of wall attached eddies is obscured by the λz ∼ λ1/2
x scaling caused by

wall detached eddies at lower Reτ . This suggests that self-similar near-wall structures in
curved channel flows, if these exist, only become apparent at higher Reτ .

The co-spectrum kxkzΦuv(kx, kz) of R1 shows that smaller scales with λx ∼ 1 and
λz ∼ 1/3 as well as very long and wide scales with λz ∼ 1.5 contribute to momentum
transport at y = 0.8 on the concave side (figure 10a). The spectral ridge again follows
approximately λz ∼ λ0.4

x , as in a plane channel (del Álamo et al. 2004). With stronger
curvature, the spectral peak at smaller scales disappears and a significant part of the
momentum transport in the outer layer of the concave side is owing to wide and very
long scales (figure 10c,d). These energetic long and wide scales on the concave side
observed in the co-spectra in figure 10 and also before in the energy spectra in figure 9
in the curved channel cases are naturally related to large-scale structures seen in the flow
field visualizations in figure 8(c,d).

Figure 11 shows premultiplied two-dimensional uv-co-spectra kxkzΦuv(kx, kz) at y∗ =
100 on the convex and concave side in R2 and R4. Wavelengths are again normalized
by δ. The co-spectra show that, in both runs, smaller-scale but also large-scale motions
contribute to momentum transport on the concave side at this position quite close to
the wall. This is especially obvious in R4 with energetic long and wide scales. On the
convex side momentum, on the other hand, active large-scale motions are absent and only
the smaller-scale contribution is seen in the co-spectra. The turbulence structure is thus
obviously different at y∗ = 100 on the convex and concave sides, although the velocity
fluctuations in local wall units are quite similar, especially in R2 (figure 4).
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Figure 11. Value of kxkzΦuv(kx, kz) at y∗ = 100 in (a,b) R2 and (c,d) R4 on the (a,c) convex and (b,d) concave
sides. Vertical line at λx = 6π and horizontal line at λz = 3π/7. Red dashed line: λz = (0.1λx)

0.4. Contour
levels at 0.8, 0.6, 0.4, 0.28, 0.2, 0.1, respectively, times the maximum value.

The DNS of curved channel flow by Moser & Moin (1987) could capture one pair of
counter-rotating large-scale vortices. Since these were rather coherent, steady and spanned
the streamwise domain, Moser and Moin were able to decompose the velocity field into a
part owing to the large-scale vortices and a remaining turbulent part by assuming that the
vortices are streamwise invariant and not drifting in the spanwise direction. They found
that the vortices spanned across the channel and significantly contributed to shear stresses
on the concave side but almost negligibly on the convex side. In the present DNSs, we
cannot assume that the vortices are quasi-steady and span the whole streamwise domain,
as indicated by the visualizations and spectra. Instead of decomposing the velocity field,
we therefore use a sharp spectral cutoff filter to study the influence of large-scale modes.

Figure 12(a,b) shows the root-mean-square profiles of wall-normal velocity fluctuations
and profiles of the mean turbulent shear stress uv, respectively, of the unfiltered and filtered
velocity fields. In the filtered velocity fields only the large-scale modes with wavelengths
λx ≥ Lx/4 � 3πδ and λz ≥ Lz/9 = πδ/3 are retained. In all cases these large-scale modes
account for a major part of the wall-normal fluctuations for −0.1 � y � 0.6 on the concave
side. Their energy grows with curvature whereas, on the convex side (y � −0.5), their
contribution is small. The large-scale modes also contribute significantly to momentum
transport on the concave side, that is, more than half of the total turbulent momentum
transport in R1 to R3 and a third in R4 for −0.2 < y < 0.6 is owing to these large
modes. Their contribution on the convex side is again small, demonstrating that convex
wall curvature suppresses large-scale motions. Note that in R4 there is a small region
(−0.56 < y < −0.3) where the turbulent shear stress uv due the large modes has the
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Figure 12. (a) Root-mean-square profiles of wall-normal velocity fluctuations and (b) profiles of the mean
turbulent shear stress uv in global scaling. The solid lines show the unfiltered results and the dashed lines the
contribution of the large-scale motions.

opposite sign to the total turbulent shear stress and therefore negatively contributes. This
difference is perhaps caused by significant non-local effects in case of the large-scale
modes whereas the smaller scales are instead more influenced and determined by local
(shear) effects.

6. Concluding remarks

In this study, we have examined the effects of mild to strong longitudinal wall curvature
on the fully developed turbulent flow and turbulence structures in a channel by DNS. The
Reτ ≈ 1000 is high enough to have a clear separation between the near-wall and outer
regions.

A substantial difference between the mean wall shear stress and turbulence on the
convex and concave walls, respectively, is already observed when rc/δ = 60. With
increasing curvature, the mean wall shear stress on the concave wall does not change
much but on the convex wall it monotonically declines. A log-law region is absent and
instead for rc/δ ≤ 30 a core region develops, shifted towards the concave channel side,
with a nearly constant mean angular momentum, implying neutral stability according to
Rayleigh’s criterion for centrifugal instability. The effect of streamline curvature is then to
redistribute energy from streamwise towards wall-normal velocity fluctuations which are
strongly amplified in the outer region of the concave channel side. These observations bear
some expected similarities to those in spanwise rotating channel flows. In that case, the
mean flow approaches a zero-absolute-mean-vorticity state, also implying neutral stability,
and energy is redistributed as well from streamwise towards wall-normal Reynolds stresses
on the strongly turbulent anticyclonic channel side (Brethouwer 2017).

Streamline curvature effects are expected to be relatively weak near the walls in curved
channels. This expectation is supported by the observed approximate collapse of the mean
velocity and root-mean-square velocity fluctuation profiles when scaled by wall units based
on the local friction velocity. However, when rc/δ = 6, the curvature is strong enough to
cause local flow relaminarization near the convex wall.

Budgets of the streamwise and wall-normal Reynolds-stress equations have been
computed. These show that, near the walls, streamline curvature has a small influence
on the budgets of the streamwise stresses and somewhat larger on these of the wall-normal
stresses when scaled with local wall units. In the channel core region, streamline curvature
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has naturally a significant effect on the production terms as well as on velocity–pressure
gradient and turbulent diffusion terms.

In spanwise rotating channel flow, large-scale longitudinal structures are observed on
the anticyclonic side (Brethouwer 2017). Also here there is a similarity to curved channel
flow since visualizations show that in my DNSs large, longitudinal vortices are present on
the concave side. That observation is further confirmed by premultiplied two-dimensional
energy spectra of the wall-normal velocity and co-spectra. These show substantial energy
in long and wide modes in the outer region of the concave channel side. However, the
longitudinal vortices seem to be less wide and less coherent than in DNS at lower Reτ

with a smaller computational domain (Moser & Moin 1987), in particular when curvature
is strong. Co-spectra at y∗ = 100 show that on the convex channel side large-scale active
eddies are much less energetic than on the concave side. By applying a low-pass filter, we
show that the large-scale modes make an important contribution to the strongly amplified
wall-normal fluctuations and high shear stresses on the concave channel side.
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Appendix A. Validation

Several tests have been carried out to validate the DNS code. Figure 13 shows that the
laminar velocity profile in a curved channel obtained from DNS with a wall-normal
resolution of Nr = 94 for ri = 1.25 and 4 matches the analytical solution (Drazin & Reid
1981) and DNS with a wall-normal resolution of Nr = 94.

For further validation, we have carried out a DNS of fully developed turbulent flow in a
curved channel with the same curvature (rc = 79) and the same domain size as the DNS by
Moser & Moin (1987). The resolution is 128 × 62 × 128 in the streamwise, wall-normal
and spanwise directions, respectively. Here, Re = 2600, which resulted in Reτ = 168 and
Rei

τ = 154 and Reo
τ = 180, which are the Reynolds numbers based on the inner and outer

friction velocities, respectively. Figures 14(a) and 14(b) show the mean velocity profiles
and the root-mean-square (r.m.s.) of the velocity fluctuations of the present DNS together
with the data from Moser & Moin (1987). The agreement is in general good. Figure 14(c)
shows the turbulent and total shear stress in wall units and the total shear stress according
to relation (2.2).

Next, we carried out DNS of fully developed turbulent flow in a channel with rc → ∞.
The domain size is 6π × 2 × 2π and the resolution is 768 × 158 × 512 in the streamwise,
wall-normal and spanwise direction, respectively. Here, Re = 10 000, resulting in Reτ =
545. Figures 15(a) and 15(b) show the mean velocity profiles and the r.m.s. of the velocity
fluctuations of the present DNS together with the data from del Álamo & Jiménez (2003)
of plane channel flow at Reτ = 543. The agreement is very good. Figure 14(c) shows the
turbulent shear stress in the present DNS and the DNS by del Álamo & Jiménez (2003)
and the expected and computed total shear stress in wall units.
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Figure 13. Profiles of U/Ub in laminar curved channel flow with ri = 1.25 and 4; (red solid line) analytical
solution (Drazin & Reid 1981), (dashed line) DNS, (dotted line) laminar Poiseuille flow.
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Figure 14. (a) Mean velocity profile in local wall coordinates near the concave (red lines) and convex wall
(blue lines). (b) The r.m.s. of the streamwise (blue lines), wall-normal (red lines) and spanwise velocity
fluctuations (green lines) in wall units. Dashed lines in (a) and (b) are results of Moser & Moin (1987) and
solid lines are the present results. (c) Values of −uv (black line) and total stress (straight blue line) in wall units
and total stress according to relation (2.2) (red dashed line).
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Figure 15. (a) Mean velocity profile in wall coordinates in the DNS by del Álamo & Jiménez (2003) (blue
solid line) and the present DNS (red dashed line). (b) The r.m.s. of the streamwise (blue lines), wall-normal
(red lines) and spanwise velocity fluctuations (green lines) in wall units. The dashed lines in (a) and (b) are
the results of del Álamo & Jiménez (2003) and the solid lines are the present results. (c) Values of −uv (black
solid line present DNS and dashed line data by del Álamo & Jiménez (2003)) and the total stress (straight blue
line) in wall units and the expected total stress (red dashed line).

Appendix B. Momentum balance

In case of fully developed curved channel flow the governing equation for the streamwise
velocity reduces to

1
r2

∂r2uv

∂r
= − 1

ρr
dP
dθ

+ ν
∂

∂r

(
1
r

∂rU
∂r

)
(B1)

since ∂P/∂θ is independent of r. After multiplication of all terms with r2 and integrating
(by parts) in the radial direction from ri to r we obtain

r2uv = − 1
2ρ

dP
dθ

(r2 − r2
i ) + ν

∫ r

ri

r2 ∂

∂r

(
1
r

∂rU
∂r

)
dr

= − 1
2ρ

dP
dθ

(r2 − r2
i ) + ν

[
r2
(

∂U
∂r

+ U
r

)]r

ri

− 2ν

∫ r

ri

∂rU
∂r

dr

= − 1
2ρ

dP
dθ

(r2 − r2
i ) + ν

[
r2
(

∂U
∂r

+ U
r

)
− r2

i
∂U
∂r

∣∣∣∣
ri

− 2rU

]
. (B2)
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From that follows

− 1
ρ

dP
dθ

= 2ν

r2
o − r2

i

(
r2

i
∂U
∂r

∣∣∣∣
ri

− r2
o

∂U
∂r

∣∣∣∣
ro

)
= 1

2rcδ
(r2

i u2
τ i + r2

ou2
τo), (B3)

where u2
τ i = ν(∂U/∂r)|ri and u2

τo = −ν(∂U/∂r)|ro . The mean pressure gradient at the
centreline is −(dP/dθ)/(ρrc) where rc = (ri + ro)/2. In a similar spirit as for plane
channel flow we define the friction velocity then as

u2
τ = −1

2
ro − ri

ρrc

dP
dθ

= 1
2r2

c
(r2

i u2
τ i + r2

ou2
τo). (B4)

Eliminating the pressure in (B2) with the help of (B3) and (B4) and some rewriting gives
finally for the momentum balance across the channel

τ = ν

(
∂U
∂r

− U
r

)
− uv = 1

4r2rcδ
[r2

i (r
2
o − r2)u2

τ i + r2
o(r

2
i − r2)u2

τo]. (B5)
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