ON A PROBLEM IN PARTIAL DIFFERENCE EQUATIONS ${ }^{1}$)

BY
CALVIN T. LONG

The purpose of this paper is not to solve a problem but to pose one that may be of some interest, depth, and consequence.
Given that the positive integer n has the canonical representation $n=\prod_{i=1}^{h} p_{i}^{\alpha_{i}}$, the problem of finding the number $F(n)=f\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{h}\right)$ of ordered factorizations of n into positive nontrivial integral factors is equivalent to that of finding the number of ordered partitions of the vector ($\alpha_{1}, \alpha_{2}, \ldots, \alpha_{h}$) into nonzero vectors with nonnegative integral components. This problem was solved as early as 1893 by P. A. MacMahon [3], who proved that

$$
\begin{align*}
F(n) & =f\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{h}\right) \\
& =\sum_{j=1}^{q} \sum_{i=0}^{j-1}(-1)^{i}\binom{j}{i} \prod_{k=1}^{n}\binom{\alpha_{h}+j-i-1}{\alpha_{k}} \tag{1}
\end{align*}
$$

where $q=\sum_{i=1}^{h} \alpha_{i}$. While this formula gives $f\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{h}\right)$ in closed form, it clearly is not particularly useful for calculation. A much more useful result which allows for the recursive calculation of the $F(n)$ was given by Long [2] and by Carlitz and Moser [1], who proved that, for $n>1$,

$$
\begin{equation*}
\frac{1}{2} \sum_{d \mid n} F(d)=F(n)=2 \sum_{d \backslash n} \mu(d) F(n / d)-\mu(n) . \tag{2}
\end{equation*}
$$

In terms of the function f, (2) becomes a partial difference equation in $\alpha_{1}, \alpha_{2}, \ldots \alpha_{h}$ For example, for $h=1$, we obtain

$$
\begin{equation*}
f\left(\alpha_{1}\right)-2 f\left(\alpha_{1}-1\right)=0, \quad f(0)=1 \tag{3}
\end{equation*}
$$

which has the solution $f\left(\alpha_{1}\right)=2^{\alpha_{1}-1}$. For $h=2$, we obtain

$$
\begin{equation*}
f\left(\alpha_{1}, \alpha_{2}\right)-2 f\left(\alpha_{1}-1, \alpha_{2}\right)-2 f\left(\alpha_{1}, \alpha_{2}-1\right)+2 f\left(\alpha_{1}-1, \alpha_{2}-1\right)=0 \tag{4}
\end{equation*}
$$

with $f(0,0)=1, f\left(\alpha_{1}, 0\right)=2^{\alpha_{1}-1}$ for $\alpha_{1} \geq 1$, and $f\left(0, \alpha_{2}\right)=2^{\alpha_{2}-1}$ for $\alpha_{2} \geq 1$, and it is not difficult to show directly that the solution is given by

$$
\begin{equation*}
f\left(\alpha_{1}, \alpha_{2}\right)=2^{\alpha_{1}+\alpha_{2}-1} \sum_{i \geq 0} 2^{-i}\binom{\alpha_{1}}{i}\binom{\alpha_{2}}{i} . \tag{5}
\end{equation*}
$$

For $h=3$, we obtain

$$
\begin{align*}
f\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right) & -2 f\left(\alpha_{1}-1, \alpha_{2}, \alpha_{3}\right)-2 f\left(\alpha_{1}, \alpha_{2}-1, \alpha_{3}\right)-2 f\left(\alpha_{1}, \alpha_{2}, \alpha_{3}-1\right) \\
& +2 f\left(\alpha_{1}-1, \alpha_{2}-1, \alpha_{3}\right)+2 f\left(\alpha_{1}-1, \alpha_{2}, \alpha_{3}-1\right)+2 f\left(\alpha_{1}, \alpha_{2}-1, \alpha_{3}-1\right) \tag{6}\\
& -2 f\left(\alpha_{1}-1, \alpha_{2}-1, \alpha_{3}-1\right)=0
\end{align*}
$$

with $f(0,0,0)=1, f\left(\alpha_{1}, 0,0\right)=2^{\alpha_{1}-1}$ for $\alpha_{1} \geq 1, f\left(0, \alpha_{2}, 0\right)=2^{\alpha_{2}-1}$ for $\alpha_{2} \geq 1$, and $f\left(0,0, \alpha_{3}\right)=2^{\alpha_{3}-1}$ for $\alpha_{3} \geq 1$ and the general pattern is now clear. I now assert that the solution to (6) can be obtained in the following intriguing way: Fully expand the polynomial
(7) $2^{\alpha_{1}-1}\left(2 x_{1}+1\right)^{\alpha_{2}}\left(2 x_{1} x_{2}+x_{1}+x_{2}+1\right)^{\alpha_{3}}$

$$
=2^{\alpha_{1}-1}\left\{x_{1}+\left(x_{1}+1\right)\right\}^{\alpha_{2}}\left\{x_{1} x_{2}+\left(x_{1}+1\right)\left(x_{2}+1\right)\right\}^{\alpha_{3}}
$$

and then replace x_{1}^{k} by

$$
\binom{\alpha_{1}}{\alpha_{2}+\alpha_{3}-k} \text { for } 0 \leq k \leq \alpha_{2}+\alpha_{3}
$$

and replace x_{2}^{k} by

$$
\binom{\alpha_{2}}{\alpha_{3}-k} \text { for } 0 \leq k \leq \alpha_{3}
$$

The resulting function of $\alpha_{1}, \alpha_{2}, \alpha_{3}$ is the desired solution to (6).
In general, in the n variable case, one fully expands the polynomial

$$
\begin{equation*}
2^{\alpha_{1}-1} \prod_{i=2}^{n}\left\{\prod_{j=1}^{i-1} x_{j}+\prod_{j=1}^{i-1}\left(x_{j}+1\right)\right\}^{\alpha_{i}} \tag{8}
\end{equation*}
$$

and then replaces x_{1}^{k} by the binomial coefficient

$$
\binom{\alpha_{i}}{\sum_{j=i+1}^{n} \alpha_{j}-k} \text { for } 0 \leq k \leq \sum_{j=i+1}^{n} \alpha_{j}
$$

to obtain the desired function $f\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right)$. Thus, for example, in the two variable case, we expand

$$
\begin{aligned}
2^{\alpha_{1}-1}\left(2 x_{1}+1\right)^{\alpha_{2}} & =2^{\alpha_{1}-1} \sum_{i=0}^{\alpha_{2}}\binom{\alpha_{2}}{i}\left(2 x_{1}\right)^{\alpha_{2}-i} \\
& =2^{\alpha_{1}+\alpha_{2}-1} \sum_{i=0}^{\alpha_{2}}\binom{\alpha_{2}}{i} x_{1}^{\alpha_{2}-i} 2^{-i}
\end{aligned}
$$

and replace $x_{1}^{\alpha_{2}-i}$ by

$$
\binom{\alpha_{1}}{\alpha_{2}-\left(\alpha_{2}-i\right)}=\binom{\alpha_{1}}{i}
$$

to obtain the solution (5) noted above.

Of course, the difficulty is that I can prove my claim only in the cases $n=1,2,3$ and have checked it in particular cases for $n=4,5,6$. But then, in a very real sense, the solution is quite beside the point; MacMahon has already provided that. What may be of considerable importance is that the conjectured method of solution suggests the existence of a transform method of solution which may be applicable to a reasonably large class of finite partial difference equations. Hopefully, some reader may be able to decide the issue.

References

1. L. Carlitz and L. Moser, On some special factorizations of $\left(1-x^{n}\right) /(1-x)$, Canad. Math. Bull. 9 (1966), 421-426.
2. C. T. Long, Addition theorems for sets of Integers, Pac. J. Math. 23 (1967), 107-112.
3. P. A. MacMahon, The theory of perfect partitions and the compositions of multipartite numbers, Philos. Trans. Roy. Soc. London (A), 184 (1893), 835-901.

Washington State University, Pullman, Washington

