ON A PROBLEM IN PARTIAL DIFFERENCE EQUATIONS(¹)

^{BY} CALVIN T. LONG

The purpose of this paper is not to solve a problem but to pose one that may be of some interest, depth, and consequence.

Given that the positive integer *n* has the canonical representation $n = \prod_{i=1}^{h} p_i^{\alpha_i}$, the problem of finding the number $F(n) = f(\alpha_1, \alpha_2, \ldots, \alpha_h)$ of ordered factorizations of *n* into positive nontrivial integral factors is equivalent to that of finding the number of ordered partitions of the vector $(\alpha_1, \alpha_2, \ldots, \alpha_h)$ into nonzero vectors with nonnegative integral components. This problem was solved as early as 1893 by P. A. MacMahon [3], who proved that

(1)
$$F(n) = f(\alpha_1, \alpha_2, \dots, \alpha_h)$$
$$= \sum_{j=1}^{q} \sum_{i=0}^{j-1} (-1)^i {j \choose i} \prod_{k=1}^{h} {\alpha_k + j - i - 1 \choose \alpha_k}$$

where $q = \sum_{i=1}^{h} \alpha_i$. While this formula gives $f(\alpha_1, \alpha_2, \ldots, \alpha_h)$ in closed form, it clearly is not particularly useful for calculation. A much more useful result which allows for the recursive calculation of the F(n) was given by Long [2] and by Carlitz and Moser [1], who proved that, for n > 1,

(2)
$$\frac{1}{2}\sum_{d\mid n}F(d) = F(n) = 2\sum_{d\mid n}\mu(d)F(n/d) - \mu(n).$$

In terms of the function f, (2) becomes a partial difference equation in $\alpha_1, \alpha_2, \ldots, \alpha_h$ For example, for h=1, we obtain

(3)
$$f(\alpha_1)-2f(\alpha_1-1) = 0, \quad f(0) = 1,$$

which has the solution $f(\alpha_1) = 2^{\alpha_1 - 1}$. For h = 2, we obtain

(4)
$$f(\alpha_1, \alpha_2) - 2f(\alpha_1 - 1, \alpha_2) - 2f(\alpha_1, \alpha_2 - 1) + 2f(\alpha_1 - 1, \alpha_2 - 1) = 0$$

with f(0, 0) = 1, $f(\alpha_1, 0) = 2^{\alpha_1 - 1}$ for $\alpha_1 \ge 1$, and $f(0, \alpha_2) = 2^{\alpha_2 - 1}$ for $\alpha_2 \ge 1$, and it is not difficult to show directly that the solution is given by

(5)
$$f(\alpha_1, \alpha_2) = 2^{\alpha_1 + \alpha_2 - 1} \sum_{i \ge 0} 2^{-i} {\alpha_1 \choose i} {\alpha_2 \choose i}.$$

Received by the editors November 11, 1969.

⁽¹⁾ This work was supported by National Science Foundation Grant GP-7114.

For h=3, we obtain

$$f(\alpha_1, \alpha_2, \alpha_3) - 2f(\alpha_1 - 1, \alpha_2, \alpha_3) - 2f(\alpha_1, \alpha_2 - 1, \alpha_3) - 2f(\alpha_1, \alpha_2, \alpha_3 - 1) + 2f(\alpha_1 - 1, \alpha_2 - 1, \alpha_3) + 2f(\alpha_1 - 1, \alpha_2, \alpha_3 - 1) + 2f(\alpha_1, \alpha_2 - 1, \alpha_3 - 1) - 2f(\alpha_1 - 1, \alpha_2 - 1, \alpha_3 - 1) = 0$$

with f(0, 0, 0) = 1, $f(\alpha_1, 0, 0) = 2^{\alpha_1 - 1}$ for $\alpha_1 \ge 1$, $f(0, \alpha_2, 0) = 2^{\alpha_2 - 1}$ for $\alpha_2 \ge 1$, and $f(0, 0, \alpha_3) = 2^{\alpha_3 - 1}$ for $\alpha_3 \ge 1$ and the general pattern is now clear. I now assert that the solution to (6) can be obtained in the following intriguing way: Fully expand the polynomial

(7)
$$2^{\alpha_1-1} (2x_1+1)^{\alpha_2} (2x_1x_2+x_1+x_2+1)^{\alpha_3}$$

= $2^{\alpha_1-1} \{x_1+(x_1+1)\}^{\alpha_2} \{x_1x_2+(x_1+1)(x_2+1)\}^{\alpha_3}$

and then replace x_1^k by

$$\binom{\alpha_1}{\alpha_2 + \alpha_3 - k} \quad \text{for } 0 \le k \le \alpha_2 + \alpha_3$$

and replace x_2^k by

$$\binom{\alpha_2}{\alpha_3-k} \quad \text{for } 0 \le k \le \alpha_3.$$

The resulting function of α_1 , α_2 , α_3 is the desired solution to (6).

In general, in the n variable case, one fully expands the polynomial

(8)
$$2^{\alpha_1-1}\prod_{i=2}^n \left\{\prod_{j=1}^{i-1} x_j + \prod_{j=1}^{i-1} (x_j+1)\right\}^{\alpha_i}$$

and then replaces x_1^k by the binomial coefficient

$$\begin{pmatrix} \alpha_i \\ \sum_{j=i+1}^n \alpha_j - k \end{pmatrix} \text{ for } 0 \le k \le \sum_{j=i+1}^n \alpha_j$$

to obtain the desired function $f(\alpha_1, \alpha_2, ..., \alpha_n)$. Thus, for example, in the two variable case, we expand

$$2^{\alpha_1 - 1} (2x_1 + 1)^{\alpha_2} = 2^{\alpha_1 - 1} \sum_{i=0}^{\alpha_2} {\alpha_2 \choose i} (2x_1)^{\alpha_2 - i}$$
$$= 2^{\alpha_1 + \alpha_2 - 1} \sum_{i=0}^{\alpha_2} {\alpha_2 \choose i} x_1^{\alpha_2 - i} 2^{-i}$$

and replace $x_{1^2}^{\alpha_2 - i}$ by

$$\binom{\alpha_1}{\alpha_2 - (\alpha_2 - i)} = \binom{\alpha_1}{i}$$

to obtain the solution (5) noted above.

1970] ON A PROBLEM IN PARTIAL DIFFERENCE EQUATIONS

335

Of course, the difficulty is that I can prove my claim only in the cases n=1, 2, 3and have checked it in particular cases for n=4, 5, 6. But then, in a very real sense, the solution is quite beside the point; MacMahon has already provided that. What may be of considerable importance is that the conjectured method of solution suggests the existence of a transform method of solution which may be applicable to a reasonably large class of finite partial difference equations. Hopefully, some reader may be able to decide the issue.

References

1. L. Carlitz and L. Moser, On some special factorizations of $(1 - x^n)/(1 - x)$, Canad. Math. Bull. 9 (1966), 421–426.

2. C. T. Long, Addition theorems for sets of Integers, Pac. J. Math. 23 (1967), 107-112.

3. P. A. MacMahon, The theory of perfect partitions and the compositions of multipartite numbers, Philos. Trans. Roy. Soc. London (A), 184 (1893), 835-901.

WASHINGTON STATE UNIVERSITY, Pullman, Washington