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UNION OF REALCOMPACT SPACES AND
LINDELOF SPACES

AKIO KATO

0. Introduction. All spaces in this paper are completely regular Hausdorff
and all maps are continuous onto, unless otherwise stated. The purpose of this
paper is to investigate the realcompactness of a space X which contains a
Lindelof space L such that every zero-set Z (in X) disjoint from L is real-
compact. We show in § 2 that such a space X is very close to being realcompact
(Theorems I, IT and I1I). But in general such a space fails to be realcompact.
Indeed, in §§ 3 and 4 the following questions of Mréwka [18, 19] are answered,
both in the negative:

(0. 1) If X = LU G where L is Lindel6f closed and G is E-compact, then
is X E-compact?

(Q. 2) Suppose f:X — YV is a perfect map such that the set M(f) =
{y € Y| |f~'(y)| > 1} of multiple points of f is Lindelsf (especially, count-
able) closed. If X is E-compact, is ¥ also E-compact?

Here, E is chosen to be the real line R or the countable discrete space N,
and in case £ = N the above spaces X, V are supposed to be 0-dimensional,
i.e., the small inductive dimension -- ). (A space X is called E-compact if it is
embeddable as a closed subset into (he product E™ for some cardinal m [17].
Clearly ““ N-compact’’ implies “R-compact’’, and ““R-compact’’ is identical with
“realcompact”. A map f is called perfect if it is a closed map with compact
fibers.) In order to answer these questions we construct various examples
each of which is an almost realcompact, non-realcompact space. Hence,
finally we will come to appreciate the gap between realcompact spaces and
almost realcompact spaces. It should be noted that the space of Mrowka [18]
was the only example of an almost realcompact, non-realcompact space known
hitherto.

Throughout this paper we adopt the notation and terminology of Gillman &
Jerison [10]. BX and vX denote respectively the Stone-Cech compactification
and the Hewitt realcompactification of X. Z(X) (resp. Coz(X)) denotes the
family of all zero-sets (resp. cozero-sets) in X. The remainder BX\X of Stone-
Cech compactification is always denoted by X*. The symbol @ means the
topological sum. N is the discrete space of positive integers. For a locally
compact space X, wX denotes its one-point compactification, except in § 4
Example D. “dim’’ means the covering dimension. For the notion of E-com-
pactness we refer to [17].
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Remark 0. Most results for realcompact (= R-compact) spaces in this
paper can be generalized to E-compact spaces, so that, especially their *“/N-
compact'’ versions remain true. To obtain an ‘‘N-compact’’ version of the
given statement for realcompact spaces, in most cases it suffices to replace the
left terms in the following table by the corresponding right terms.

TasBLE 1.
“Realcompact” version “N-compact’’ version
completely regular spaces, 0-dimensional spaces,
i.e., subspaces of R™ i.e., subspaces of N™
realcompact spaces, i.e., N-compact spaces, i.e.,
closed subspaces of R™ closed subspaces of N»
compact spaces, i.e., 0-dimensional compact spaces,
closed subspaces of 1™ i.e., closed subspaces of D™
or (wR)™ or (wN)™
BX = BIX = BwRX BDX = BwNX
vX = BRX By X
real-valued function N-valued function

In this table m ranges over all cardinal numbers, and D denotes the two-point
discrete space {0, 1}. 8zX denotes the E-compact extension of X uniquely
determined by the property that every continuous function f:X — E admits
a continuous extension f*:8;X — E. See [17, Theorem 4.14].

1. Fundamental theorems. The main theorem in this section is Theorem
1.4 which shows how the operation v is distributed over subspaces, and from
which many corollaries are derived. Our concern is for a space X that is the
union of a Lindel6f space L and a realcompact space, or more generally a space
X that contains a Lindel6f space L such that every zero-set (or equivalently,
closed set) in X disjoint from L is realcompact. Recall that a subset A4 is called
z-embedded in X if every zero-set in 4 is the restriction to 4 of a zero-set in X.
The Gs-closure of 4 in X, denoted by G;-clyA4, consists of all points x € X for
which each Gs-set (or equivalently, zero-set) about x meets 4. The following
fundamental facts are needed.

Fact 1.1. [12] [1, 7.8] If L is a Lindelsf subset of a space X, then L is z-em-
bedded in X.

Fact 1.2. Let A be a realcompact subset of X.
(1) [10, 8.10] If 4 is C-embedded in X, then cl,y4 = 4.
(2) [4, 2.6] If 4 is z-embedded in X, then Gs-cl,x4 = A4.

Fact 1.3. [10, 8.8] (2,§5] For any function f € C(X) and its extension
fr€e C(vX),wehave Z(f¥) = cl,xZ(f) and Coz(f*) = v(Coz(f)), i.e., Coz(f)
is C-embedded in the realcompact space Coz(f V).
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THEOREM 1.4. Let A be a subset of a space X. Then

(1) vX = clyx4d U U {vUU € Coz(X) and Uis completely separated
(in X) from A} where vU s understood as in 1.3.

(2) vX = Gp-clyxd I U {cxZ|Z € Z(X)and ZMN 4 = 0}.

Proof. (1) Let p € vX\cl,x4. Then, since p does not belong to the compact
set clgxA, there exists U € Coz(8X) which contains p and is completely
separated from clgx4 in BX. Put U = U N X. Then by 1.3, p € vU. Clearly
U is completely separated from 4 in X. This proves (1).

(2) Let p € vX\Gs-cl,x4. Then there exists a zero-set Z ¢ Z(vX) that
contains p and misses 4. Put Z = Z N X. By 1.3 we have p ¢ Z = cl,xZ and
this proves (2).

COROLLARY 1.5. Let A be a realcompact closed subset of X such that every
zero-set Z € Z(X) completely separated from A s realcompact. Then X 1is real-
compact if and only if cl,xyA = A. Especially, X 1s realcompact if A s C-
embedded in X.

Proof. The non-obvious part that requires a proof is that cl,x4 = 4 implies
that X is realcompact. By 1.4(1) we need to show that every U € Coz(X)
completely separated from 4 is realcompact. Let U be such a cozero-set; then
we can choose Z € Z(X) which contains U and is completely separated from
A. By our hypothesis Z is realcompact, and hence U is also realcompact.

The last assertion of 1.5 was proved by Mrowka [18].

COROLLARY 1.6. Let A be a realcompact z-embedded subset of X. Then X 1s
realcompact iof and only if clyxZ = Z for every Z ¢ Z(X) disjoint from A.
Especially, X is realcompact if every Z € Z(X) disjoint from A is realcompact
and C-embedded (equivalently, z-embedded) in X.

This corollary follows from 1.2(2) and 1.4(2). Note here that for any zero-
set Z the concepts of C-, C*-, and z-embedding are all equivalent [1, 7.5]. The
last part of 1.6, in case 4 Lindel6f, was pointed out by A. Okuyama. As
special cases of 1.5 and 1.6 we obtain the next useful result. Recall that a space
is a P-space if every zero-set is open.

THEOREM 1.7. Let X = L \J G where L is a Lindelof subspace such that every
Z € Z(X) disjoint from L is realcompact. Then X 1s realcompact if one of the
following conditions is satisfied.

(1) L is a zero-set in X.

(2) G is a P-space and open in X.

3) G 1s normal and z-embedded in X .

Proof. (1) and (2): In order to apply 1.5 it suffices to note that the z-em-
bedded L is C-embedded if and only if every Z € Z(X) disjoint from L is
completely separated from L. In case (2) such a Z is clopen (= closed and
open) in X.
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(3): Let Z be a zero-set disjoint from L. Since G is normal, Z is z-embedded
in G. Since G is z-embedded in X, it follows that Z is z-embedded in X. Hence
1.6 applies.

When G (in 1.7) itself is realcompact, we know

THEOREM 1.8. Let X = L \J G be the union of a Lindeléf space L and « reul-
compact space G. If G is z-embedded in X, then X 1is realcompact.

This theorem is a direct consequence of the next lemma [3, 3.9], which
follows from 1.2(2).

LEMMma 1.9. (Blair) If X = U,y X, is the union of a countable family of
z-embedded realcompact subspaces X, then X 1is realcompact.

It is interesting to compare 1.8 with 1.7(3). We see later in § 3 Example B
that the condition of realcompactness of G in 1.8 can not be replaced by the
weaker condition that every Z € Z(X) disjoint from L is realcompact. As a
special case of 1.8 or 1.5 the following theorem due to Mroéwka [18] is known.
As Mrowka did not give its proof in explicit form, we present the proof.

THEOREM 1.10. (Mrowka) Let X = L\J F be the union of a Lindeléf space
L and a realcompact space F. If both L and F are closed in X, then X is real-
compuct.

To prove this, we need only see, by 1.8 or 1.5, that F is C-embedded in X,
which follows immediately from

LemmaA 1.11. Let F be a closed subset of a space X. If the boundary Oy F of I
is C-embedded in X\inty F, then F 1is C-embedded in the whole space X.

Proof. Let f € C(F) and put E = X\intxF. Then, by the hypothesis there
exists an extension g € C(E) of f| 0xF. Define h: X —» R by k|F = f and
h|E = g. Then h is continuous because E and F are both closed in X. Hence £
is an extension of f.

Remark 1.12. In view of 1.4 as well as 1.5 and 1.6, it seems an important task
to obtain an inner characterization of the equality cl,xF = F for a real-
compact closed subsct /*of X. Such a characterization is not yet known in the
complete form (cf. [10, 8.10]). Here we point out some sufficient conditions.

Let F be a realcompact closed subset of X. Then the implications (1) = (2) =
(3) hold:

(1) Fis C-embedded in X.

(2) Given any decreasing sequence {Z,'},cn of zero-sets in I with empty inter-
section, there exists a sequence {Z,}, cn of zero-sets in X with empty intersection
such that Z,) C Z, for each n € N.

3) clyxF = F.

Proof. (1) = (2): For each Z,” choose Z,)” € Z(X) such that Z, =
Z,) M F.PutZ” = MNyen Z,'. Then, since F is C-embedded and disjoint from
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Z", there exists Z € Z(X) such that FC Z and ZMNZ" = . Put Z, =
Z M Z,”. Then the sequence {Z,}, ¢~ satisfies (2).
(2) = (3): Sincecl,xF = (clgxF) M vX, we need to see that

clgx F\F C BX\vX.

Let ®:8F — clgxF be the extension of the identity map 1z of F, and let
p € clgxF\F. Choose a point ¢ € ®1(p). Then, since F is realcompact, there
exists a decreasing sequence {Z,’}, cy of zero-sets in F such that

q € Naen clgrZ, and N,enZ,' = 0.
For this sequence choose a sequence {Z,}, ¢y of zero-sets in X as in (2). Then
P = q)(Q) € q)(ClﬂFZn/) = C]BXZnI C ClﬂXZn

for each #n € N. Thus we have p € MN,en clgxZ, and N, enZ, = B, which
means p € X \vX. The proof is complete.

Remark 1.13. The most concrete case of 1.7(2) is when G is a discrete space.
In this case 1.7 reads as follows:

The union L \J D of a Lindelof closed space L and « discrete space D 1s real-
compact if and only if every clopen subset disjoint from L is of nonmeasurable
cardinal.

If one considers topological completeness instead of realcompactness, the
cardinality condition can be deleted in the above statement. In fact the
following stronger assertion holds:

The union L \J D of a Lindelof closed space L and a discrete space D is always
paracompact.

The proof is an easy exercise.

2. Nearly realcompact properties. The main results in this section are
Theorems I, Il and III. Let X = L U G be the union of a Lindeldf space L
and a realcompact space G. To sum up roughly, Theorem I shows that a little
change of L makes X realcompact, while Theorem II shows that a little change
of G makes X realcompact; Theorem III finds a dense realcompact subspace
of X. Let us first recall that a space X is called almost realcompact if it is the
perfect image of some realcompact space (21, § 6 Theorem 3].

THEOREM 1. Let X = L \J G where L is a Lindeléf space such that every
Z € Z(X) disjoint from L is realcompact. Suppose G is either realcompact or
normal. If G is dense or open in X, then there exist a realcompact space X =
L\J G such that L is Lindelof and a perfect irreducible map ¢:X — X which
keeps G pointwise fixed and maps L onto L. Consequently, X is almost real-
compact.
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Proof. (In case G is dense in X): In this case fX is a compactification of G,
and hence there is the Stone extension ®:8G — BX of the identity map
1:G—G. Put X = & 1(X), L = &1(L) and ¢ = ®/X:X — X. Then L is
Lindelsf and ¢ is perfect and irreducible. Since G is C*-embedded hence
z-embedded in X, it follows from 1.8 and 1.7(3) that X is realcompact.

(Incase Gisopenin X): Put Xy = clxG, Lo = L M Xyand L’ = L\G. Then
Xy = Lo\J G where Ly is Lindeléf and G is dense in X, So, by the above
argument there exist a realcompact space X = Ly\J G and a perfect irre-
ducible map ¢¢: X — X, which is an extension of 145:G — G. Let f: L' ® X, —
X = L'’ \U X, be the canonical two-to-one map. Then, since L' and X, arc
both closed in X, f is perfect and irreducible. Put X = L’ ® X, and L =
L' ® Ly. Then X = L \U G, and L is Lindelsf. Define a map ¢ by

e=fo(ly ®@e): X=L@®Xy—>L & X, X.

It is easy to see that X and ¢ satisfy the conditions in Theorem I. This com-
pletes the proof.

The final assertion of Theorem I, in case G is realcompact, can be generalized
as follows.

THEOREM 2.1. Let X = L \J U, cnG, be the union of a Lindelof space L and
almost realcompact spaces G, for n € N. If each G, 1s dense or open in X, X 1is
almost realcompact.

Proof. Consider the absolute, or projective cover, K(X) of X and the
associated perfect irreducible map ¢:E(X) — X [23]. E(X) is known to be
extremally disconnected. Put L = ¢=!(L) and G, = ¢'(G,) for » € N. Since
¢ is perfect and irreducible, I is Lindelof and G, is almost realcompact
(8, Theorem 8] and dense or open in £(X). (Irreducible maps pull dense subsets
back to dense subsets.) Note that any dense or open subset of an extremally
disconnected space is extremally disconnected and C*-embedded [10, 1H, 6M],
and that any extremally disconnected, almost realcompact space is real-
compact (5, Theorem 1.2]. Hence each G, is realcompact and C*-embedded in
E(X). Therefore by 1.9, E(X) = L \U U, vG, is realcompact; consequently,
X is almost realcompact.

Remark 2.2. Note that, in Theorem I, the multiple points of ¢ are contained
in L. So Theorem I shows in general that in case E = R a negative answer to
the question (Q.1) in §0 provides a negative answer to (Q.2). This is true
also for the case £ = N. In fact, the ‘““N-compact” version of Theorem I
holds, i.e., in Theorem I we can replace the term ‘‘realcompact” by ‘‘N-
compact’’ if the space X is supposed to be O-dimensional (see Remark 0 in the
introduction). It should be noted that the proof of the ‘‘ N-compact’’ version
of Theorem 1 coincides with that of Theorem I if G and X are 0-dimensional,
i.e., BG = BpG and BX = B,X where D = {0, 1}.

Remark 2.3. The hypothesis in Theorem I (resp. Theorem 2.1) that G
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(resp. G,) is dense or open is essential. Indeed the space ¥ = NU D in
[10, 51] is the union of a Lindelsf space N and a realcompact space D, but it is
not almost realcompact, because any pseudocompact, almost realcompact
space must be compact.

From Theorem I we can derive a general condition for the space X there to
be realcompact. A locally finite family {F,},cx of subsets in X is called ex-
pandable (resp. z-expandable) if each F, is contained in an open set U, (resp.
a zero-set Z,) such that { U,},en (resp. {Z,},en) 1s locally finite in X.

THEOREM 2.4. Let X = L \J G be as in Theorem I. Then X 1is realcompact
if every expandable sequence { F,},=0 in X with the property (*) is z-expandable:

(*) { Fulazots decreasing, hence Nyp2oF, = @, and consists of Fy € Z(X)
disjoint from L and F, € Z(G) for n = 1.

In particular, X s realcompact if one of the following conditions is satisfied:

(1) Every decreasing sequence {F,},en of regular closed sets in X, with
MrenFn = 0, is z-expandable.

(2) For every Z € Z(X) disjoint from L, any decreasing sequence { F,}, cn of
zero-sets in Z with M, enFn = B 1s z-expandable.

(3) G 1s z-embedded 1n X.

Proof. Suppose that X is not realcompact. Then we can choose a point
p € vX\X. By 1.4(2) or 1.6 there existsan Fy € Z(X) such that Fo ML = 0
and p € cl,xFo. Let X and ¢:X — X be as in Theorem I. Let ®:8X — 8X be
the extension of ¢. Since p € clgxFy, we have

S1(p) NclggFo # 0

(Fy is identified with ¢=1(F,)); select a point ¢ from this non-empty set. Then
q is contained in BX\X since ¢ is perfect. As X is realcompact, there is a func-
tion f € C(BX) that is positive on X and vanishes at ¢. Put U, = X N
f710,1/n) and F, = Fo\f~10,1/n + 1] for n = 1. Since the map ¢ is the
identity map on G, we henceforth identify F, in X with ¢(F,) in X. It is clear
that ¢ € clggF, and N, F, = 0. Put V, = X\e(X\U,). Then V, is open
in X and contains F,. Since {U,} is locally finite in X and ¢ is perfect,
{o(U,)} is also locally finite in X. Since V,, C ¢(U,), { V,} is locally finite. Now
it follows that { F,},=o is an expandable sequence in X satisfying the condition
(*). By the hypothesis there exists a sequence {Z,},=¢ of zero-sets in X such
that Np=0Z, = B and F, C Z, for each n. Therefore

P E q)(c\lﬂi’Fn) = ClﬂXFn C ClﬂXZn
and hence
p € mné() ClﬁXZny mngozn =0 and Z,L € Z(X)

This shows p ¢ vX which contradicts our assumption. Thus, X is proved to be
realcompact. Next we prove the special cases (1), (2) and (3). Let { F,},»0 be
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any expandable sequence in X with the property (*). We need to show in
each case that this { F,} is z-expandable.

(1) Since {F,} is expandable, there exists a decreasing sequence {R,} of
regular closed sets in X with M,20R, = @ and F,C R, for each n. By (1) this
R, is z-expandable so that {F,} is also z-expandable.

(2) It suffices to note F, € Z(Fy) and Fy € Z(X).

(3) By (3) there exists Z, € Z(X) such that F, = Z, M G for each n = 1.
Put Z() = Fo. Then

anOZn = }(‘Om mnglzn C ]4‘0[\ ]4 = ﬂ;
hence { F,} is z-expandable.

Remark 2.5. A space X satisfying the condition (1) in 2.4 is often called a
weak cb-space. 1t is well known that any almost realcompact, weak cb-space
is realcompact [5]. Hence 2.4(1) follows also, only from the final assertion of
Theorem I that X is almost realcompact. 2.4(2) follows also from 1.6 and 1.12.
Of course 2.4(3) follows also from 1.8.

For a space X consider the new topology generated by Z(X). The set X
endowed with this new topology is denoted by pX. Clearly pX is a P-space.
According to T. Terada [24] a space X is called P-realcompact if pX is real-
compact. The following lemma is known [9, Theorem 4] (cf. [15, 4.8] [25, 5.2]).

LeEmMA 2.6. Any realcompact space X 1is P-realcompact, i.e., pX 1is real-
compact.

TueorEM I1. Suppose X contains a Lindelof space L such that every Z ¢ Z(X)
disjoint from L is realcompact. Then there exist a realcompact space X = L \J P
and a continuous bijection ¢:X — X such that P is a P-space and the topology
about L C X is identical with the topology about L C X. Consequently, X is
P-realcompact.

Proof. Let 7 be the topology of the space X. Let X be a new space with the
same underlying set as X and the topology generated by

TUZcZX)ZN L = @},

(Observe that X is completely regular.) Let ¢: X — X be the identity function
and put P = ¢~'(X\L). Then P is a P-space and open in X. To prove X
realcompact, we need only see by 1.7(2) that every Z’' ¢ Z(X) disjoint from
L = ¢~1(L) is realcompact. Let Z’ be such a zero-set in X. Then by our
definition of the topology of X, clye(Z’) misses L. Since L is Lindelof and
disjoint from clxe(Z"), there is a Z € Z(X) missing L and containing ¢(Z’).
As Z is realcompact, ¢~1(Z) = pZ is also realcompact by 2.6. Hence the closed
subspace Z' of ¢=1(Z) is realcompact. Thus X is proved to be realcompact.
Since pX coincides with pX, pX is also realcompact.
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If we pay attention just to P-realcompactness, the very same proof as
Theorem 11 yields the following.

COROLLARY 2.7. Suppose X contains a Lindelof space L such that every
Z € Z(X) disjoint from L 1is P-realcompact. Then X 1is P-realcompact.

To prove the coming Theorem I11 we need a couple of lemmas.

LEmma 2.8. (14, 2.10] A space X s locally realcompact if and only if
clgy WX \X) s disjoint from X in BX.

LEMMA 2.9. Suppose X contains a Lindelof closed subspace L such that every
Z € Z(X) disjoint from L is realcompact. If L is locally compact. X is locally
realcompact.

Proof. Observe that X U clsyL is realcompact. Hence vX\X is contained
in clgy L\ L. As L is locally compact, clgxL\L is compact. Therefore

clox WX\X) C clsxL\L.

Since L is closed in X, clgxL\L is disjoint from X. Thus, by 2.8 X is locally
realcompact.

TueoreM 111, Suppose X contains a Lindelof closed subspace such that every
Z € Z(X) disjoint from L 1is realcompact and of nonmeasurable cardinal. If X
s locally realcompuact (especially when L is locally compact), then X contains a
realcompact, open and dense subspace Xy including L.

Proof. Note that the statement in the parentheses follows from 2.9. Put
K = clgx (vX\X). Then by 2.8 K is compact and disjoint from X. Since L is
Lindelof, there exists Z € Z(8X) containing K and missing L. Put Z = ZN X.
Select a maximal disjoint collection { Uy] N € A} in Z such that each Uy is a
realcompact cozero-set in X. Put U = UxeaUx. This U = @y Uy is real-
compact because the cardinality of A is nonmeasurable by our assumption.
Set Xy = (X\Z) U U C X. Then X, is the topological sum of realcompact
spaces X\Z = vX\Z and U; hence X, is realcompact. Since U is open and
dense in Z, X, is open and dense in X.

3. Dieudonné plank. Now we present two simple examples. Example A
provides negative answers to both of the questions (Q.1) and (Q.2) in §0.
Example B relates to the condition on G in 1.7 and 1.8. (Different examples
with better topological properties will be constructed in §§ 4 and 5, yet we want
to present here Examples 4 and B because of their simplicity.) Both examples
are subspaces of the Tychonoff plank 7' [10, 8.20].

Let W = [0, w;) be the space of ordinals less than the first uncountable
ordinal «;, with the interval topology. Let W = [0, w;] be its one-point
compactification. Let us denote by D the discrete subspace of W consisting of
all isolated ordinals, and put D = D \U {w;} C W. Let oN = N U {w} be the
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one-point compactification of N. 1" denotes the Tychonoff plank, ie., 7" =
W X N\ {p} where p = (w;, ®). Define T, = D X wN \ {p}. This subspace
Tp of 1 is called the Dieudonné plank [22, Example 89].

Example A. The Dieudonné plank Tp is the union of a countable discrete,
closed subspace and a realcompact (N-compact) metric space, hence is wlmost
realcompact (by Theorem I), but it is not realcompact.

Put L = {w;} X N and M = D X wN. Then 7p = L\J M and L is a
countable discrete, closed space and M is a metric space. Since D and w/N are
N-compact, M is also N-compact and hence realcompact. The next assertion
can be found also in [16].

ASSERTION A.1. vTp = T, \J {p} = D X wN and hence Tp is not real-
compact.

Proof. Since D is Lindelof, T, U {p} = D X wN is also Lindel6f hence
realcompact. So, to prove Assertion A.1 we need only see that 77, is C-em-
bedded in T, \J {p}. Let f € C(Tp). Since each point of L is a P-point in T,
we can choose a neighborhood U of w; € D such that f is constant on U X {#n]}
for each n € N. Thence f is also constant on (U\{w:}) X {w}; let ¢ be the
constant value of f. Extend f over T, \J {p} by setting f(p) = t. It is easy to
see that this extended f is continuous. Thus, T is proved to be C-embedded
in Tp \U {p}.

ASSERTION A.2. There exist an N-compact space Tp and a perfect irreducible
map ¢:Tp — T'p with the countable discrete closed set L = {w,} X N of multiple
points.

Proof. Since dim M = dim M =0 and dim BT, = dim vIp = 0, our
Assertion follows from Theorem I and Remark 2.2.

Thus, Assertions A.1 and A.2 answer (Q.1) and (Q.2) in § 0 respectively, in
the negative.

Example B. A space X = L\J G, with the property that L is Lindeléf and
every Z € Z(X) disjoint from L is realcompact, fails to be realcompact even if G
is C-embedded in X.

(This shows that the condition on G in 1.7(3) and 1.8 that G is either normal
or realcompact is essential.)

Consider the subspace X = (W X N)\U (D X {w}) of 7. Put L =
{fwi} X Nand G = (W X N)\U (D X {w}). We show that X = L \U G is the
required space. First note the well-known property of W that any continuous
real-valued function on W is constant on its tail. Thence a similar argument
as in the proof of Assertion A.1 shows that G is C-embedded in X and that
vX = X U {p}, hence X is not realcompact. Next, put Z, = ([0, a] X N) U
(D X {w}) for each o € W. It is easy to see that Z, is a metric space (of non-
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measurable cardinal) and hence is realcompact. Therefore it follows that every
Z € Z(X) disjoint from L is realcompact, because such a Z is contained in
some Z,. Thus, X is proved to be the required space. The next remark illus-
trates an application of Theorem 2.1.

Remark. X is almost realcompact.

Indeed, X is expressed as the union of a Lindeléf space W X N and a real-
compact dense subspace D X wN. Hence, by 2.1, X is almost realcompact.

4. Examples with better topological properties. In view of 1.7(1) and
the fact that the Dieudonné plank in EExample 4 is not 1-st countable, we now
present 1-st countable counterexamples for (Q.1) and (Q.2) in §0. By those
examples we will establish the following theorems.

THEOREM 4.1. There exist 1-st countable spaces X and YV and a finite-to-one
closed map f: X — Y such that:

(1) X 4s N-compact hence realcompact, but 'V is not realcompact.

(2) The set M(f) of multiple points of f is a countable discrete closed subset
of Y.

Recall that a space is called submetrizable if it admits a continuous bijection
onto some metric space.

THEOREM 4.2. There exists a 1-st countable, non-realcompact space
Va = Ga\I N such that Ga s a separable submetrizable (hence realcompact)
dense subspace and N is a countable discrete closed subset of Y a.

THEOREM 4.3. There exists a 1-st countable, mon-realcompact space
Yo = Go\J N such that G o is « metrizable dense subspace (G o is of cardinal
¢, hence realcompact) and N is a countable discrete closed subset of ¥ .

The next lemma 4.4, proved in [13], plays an essential role in our construc-
tion of examples. A map f: (X, 4) — (Y, B) is called a relative homeomorphism
if f](X\4) maps X\4 homeomorphically onto Y\B.

LeEmMA 4.4. (13, Theorem 7.1] Let ¢: (X, A) — (Y, B) be a relative homeo-
morphism. If ¢ is a quotient map, then its Stone extension
d: (6Xr ClﬁXA) - (:3 Yv ClﬁYB)
1s a relative homeomorphism.
LeEMMA 4.5. (1) Suppose a 0-dimensional space X admits a (continuous) map
[ X — M onto a hereditarily N-compact space M such that each fiber f—1(y),
y € M, is compact. Then X is N-compact.

(2) Let M be a metric space of mon-measurable cardinal. If the covering
dimension dim M = 0, then M 1s hereditarily N-compact.
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Proof. (1) This is an ‘“N-compact’ version of [10, 8.17]. See Remark 0 in
the introduction, and [19, p. 180].

(2) dim M = 0 implies dim BM = 0. The hypothesis implies that A is
realcompact. Hence, by (19, 3.1], M is N-compact. Since each point of A is
Gs, it follows that M is hereditarily N-compact.

Now we present Ekxample C the idea of which is fundamental throughout the
subsequent examples.

Example C. A realcompact space X a, a non-realcompact space Y as in 4.2,
and a perfect map oa:Xa — Va.

LetwN = N U {w} be the one-point compactification of N. Let cN = NU C
be a metrizable compactification of N with the remainder C, where C denotes
the Cantor set. (For a concrete construction of ¢N, see the later Remark 4.6.
See also [26, 6.15].) Put

X=NXcN,V=NXowNand K = wN X cN.

Note that K is a compactification of X, and let 7:8X — K be the Stone
extension of the identity map 1y:X — X. Let gicN — wN be the map that
keeps the points of NV fixed and maps C to {w}. Put ¢ = 1y X ¢:X — ¥V and
let ®:8X — 1 be its Stone extension. Notice that ¢ and ¢ are perfect. Since X
is normal, every closed subset 4 of X is C*-embedded; so we can identify
clgxA with BA, consequently, clgxyA\A4 with 4* = BA\A. (These sorts of
identifications will be done in the sequel whenever they are possible and
clear.) Let us put U = BX\B(V X C) and Ut = UM X* Define the family
of clopen subsets of X by
&/ = {A] A is an infinite subset of N X Nsuch that A N ({n} X N)is
finite for each n € N}
and put &/* = {A* 4 ¢ .o/|. To proceed with our construction, we need
lemmas.

Lemma C.1. (1) Every member of S7* is a clopen (in X*) subset contained in
U+.

(2) Each Z ¢ Z(BX) with @ # Z C X* contains some member of o/ *.

Proof. (1) Let A € o/. Then 4 and N X C are completely separated in X,
Le., clgxyd M clgx (N X C) = B; hence A* C U*t. Since 4 is clopen in X,
clgxA is also clopen in BX. Hence 4* is clopen in X*.

(2) Let Z be a zero-set in X such that 0 # Z C X*. Write Z = Z(h) for
some continuous function h:3X — I. Put H, = h~'[0,1/n) for each n € N.
Then, since VX N is dense in 8X, we can choose a point x, ¢ H,MN (N X N).
Put 4 = {x,},en. It is easy to see that A* C Z and 4 € .<7.

The next lemma follows from 4.4.

LEmma C.2. ®: (BX,8(N X C)) — (BY, B(N X {w})) is « relative homeo-
morphism, 1.e., ® maps U homeomorphically onto ®(U).
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Now, let us choose an arbitrary point p from the subset S(N X {w})\
(N X {w}) of 87, and fix it in the sequel. Consider the family %, of all zero-
sets in B Y containing p. Then, since 8V is separable, we have

%, < 1ZBY)| £ [C*BY)| =«

So, we can index %, = {Z |t ¢ C}. On the other hand, put Z,/ = = '({ (v, t)})
for each ¢t € C, where (w, 1) € {w} X C C K. Since K is a metric space, each
point of K is a zero-set; hence Z, is a zero-set in 8X. Here notice that {Z/} ¢¢
is disjoint in 8X, while {Z,} ,c¢ is not disjoint in 8Y. Put Z, = Z,/ N &1(Z,)
foreacht € C. Then Z,is nonempty: Indeed, since

®(clgx (N X {t})) = clgy (V X {o}) 5 p,
foreacht € C thereexists p, € clgx (N X {H\(IV X {t}) such that ®(p,) = p.

Clearly, w(p,) = (w,t). Hence p, € Z, and consequently Z, = @. Thus,
{Z .} cc is a family of disjoint zero-sets in 8X such that ¢ # Z, C X* and
®(Z)C Z, Now, by Lemma C.1 we can choose A* €.&7/* such that

A X C Z,foreacht € C. Define subspaces G and X of 8X by
G=(NXN)U(®,ccd*) and X,=G\U (N X C).

BX BY

N

(w, 1)

*
C *
H
CN{ K

N

=
e

FIGURE 1.
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(Notice that {4 *} is disjoint and each 4 * is clopen in X* so that the union
\U A4 * is just the topological sum of 4 *'s.) Put ¥, = ®(X,). By Lemma C.2
we henceforth identify G with ®(G), and we make a convention that 4 *
denotes clgx4,\4, and clgy4 \4, interchangeably. So we can write ¥, =
G\U (N X {w}) CBY. Let ¢:Xo— Y, be the restriction of the map &.
¢o is perfect because X, = ®~1(V,). Let Ga, X1 and Y, be the quotient spaces
obtained from G, X, and Y, respectively by shrinking each 4 /*, t € C, to one
point p,. (Of course these quotient spaces are completely regular Hausdorff.)

Xo=GUNXC), Yi=GU (N X {o}),
Xy =GaJ (N XC), Ya=GaJ (N X {w}).

Let p1: X9 — Xa and pot ¥y — Vs be the quotient maps, and let pa: X4 — Va
be the map induced from ¢¢: X — Yy such that ¢a 0 p1 = p2 0 ¢o. Observe that
p1, p2 and ¢4 are perfect. The required objects in our construction are these
spaces X and Y, and the map ¢a.

AsserTioON C.3. X, Xa, G and Ga are N-compact hence realcompact. In
particular, X o and Ga are submetrizable.

Proof. We prove the assertion for Xy and X,; the proof for G and G, is
similar. Note that any O-dimensional, perfect pre-image of an N-compact
space is N-compact [11]. So, it suffices to show that X is N-compact and
submetrizable, because p; is perfect. Put M = 7(X¢) C K and =, =
7| Xo:Xo— M. Since w(4*) C w(Z,) Cr(Z/) = (w, 1), ie, w(4d*) is
singleton for each ¢ € C, 7y induces a mapping ma: X s — M such that 74 0 p; =
mo. Observe that 7, is a bijection onto the metric space M with dim A = 0.
Thence it follows from 4.5 that X, is N-compact, and of course, submetrizable.
It might be interesting to note that N-compactness of X follows directly from
4.5(1), because each fiber of 7 is compact.

',XA__"M_.)YA

ma
I p1 P2
X

KD M+ X,—>Y,

AssERTION C.4. Yy and Y are not realcompact.

Proof. As Y, is a perfect pre-image of V,, it suffices to show that Y is not
realcompact. Note that 3V, = Y since ¥V C YV, C BY. Every zero-set in gV
containing p coincides with some Z,, t € C, and meets ¥, because

B#AF5=®A4X CeZ,)CZ,.
Hence p € vYy\ ¥y and consequently ¥ is not realcompact.

Now we can summarize the properties of X4, Y and ¢a.
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(1) Xa and Ya are separable, 1-st countable and locally compact. X4 is
N-compact and submetrizable.

(2) The 1-st countable, almost realcompact space Y is the union of a real-
compact dense subspace Ga and a countable discrele closed subset N X {w}, and
yet it 1s not realcompact.

(3) ¢a 1s a perfect irreducible map with the countable, discrete closed set
N X {w} of multiple points.

Clearly (2) establishes Theorem 4.2, and the map ¢4 satisfies all conditions
in Theorem 4.1 except that it is not finite-to-one (this defect will be improved
in Example C*).

Remark C.5. Some properties of the space ¥V, depend on the choice of
{4 *}. If we assume the Continuum Hypothesis and carefully select {4 *}, the
following properties can be added to Ya:

(1) The closed subset N X {w} 1s C*-embedded in Va.
(i1) vYa\Ya consists of one point.

Proof. In the above construction of Va, we considered the family %, =
{Z}1co and chose {4 *},cc such that 4 * C Z,. Well-order 27, = {Z,}a<u,
and define Z° = {Z,}acw, by Zo = Ms<aZs for each a < w;. In the above con-
struction replace £, by this Z: if one indexes 2 by C, the construction pro-
ceeds the same as in the case of Z°,. Then we show the resultant space ¥,
satisfies the conditions (i) and (ii).

(1) Put Vo = GUBW X {w}) CBY where G = (N X N) U (@< 4a*),
and let ¥ be the quotient space obtained from ¥, by shrinking cach A,* to
one point. Then, since

clay (G M V*) Mclyy (N X {o}) = {p},
Y1 becomes a space in our sense, i.e., a completely regular Hausdorff space.
Since N X {w} C B(IV X {w}) C Vi, N X {w} is C*-embedded in ¥V,. Clearly
V4 is a subspace of ¥a;and hence N X {w} is C*-embedded in Y.

(i1) Observe that the subspace (@q<.,4*) \J {p} of BY is Lindelsf. Hence
Yy U {p} and its continuous image Y \U {p} are also Lindel6f. Consequently
we have vVa C V4 U {p}, and hence, by Assertion C.4, v¥Vs = Vi U {p}.

Remark C.6. In general, consider spaces of the form N \U % [20, § 3]. Here
Z is a collection of almost disjoint infinite subsets of IV, and the space N \U %
has the following topology: each point of NV is isolated and each point 4 € &%
has a neighborhood basis {{4} \J (A\F)|F is a finite subset of N}. Then the
spaces G and Y, constructed above are of this form. In fact, if we put

R = {Aecand By = R, \J {{n} X N|n € N},

then Ga =~ (N X N)\U %, and Va2 (N X N)\U A, Hence the following
assertion is proved:

https://doi.org/10.4153/CJM-1979-104-8 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1979-104-8

1262 AKIO KATO

There exist collections K1 and R of almost disjoint infinite subsets of N such
that N\J % is N-compauct, B1 C R» and | B \Z 1| = Ny, but N\J X 1s not
realcompact.

This answers Mrowska's question [19, p. 181] in the negative.

The next example continues the construction of Example C, so we keep the
notation the same as in Example C. Its purpose is to deform the map ¢4 into
a finite-to-one map ¢x.

Example C*. The finite-to-one closed map ¢4: Xy — YVa where Xy 1s N-compact
and Ya 1s the non-realcompact space n Example C.

Foreachn € Nlet 7,:C = D*— D", D = {0, 1} be the projection, and for
each (i1, ...1,) € D" put

Cliy...4) = {n} X m~=1(iy...4) C N X C.

C(0) c(1)
1 L] ! ] 1
C0,0) C€(0,1) ¢@1,0) C(,1)
2 —
3 hn Rd o hnonr
R R SRR AR
C

FIGURE 2.

Let L and ¢L be the quotient spaces obtained from N X C and oN X C,
respectively, by shrinking each C(7,...1,), for (1...17,) € D"and n € N, to
one point. Then L is discrete and ¢L is compact and metrizable. Let f;: NV X
C— L and fo:wN X C — c¢L be the quotient maps. Clearly, they are both
perfect and f, maps {w} X C homeomorphically onto ¢cL\L. Let Xy = Ga \U L
be the adjunction space determined by X = Ga U (N X () and fy, i.e., Xq
is the quotient space with the identification map ¢1:Xa — X4 such that
qi1(x) = x if x € Ga and ¢1(x) = fi(x) if x € N X C. Similarly let M, =
(N X N) U cL be the adjunction space determined by M = (N X N) U
(wN X C) C K (this M is the same as the M = 7 (X,) in the proof of Asser-
tion C.3) and fs, and let g2: M — M, be the quotient map such that ¢2(x) = x
if x € N X N and ¢:(x) = fa(x) if x € oN X C. Observe that ¢, and g, are
perfect and that M, is metrizable. Let ¢4: Xy — Y and 741 Xy — M, be the
maps induced from ¢, and w4 respectively such that the following diagram
commutes.

My«22_ X,
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Then 74 is a bijection and hence X4 is N-compact (by 4.5) and submetrizable.
¢« 1s clearly a finite-to-one map, and is perfect because ¢a = ¢4 0 ¢1 is perfect.
Thus, we have constructed the required map ¢«: X4 — Vi the properties of
which are summarized as follows:

(1) X4 1s separable, 1-st countable and locally compact. Furthermore, it is
N-compact and submetrizable.

(2) Ya is the non-realcompuct space in Example C.

(3) ¢x is a finite-to-ome, perfect irreducible map such that the set M(ey) of
multiple points is a countable discrete closed subset N X {w} of Va.

This example proves Theorem 4.1.

Remark 4.6. The compact space ¢L used in lixample C* is a concrete rep-
resentation of the compactification ¢V, because L is a countable discrete space
and the remainder ¢L\L is homeomorphic with C.

Before presenting the next [Example D, we need some preliminary results.
A subfamily 2 of Z(X) is called a zero-set base at x ¢ X if each member of 2
contains x and for each Z € Z(X) containing x there exists some Z’ ¢ Z with
x € Z' C Z. The zero-set character at the point x € X, denoted by x5 (x, X),
is defined as the least cardinal of zero-set bases at this point. Let us denote by
x (4, X), as usual, the character of A in X. The following lemma is proved

easily.
LEMMA 4.7. For any space X and any point x € X,
xz(x, X) = x(x, pX) = x(x, X)¥
where pX s the P-space defined before 2.6.

LEMMA 4.8. Let I be a closed subset of a normal space X. Then we have
x(BF, BX) = x(F, X) where BF = clgxF.

Proof. Let ¥, and B, be the minimal bases for g/ C X and F C X
respectively. For an open subset U of X, set Ex U = X \clgx (X\U) (cf.
[7, p. 269]). Put B = {V N\ X|V € By} and By = {Ex U|U € Vs, Then it
follows from the normality of X that 8, and 8, are bases for F C X and
BF C BX respectively. Therefore, |8 < [B)| = |By| and |V,| < |VY| =
|Bs|. Consequently, |B;| = |V,| which proves the Lemma.

ProrosiTiON 4.9. Let F be a closed subset of a normal space X. Then, for every
p € BF = clgx 1,

X, (P, BX) = [x(p, BF) - x (I, X)IXo;
especially, if I is separable and x (F, X) = ¢, then

X, (P, BX) = ¢
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Proof. Note the well-known inequality
x(p, BX) = x(p, BF) - x(BF, BX).
It follows from 4.7 and 4.8, respectively, that
xz (b, BX) = [x(p, BX)* 2 and x (BF, BX) = x(F, X).

Hence an easy calculation leads to the first inequality in our proposition. To
prove the second half of the proposition, let F be separable and x(F, X) =< «.
Then

x(p,BF) = w(BF) = ¢
where w(BF) denotes the weight of 8. Hence x,(p, BX) = [c- cJ¥° = ¢

Example D. A realcompact space X o, a non-realcompact space Yo as in 4.3
and a perfect map ¢u:X o — Va.

Let C be the Cantor set and put No = @ ,¢¢N, where each N, is a copy of
N. Let cNo = No U C be a metrizable space such that N o is discrete, open
and dense, and for each ¢ € C the subspace N,\U {t} is the one-point com-
pactification of N, The existence of such ¢N o is assured if one considers the
subspace C X ({0} \J {1/n| n ¢ N}) of the retopologized plane R? with the
metric “‘river’’ (cf. (7, Example 4.1.4]). Let wuN o = N o \U {w} be the quotient
space obtained from ¢N o by shrinking the compact set C to one point w. Let
g:cNo— oNao be the quotient map. Then g is perfect and hence wN o is
metrizable (in fact, wN o is a subspace of the hedgehog with ¢ prickles
|7, Example 4.1.3]). It should be noted here that neither ¢V o nor wlN o is com-
pact; however, the following construction is almost parallel to Iixample C if
the N of ¢N in Example C is replaced by Nao. Put X = N X ¢Ng, ¥V =
N XoNo, K=woN X cNoand ¢ =1y X g¢: X — V. Let &:8X — 8Y and
m:8X — BK be the Stone extension of the perfect map ¢ and the inclusion
map X — X C K, respectively. For each ¢ € C define

&, = {A| Aisaninfinite subset of N X N,such that 4 N\ ({n} X N)
is finite for each n € N},

and.o/ * = {A* A ¢ .o/} where A* = clgyA\A. Put U = BX\B(N X C) and
Ut = UM X* Then the same statements as in Lemma C.1(1) (just replace
&/* by *) and Lemma C.2 are valid. The statement corresponding to Lemma
C.1(2) reads as follows.

LemMA D. Lett € C. Then each Z ¢ Z(BX) with
Z O\ (clgx (N X ANV X {t])) = 0
contains some member of S *.

Proof. Suppose p, € Z M (clgx (N X {tHN\(NV X {t})). Since p, ¢ clpx({n}
X N o) for each n € N, we can assume that Z misses \J, cyclgy ({2} X No).
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Write Z = Z(h) for some continuous function k#:8X — I, and put H, =
k=10, 1/n) for each n € N. Note that N X {t} C clx(N X N,); hence

p. € clgx (VX {t}) C clgx (N X Ny).

Therefore, the open set H, meets N X N, Choose a point x, from
H, N\ (N X N,). Put 4 = {x,},en. Then it is easy to see that A* C Z and
A C &/, This completes the proof.

Now, let us choose an arbitrary point p from the subset S(N X {w})\
(N X {w})of BY, and fix it in the sequel. Observe that ¥ is normal (metrizable)
and x(N X {w}, ¥) < ¢. Hence it follows from 4.9 that the zero-set character
at p € BY does not exceed ¢. So, we can select a zero-set base at p € BY so
that it can be indexed as {Z,| { € C}. On the other hand, put Z,/ = 7' ({ (w, £)})
for each ¢t € C, where (w,t) € {0} X C C K. Since K is 1-st countable
(metrizable), each point of K is a zero-set in BK (cf. [10, 9.7]); hence Z/ is a
zero-set in BX. Put Z, = Z,/ M & 1(Z,) for each t € C. Then, by the same
reason as in Example C, we can claim that Z, meets clgx (V X {t})\(NV X {t}).
Hence, by Lemma D we can choose 4, € %, such that 4 * C Z, for each
t € C. Here notice that 4, ¢ € C, are mutually disjoint (in Example C this is
not the case), which follows from the definition of N o and the families ./,
t € C. Define subspaces G and X, of X by

= (NXNo)U (@ ,ccd ) and Xy = GU (N X C).

Put Yy = &1(X,). Let ¢¢: Xy — Y, be the restriction of ®. Let Go, X o and
Yo be the quotient spaces obtained from G, X, and ¥V, respectively by
shrinking each 4 *, ¢t € C, to one point w, Let ¢0:X o— Yo be the map
induced from ¢o. Then it is easy to see that the same statements as Assertions
C.3 and C.4 hold if the X, and Ga are replaced by X o and Go. (Note
dim K = 0, so that Lemma 4.5 is applicable as in Assertion C.3.) Furthermore

ASSERTION D. G o 1s homeomorphic with the topological sum of ¢ copies of the

one-point compactification wN of N. Hence G o 1s melrizable.

Proof. First note that the selected subsets 4 ,, t € C, are mutually disjoint,
as was noticed before. Put wd, = 4,V {w,} C Go for each ¢t € C. Then w4,
is a one-point compactification of 4 ,, and G o can be expressed as

Go = (N X ND\@tecAz) ) (@zechz)-

Write N X No\® ;ccd, = {x,/t € C'} for some subset C" C C, where the
x,'s are distinct points. Put

4o Jedi@ lxgitic C
AT o4, ifte C\C.

Then Go = @ ,ccwd /. Hence G o is homeomorphic with the topological sum
of ¢ copies of the one-point compactification wN of N.
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We conclude this example by summarizing the properties of X o, ¥ o and
¢ o.

(1) Xo and Yo are both 1-st countable. X o 1s N-compact and submetrizable.

(2) The 1-st countable, almost realcompact space Y 1s the union of the
metrizable dense subspace Gu of cardinal ¢ and the countable discrete closed
subset N X {w}, and vyet it is not realcompact.

(3) oo is a perfect irredicible map with the countable, discrete closed subset
N X {w} of multiple points.

Certainly, (2) proves Theorem 4.3.

Note that both the space ¥ o and the Dieudonné plank 77, (in Example 4)
have the form of the union of a countable discrete closed space and a metric
space of weight < ¢.

Remark 4.10. The map ¢0:X o — Vo in Example D can be deformed into
a finite-to-one map using the same technique as the construction of Ikxample
C* from Example C. Then the deformed map will satisfy Theorem 4.1.

5. Concluding Remarks. Bearing in mind the results in §§3 and 4, we
study the class N of realcompact spaces X such that the union of X with a
Lindelsf space is always realcompact if the Lindel6f space is closed in the
union. Let Ny be the class of spaces X of the form X = L \U P where L is
Lindelof closed and P is a P-space such that every clopen subset missing L is
realcompact.

(1) Theorem 1.7(2) implies that )y is a subclass of N.

(2) Example C shows that there exists a separable submetrizable space that
does not belong to M.

(3) Example D or Ilxample 4 shows that there exists a metric space of
weight =< ¢ that does not belong to 9i.

In view of the facts (1), (2) and (3) it is plausible to conjecture that %
coincides with 9. Though we don’t know yet the general answer, under some
restriction of spaces the answer is affirmative as the following thcorem shows.

THEOREM 5.1. Let X be a paracompact 1-st countable space of nonmeasurable
cardinal. Then X belongs to W if and only if it belongs to Ny, t.c., the derived set
X 4s Lindelif.

Proof. We need to prove the “only if”’ part. Suppose X? is not Lindelof.
Then, since X is paracompact, there exists an uncountable discrete family
{ Us @ < w1} of open sets such that each U, meets X% Since X is 1-st countable,
each U, contains a copy of wN. Consequently X contains a closed subspace
that is homeomorphic with D X /N where D is a discrete space of cardinal
NX;. Example 4 shows that D X wN does not belong to 9. Hence 5.1 follows
from the next lemma.
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LeMMA 5.2. If a space X belongs to R, then every C*-embedded closed subspace
of X belongs to N.

Proof. Suppose that X contains a C*-embedded closed subspace G not
belonging to M. Then there must be a non-realcompact space G, = G\U L
such that L is Lindeldf and closed in G. By 1.10 we can assume that G is
dense in G . Therefore there exist a space G, with G C G C BG and a perfect
map ¢:G — G, that is an extension of the identity map of G (see the proof of
Theorem I in § 2). As G is C*-embedded in X, we identify 8G with clgxG. Put
X = XUG, CBX, and let X, = X U G, be the adjunction space deter-
mined by X and ¢:G, — Gz. Then X, = X \U L, and L is closed in X ;. X,
is not realcompact since it contains the non-realcompact closed subset Gy.
Hence X does not belong to 9.

It seems an interesting problem to find a space in R\Jy. For example, do
the next spaces belong to 3t? (1) The square of the Sorgenfrey line. (2) The
Niemytzki plane (cf. [7]) or its locally compact modification in [18]. (3) The
Tychonoff product of ¢ copies of the real line.

The following problem also remains open in this paper. Let f:X — ¥V be
a finite-to-one closed map of a realcompact space X onto a space ¥ such that
(a) the set M (f) of multiple points is a countable closed subset of ¥, and (b)
sup {| f~'(¥)|| ¥ € V} is finite. Then, is ¥ realcompact? Notice that Example
C* does not satisfy the condition (b), while Mrowka's example in [18] does
not satisfy (a).
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