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Abstract

Let {Xk, k = 1, 2, . . .} be a sequence of independent random variables with common
subexponential distribution F , and let {wk, k = 1, 2, . . .} be a sequence of positive
numbers. Under some mild summability conditions, we establish simple asymptotic
estimates for the extreme tail probabilities of both the weighted sum

∑n
k=1 wkXk and

the maximum of weighted sums max1≤m≤n

∑m
k=1 wkXk , subject to the requirement that

they should hold uniformly for n = 1, 2, . . . . Potentially, a direct application of the result
is to risk analysis, where the ruin probability is to be evaluated for a company having
gross loss Xk during the kth year, with a discount or inflation factor wk .
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1. Introduction

Let {Xk, k = 1, 2, . . .} be a sequence of independent and identically distributed (i.i.d.)
random variables with common distribution function F = 1 − F , and let {wk, k = 1, 2, . . .}
be a sequence of positive numbers such that the series

S∞(w) =
∞∑

k=1

wkXk (1.1)

is well defined. We are interested in the tail behavior of the series S∞(w) and the maximum

M(∞)(w) = sup
m≥1

m∑
k=1

wkXk. (1.2)

The distribution of S∞(w) is of interest because the marginal distribution of any stationary
linear process

∞∑
k=−∞

wkXm−k, m = 0, ±1, ±2, . . . ,
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for two-sided sequences {wk, k = 0, ±1, ±2, . . .} and {Xk, k = 0, ±1, ±2, . . .} can be
represented as the distribution of some S∞(w) of the form (1.1). We can also interpret (1.1)
as the discounted value of all future losses of a company if we regard the random variable
Xk as being the gross loss during the kth year and the coefficient wk as being the discount
or inflation factor from year k to the present. In this way, the ultimate maximum M(∞)(w)

can be interpreted as the maximal discounted value of future losses, and the tail probability
P(M(∞)(w) > x) can be interpreted as the ultimate ruin probability with initial surplus x ≥ 0.

Zerner (2002) investigated the integrability of series (1.1), showing how the integrability
of f (|S∞(w)|), for some positive increasing function f , corresponds to the integrability of
g(|X1|), for another function g.

We investigate the subtle tail behavior of the quantities (1.1) and (1.2). More precisely,
assuming that the distribution F is subexponential (see below for the definition), with a certain
restriction, we seek a condition on the sequence {wk, k = 1, 2, . . .} such that the asymptotic
result

P(M(∞)(w) > x) ∼ P(S∞(w) > x) ∼
∞∑

k=1

F

(
x

wk

)

holds as x → ∞. Henceforth, all limit relationships are for x → ∞ unless stated otherwise;
for two positive functions A(·) and B(·), we write A(x) � B(x) if lim sup A(x)/B(x) ≤ 1,
write A(x) � B(x) if lim inf A(x)/B(x) ≥ 1, and write A(x) ∼ B(x) if both statements hold.
The desired condition is ∞∑

k=1

wδ
k < ∞

for a relevant constant 0 < δ < 1; see condition (3.1) below. Specifically, this condition is
fulfilled when wk = (1 + r)−k for k = 1, 2, . . . and some r > 0. This is the case recently
considered by Tang (2004) in the actuarial science literature.

For closely related work, we refer the reader to Cline (1983), Resnick (1987), and Davis
and Resnick (1988), among others. See also Embrechts et al. (1997, Chapter A3.3) for a short
review.

The rest of the paper is organized as follows. In Section 2, we recall some preliminaries
about subexponential distributions; in Section 3, we present the main result and its corollaries;
and, in Section 4, we prove the main result after preparing some lemmas.

2. Heavy-tailed distributions

As in much recent research in the fields of applied probability and risk theory, we here
restrict our interest to the case of heavy-tailed random variables. A random variable X, or its
distribution F satisfying F(x) > 0 for any x ∈ (−∞, ∞), is said to be heavy tailed to the right
if E exp{γX} = ∞ for any γ > 0.

One of the most important classes of heavy-tailed distributions is the subexponential class
S. By definition, a distribution F on [0, ∞) is subexponential, denoted by F ∈ S, if

lim
x→∞

F (n)(x)

F (x)
= n (2.1)

for some n ≥ 2 (or, equivalently, for any n ≥ 2), where F (n) denotes the n-fold convolution
of F . More generally, a distribution F on (−∞, ∞) is still said to be subexponential if the
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distribution F+(x) = F(x) 1{0≤x<∞} is subexponential. It is easy to check that (2.1) still holds
for the latter general case. Clearly, for a sequence of i.i.d. random variables {Xk, k = 1, 2, . . .}
with common distribution F ∈ S, from (2.1) it holds, for each n ≥ 2, that

P

( n∑
k=1

Xk > x

)
∼ P

(
max

1≤k≤n
Xk > x

)
. (2.2)

Relation (2.2) explains why the class S can be used to model the sizes of large loss variables.
Closely related are the classes L, of long-tailed distributions, and D , of distributions with

dominatedly varying tails. By definition, a distribution F on (−∞, ∞) belongs to the class L
if the relation

lim
x→∞

F(x + y)

F (x)
= 1

holds for any y > 0 (or, equivalently, for some y > 0); F belongs to the class D if the relation

lim sup
x→∞

F(vx)

F (x)
< ∞

holds for any v, 0 < v < 1 (or, equivalently, for some v, 0 < v < 1). It is well known that

D ∩ L ⊂ S ⊂ L;

see Embrechts et al. (1997, Chapters 1.3, 1.4, and A3) and references therein. A well-known
subclass of the intersection D ∩ L is R, the class of distributions with regularly varying tails.
By definition, a distribution F on (−∞, ∞) belongs to the class R if there is some α ≥ 0 such
that the relation

lim
x→∞

F(xy)

F (x)
= y−α

holds for any y > 0. We write F ∈ R−α in this case. Note that the class R is the union of all
R−α over the range 0 ≤ α < ∞. A slightly larger subclass of the intersection D ∩ L is the
so-called extended regularly varying (ERV) class. By definition, a distribution F on (−∞, ∞)

belongs to the class ERV(−α, −β), for some α and β with 0 ≤ α ≤ β < ∞, if the relation

y−β ≤ lim inf
x→∞

F(xy)

F (x)
≤ lim sup

x→∞
F(xy)

F (x)
≤ y−α

holds for any y > 1. Thus, R−α = ERV(−α, −α). Note that the class ERV is the union of all
ERV(−α, −β) over the range 0 ≤ α ≤ β < ∞.

In this paper, we will also consider the distribution class, defined below, that complements
the class R in the extreme case that the index α is equal to ∞.

Definition 2.1. Let F be a distribution on (−∞, ∞). F is said to be rapidly varying tailed,
denoted by F ∈ R−∞, if

lim
x→∞

F(vx)

F (x)
= 0 for each v > 1.
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We remark that a more general notion, namely rapid variation, has been extensively inves-
tigated in the literature; for details we refer the reader to the monographs by de Haan (1970,
Chapter 1.2) and Bingham et al. (1987, Chapter 2.4), among others.

Let us recall two significant indices, which are crucial for our purposes. Let F be a
distribution on (−∞, ∞). As was done recently by Tang and Tsitsiashvili (2003), for any
y > 0 we set

F ∗(y) = lim inf
x→∞

F(xy)

F (x)
, F

∗
(y) = lim sup

x→∞
F(xy)

F (x)
,

and then define

J
+
F = inf

{
− log F ∗(y)

log y
, y > 1

}
, J

−
F = sup

{
− log F

∗
(y)

log y
, y > 1

}
.

Following Tang and Tsitsiashvili (2003), we call the quantities J
+
F and J

−
F the upper and lower

Matuszewska indices of the distribution F , respectively. Clearly, if F ∈ R−α for some α,
0 ≤ α ≤ ∞, then J

±
F = α, and if F ∈ ERV(−α, −β) for some α and β, 0 ≤ α ≤ β < ∞, then

α ≤ J
−
F ≤ J

+
F ≤ β. For more details of the Matuszewska indices, see Bingham et al. (1987,

Chapter 2.1) and Cline and Samorodnitsky (1994).
Let F be a distribution with a lower Matuszewska index such that 0 < J

−
F ≤ ∞. With some

simple adjustments to the second inequality of Proposition 2.2.1 of Bingham et al. (1987), we
see that, for any p, 0 < p < J

−
F , there are positive constants C1 and x0 such that the inequality

F(xy)

F (x)
≤ C1y

−p (2.3)

holds uniformly for xy ≥ x ≥ x0. Fixing the variable x = x0 in (2.3), we find that the
inequality

F(x0y)

F (x0)
≤ C1y

−p

holds uniformly for y ≥ 1. Then, by substituting x = x0y into the above we find that, for some
constant C2 > 0, the inequality

F(x) ≤ C2x
−p (2.4)

holds uniformly for x ≥ x0.
Recently, Konstantinides et al. (2002) introduced the following subclass of subexponential

distributions.

Definition 2.2. Let F be a distribution on (−∞, ∞). We say that F belongs to the class A if
F is subexponential and has a lower Matuszewska index such that 0 < J

−
F ≤ ∞.

Clearly, 0 < J
−
F ≤ ∞ if and only if

lim sup
x→∞

F(xy)

F (x)
< 1 for some y > 1.

The reason for introducing this class is mainly to exclude some very heavy-tailed distributions
(for instance those that are slowly varying tailed) from the class S. It is easy to see that

R−α ⊂ A for any α, 0 < α < ∞, and S ∩ R−∞ ⊂ A.
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3. The main result and its corollaries

Henceforth, for two positive bivariate functions A(x; n) and B(x; n), we say that the
asymptotic relation A(x; n) ∼ B(x; n) holds uniformly for n = 1, 2, . . . if

lim
x→∞ sup

n≥1

∣∣∣∣A(x; n)

B(x; n)
− 1

∣∣∣∣ = 0;

that is, for any ε > 0 there is some x(ε) > 0 such that the two-sided inequality

(1 − ε)B(x; n) ≤ A(x; n) ≤ (1 + ε)B(x; n)

holds for all x ≥ x(ε) and all n = 1, 2, . . . . Clearly, the asymptotic relation A(x; n) ∼ B(x; n)

holds uniformly for n = 1, 2, . . . if and only if

lim sup
x→∞

sup
n≥1

A(x; n)

B(x; n)
≤ 1 and lim inf

x→∞ inf
n≥1

A(x; n)

B(x; n)
≥ 1.

The latter two relations mean, respectively, that A(x; n) � B(x; n) and A(x; n) � B(x; n)

hold uniformly for n = 1, 2, . . . .

Recall that {Xk, k = 1, 2, . . .} is a sequence of i.i.d. random variables with common
distribution function F , and that {wk, k = 1, 2, . . .} is a sequence of positive numbers. For
notational convenience, we write, for each n = 1, 2, . . . ,

Sn(w) =
n∑

k=1

wkXk, M(n)(w) = max
1≤m≤n

Sm(w), Mn(w) = max
1≤k≤n

wkXk;

for a real number x, we write x+ = max{x, 0} and x− = − min{x, 0}; and, for each n =
1, 2, . . . , we then write

S+
n (w) =

n∑
k=1

wkX
+
k .

The main contribution of this paper is the following theorem.

Theorem 3.1. Suppose that F ∈ A and

∞∑
k=1

wδ
k < ∞ for some δ, 0 < δ <

J
−
F

1 + J
−
F

, (3.1)

where J
−
F /(1 + J

−
F ) = 1 for J

−
F = ∞. Uniformly for n = 1, 2, . . . , we then have

P(M(n)(w) > x) ∼ P(S+
n (w) > x) ∼ P(Mn(w) > x) ∼

n∑
k=1

P(wkXk > x). (3.2)

If, in addition,

S−∞(w) =
∞∑

k=1

wkX
−
k < ∞, (3.3)

where the inequality is almost sure, then (3.2) holds with S+
n (w) replaced by Sn(w).

We suggest that the reader compare (3.2) to (2.2).

https://doi.org/10.1239/aap/1118858636 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1118858636


Weighted sums of subexponential random variables 515

We now verify the almost-sure convergence of the series and maxima involved in (3.2). With
the convention w0 = 0, we observe that

0 ≤ max
0≤m<∞ Sm(w) ≤ S+∞(w).

Under condition (3.1), applying the well-known monotone convergence theorem and the
Cr -inequality, we have

E(S+∞(w))δ ≤ E(X+
1 )δ

∞∑
k=1

wδ
k < ∞,

where the finiteness of E(X+
1 )δ is guaranteed by (2.4), since δ < J

−
F . This implies that the

series S+∞(w) and the maximum max0≤m<∞ Sm(w) are almost surely finite; hence, the tail
probabilities P(M(∞)(w) > x) and P(S+∞(w) > x) are not reduced to trivial constants for
x > 0. A similar explanation can be given for the tail probability P(M∞(w) > x). In addition,
the convergence of the series

∑∞
k=1 P(wkXk > x), for each x > 0, can also be verified since,

by (2.3), we have
P(wkXk > x) ≤ C1w

p
k F (x) (3.4)

for some δ < p < J
−
F , all x ≥ x0, and all k = 1, 2, . . . such that wk ≤ 1.

A recent large deviations result of Korshunov (2001) has a similar taste to Theorem 3.1. For
a subexponential distribution F with

∫ ∞
0 F(y) dy < ∞, let

Fu(x) =
⎧⎨
⎩

min

{
1,

∫ x+u

x

F (y) dy

}
, x ≥ 0,

1, x < 0.

Clearly, for any u ∈ [0, ∞], Fu defines a standard distribution on [0, ∞). According to the
terminology of Korshunov (2001), we say that the distribution F is strongly subexponential if
the relation

F
(2)
u (x) ∼ 2Fu(x)

holds uniformly for u ∈ [1, ∞]. Korshunov’s result states that if the common distribution F

of the increments of a random walk Sn = ∑n
k=1 Xk is strongly subexponential and has a finite

mean −µ = E X1 < 0, then, uniformly for n = 1, 2, . . . ,

P
(

max
1≤k≤n

Sk > x
)

∼ 1

µ

∫ x+nµ

x

F (y) dy ∼
n∑

k=1

F(x + kµ).

Compared with Korshunov’s result, our Theorem 3.1 successfully establishes a corresponding
uniform asymptotic result for the case in which the weights are included.

In the case that each Xk has a distribution Fk satisfying Fk(x) ∼ ckF (x) for some distribution
F ∈ S and positive constants ck , k = 1, 2, . . . , Ng et al. (2002, Theorem 2.2) established a
result similar to (3.2), but without weights and only for a fixed integer n = 1, 2, . . . .

Clearly, the uniformity of the asymptotics in (3.2) allows for n = ∞. Hence, we have the
following corollary.

Corollary 3.1. Write P1(x) = P(M(∞)(w) > x), P2(x) = P(S+∞(w) > x), and P3(x) =
P(M∞(w) > x) for x ≥ 0. Under the conditions of Theorem 3.1, we then have

P1(x) ∼ P2(x) ∼ P3(x) ∼
∞∑

k=1

P(wkXk > x). (3.5)
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Specifically, if we choose wk = (1+ r)−k , k = 1, 2, . . . , with some r > 0, then the relation
corresponding to the probability P1(x), which can be interpreted as the ultimate ruin probability
of a discrete-time model with constant interest rate r > 0, coincides with the main result of
Tang (2004).

We now put forward some special cases of Corollary 3.1 (the same thing can be done for
Theorem 3.1).

Corollary 3.2. Let Pi(x), i = 1, 2, 3, be as defined in Corollary 3.1.

1. Suppose that F ∈ S with 0 < J
−
F ≤ J

+
F < ∞ (or, equivalently, that F ∈ D ∩ A) and that

condition (3.1) holds. Then, for i = 1, 2, 3,

0 <

∞∑
k=1

F ∗(w−1
k ) ≤ lim inf

x→∞
Pi(x)

F (x)
≤ lim sup

x→∞
Pi(x)

F (x)
≤

∞∑
k=1

F
∗
(w−1

k ) < ∞. (3.6)

2. Suppose that F ∈ ERV(−α, −β) for some α and β, 0 < α ≤ β < ∞, and that

∞∑
k=1

wδ
k < ∞ for some δ, 0 < δ <

α

1 + α
. (3.7)

Then, for i = 1, 2, 3,

F(x)

∞∑
k=1

min{wα
k , w

β
k } � Pi(x) � F(x)

∞∑
k=1

max{wα
k , w

β
k }.

3. Suppose that F ∈ R−α for some α, 0 < α < ∞, and that condition (3.7) holds. Then, for
i = 1, 2, 3,

Pi(x) ∼ F(x)

∞∑
k=1

wα
k .

4. Suppose that F ∈ S ∩ R−∞ and that

∞∑
k=1

wδ
k < ∞ for some δ, 0 < δ < 1.

Then, for i = 1, 2, 3,

Pi(x) ∼ F

(
x

w∗

) ∞∑
k=1

1{wk=w∗},

where w∗ = max{wk, k = 1, 2, . . .}.
Proof. Part 3 is clearly a consequence of part 2, which is itself a consequence of part 1 since

α ≤ J
−
F ≤ J

+
F ≤ β for F ∈ ERV(−α, −β). In order to prove part 1, we consider the right-hand

side of (3.5). By (2.3) with p = δ < J
−
F , (3.4) holds for all x ≥ x0 and all k = 1, 2, . . . such

that wk ≤ 1. Hence, from Fatou’s lemma, the application of which is justified by (3.1), we
obtain

lim sup
x→∞

Pi(x)

F (x)
≤

∞∑
k=1

lim sup
x→∞

P(wkXk > x)

F (x)
=

∞∑
k=1

F
∗
(w−1

k ).

The corresponding lower bound in (3.6) can be proved similarly.
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We now prove part 4. The convergence of the series
∑∞

k=1 1{wk=w∗} is implied by (3.1). We
divide the right-hand side of (3.5) into two parts, as follows:

∞∑
k=1

P(wkXk > x) =
( ∑

{k : wk=w∗}
+

∑
{k : wk<w∗}

)
P(wkXk > x) =:

∑
1
+

∑
2
.

Recalling Definition 2.1, by applying Fatou’s lemma, as in the proof of part 1, we have

lim sup
x→∞

∑
2

P(w∗X1 > x)
≤

∑
{k : wk<w∗}

lim sup
x→∞

P(wkXk > x)

P(w∗X1 > x)
= 0.

Hence,
∞∑

k=1

P(wkXk > x) ∼
∑

1
= F

(
x

w∗

) ∞∑
k=1

1{wk=w∗} .

This ends the proof of Corollary 3.2.

Work closely related to Corollaries 3.1 and 3.2 can be found in Cline (1983), Davis and
Resnick (1988), and Embrechts et al. (1997, Chapter A3.3). Among them, in the case in
which the tail probability P(|Xk| > x) is regularly varying at infinity and the weights {wk, k =
1, 2, . . .} are not necessarily positive, Cline (1983) established a result similar to Corollary 3.2.3
but without P1(x). In the case in which the common distribution F is both in the domain of
attraction of �(x) = exp{−e−x}, x ∈ (−∞, ∞), and in the class S(γ ), γ ≥ 0, Davis and
Resnick (1988) established a result similar to Corollary 3.2.4. Note that the fact that the
distribution F is in the domain of attraction of �(x) indicates that F ∈ R−∞.

4. Proof of the main result

4.1. Lemmas

Lemma 4.1. Consider the convolution of two distributions F1 and F2 on (−∞, ∞). If F1 ∈ S
and F2(x) � cF1(x), for some c ≥ 0, then

F1 ∗ F2(x) � (1 + c)F1(x).

Proof. See Lemma 4.4 of Tang (2004).

Lemma 4.2. Let {Xk, k = 1, 2, . . . , n} be n independent, real-valued random variables. If
each Xk has a distribution Fk ∈ L, k = 1, 2, . . . , n, then

P

(
max

1≤m≤n

m∑
k=1

Xk > x

)
∼ P

( n∑
k=1

Xk > x

)
.

Proof. See Theorem 2.1 of Ng et al. (2002).

Lemma 4.3. Let {Xk, k = 1, 2, . . . , n} be n i.i.d., real-valued random variables with common
distribution F ∈ S, and let {wk, k = 1, 2, . . . , n} be n positive numbers. Then the weighted
sum Sn(w) is subexponentially distributed and satisfies

P(Sn(w) > x) ∼
n∑

k=1

F

(
x

wk

)
. (4.1)
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Proof. The proof is based on a result of Tang and Tsitsiashvili (2003); see also Embrechts
and Goldie (1980) and Cline (1986, Corollary 1). This result states that if F1 ∈ S, F2 ∈ L, and
F2(x) = O(F1(x)), then F1 ∗ F2 ∈ S and

F1 ∗ F2(x) ∼ F1(x) + F2(x).

Using this result, we can prove (4.1) for n = 2 and use induction to prove the general case.
This ends the proof of Lemma 4.3.

Lemma 4.4. Under the conditions of Theorem 3.1, we have

lim
n→∞ lim sup

x→∞
P(

∑∞
k=n wkX

+
k > x)

P(w1X1 > x)
= 0 (4.2)

and

lim
n→∞ lim sup

x→∞

∑∞
k=n P(wkXk > x)

P(w1X1 > x)
= 0. (4.3)

Proof. We follow the proofs of Lemma 4.24 of Resnick (1987) and Proposition 1.1 of Davis
and Resnick (1988); see also Embrechts et al. (1997, Chapter A3.3) for a simpler treatment.

First, we choose some p1 such that

δ < p1 < 1 − δ

J
−
F

.

Then, by (3.1), we have
∑∞

k=1 w
p1
k < ∞. For all large n (say n ≥ n0 for some integer n0 such

that ∞∑
k=n0

w
p1
k < 1 and w1w

p1−1
k > 1

for all k ≥ n0), we have

P

( ∞∑
k=n

wkX
+
k > x

)
≤ P

( ∞∑
k=n

wkX
+
k >

∞∑
k=n

w
p1
k x

)

≤ P

( ∞⋃
k=n

{wkX
+
k > w

p1
k x}

)

≤
∞∑

k=n

P(w1X
+
k > w1w

p1−1
k x). (4.4)

Next, we choose some p2 such that

0 <
δ

1 − p1
< p2 < J

−
F .

Applying (2.3), with p = p2, to the right-hand side of (4.4) yields

∞∑
k=n

P(w1X
+
k > w1w

p1−1
k x) ≤ C1

∞∑
k=n

(w1w
p1−1
k )−p2 P(w1X1 > x) (4.5)
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for all x ≥ x0/w1. Since (1 − p1)p2 > δ, by (3.1) we have

∞∑
k=1

(w1w
p1−1
k )−p2 < ∞.

Hence, (4.4) and (4.5) give the first result (4.2).
Observe that ∞∑

k=n

P(wkXk > x) ≤
∞∑

k=n

P(w1X
+
k > w1w

p1−1
k x)

holds for all x > 0 and all n such that 0 < wk < 1 for k ≥ n. Hence, (4.3) is a natural
consequence of (4.5) and the convergence of the series

∑∞
k=1(w1w

p1−1
k )−p2 . This ends the

proof of Lemma 4.4.

4.2. Proof of Theorem 3.1

We divide the proof into four parts, as follows.

4.2.1. P(M(n)(w) > x) ∼ ∑n
k=1 P(wkXk > x) holds uniformly for n. By Lemma 4.4, for any

ε, 0 < ε < 1 there are some x0 ≡ x0(ε) and some m ≡ m(ε) = 1, 2, . . . such that

P

( ∞∑
k=n

wkX
+
k > x

)
≤ ε P(w1X1 > x) (4.6)

and ∞∑
k=n

P(wkXk > x) ≤ ε P(w1X1 > x) (4.7)

hold for all x ≥ x0 and all n > m. For this fixed m and each 1 ≤ n ≤ m, successive applications
of Lemmas 4.2 and 4.3 gives

P(M(n)(w) > x) ∼ P(Sn(w) > x) ∼
n∑

k=1

P(wkXk > x). (4.8)

Hence, there is some A ≡ A(ε) > 0 such that, for all 1 ≤ n ≤ m and x ≥ A,

(1 − ε)

n∑
k=1

P(wkXk > x) ≤ P(M(n)(w) > x) ≤ (1 + ε)

n∑
k=1

P(wkXk > x). (4.9)

By Lemma 4.3, (4.8) further indicates that the partial sum Sm(w) and the maximum M(m)(w)

are subexponentially distributed.
Now we consider the case that n > m. By (4.9), for x ≥ A, we have

P(M(n)(w) > x) ≥ P(M(m)(w) > x)

≥ (1 − ε)

m∑
k=1

P(wkXk > x)

= (1 − ε)

( n∑
k=1

−
n∑

k=m+1

)
P(wkXk > x).
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Also, by (4.7), for all n > m and all x ≥ x0, we have

n∑
k=m+1

P(wkXk > x) ≤
∞∑

k=m+1

P(wkXk > x) ≤ ε P(w1X1 > x).

Therefore, for all n > m and all x ≥ x0,

P(M(n)(w) > x) ≥ (1 − ε)

( n∑
k=1

P(wkXk > x) − ε P(w1X1 > x)

)

≥ (1 − ε)2
n∑

k=1

P(wkXk > x). (4.10)

By symmetry, we can also derive upper bounds for P(M(n)(w) > x): for all n > m,

P(M(n)(w) > x) ≤ P

(
M(m)(w) +

n∑
k=m+1

wkX
+
k > x

)

≤ P

(
M(m)(w) +

∞∑
k=m+1

wkX
+
k > x

)
.

Since, by (4.6),

P

( ∞∑
k=m+1

wkX
+
k > x

)
≤ ε P(M(m)(w) > x),

by applying Lemma 4.1 and (4.9), we find that

P(M(n)(w) > x) � (1 + ε) P

(
max

1≤n≤m

n∑
k=1

wkXk > x

)

≤ (1 + ε)2
m∑

k=1

P(wkXk > x)

≤ (1 + ε)2
n∑

k=1

P(wkXk > x) (4.11)

uniformly for n > m. Combining (4.10) and (4.11) gives, uniformly for n > m,

(1 − ε)2
n∑

k=1

P(wkXk > x) � P(M(n)(w) > x) � (1 + ε)2
n∑

k=1

P(wkXk > x). (4.12)

From (4.9), we conclude that the two-sided inequality (4.12) actually holds uniformly for
n = 1, 2, . . . . Hence, the uniformity of

P(M(n)(w) > x) ∼
n∑

k=1

P(wkXk > x) (4.13)

follows from the arbitrariness of ε > 0.
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4.2.2. P(S+
n (w) > x) ∼ ∑n

k=1 P(wkXk > x) holds uniformly for n. Observe that, in the first
step, we have proved the uniformity of relation (4.13) with respect to n = 1, 2, . . . . Applying
this to the sequence {X+

k , k = 1, 2, . . .} yields the desired result immediately.

4.2.3. P(Mn(w) > x) ∼ ∑n
k=1 P(wkXk > x) holds uniformly for n. Trivially, for all n =

1, 2, . . . and all x > 0,

P(Mn(w) > x) ≤
n∑

k=1

P(wkXk > x).

It remains to prove the reverse inequality. To this end, we shall apply an elementary inequality
stating that, for n general events E1, E2, . . . , En,

P

( n⋃
k=1

Ek

)
≥

n∑
k=1

P(Ek) −
∑

1≤k �=l≤n

P(EkEl).

From this inequality, we find that, for all n = 1, 2, . . . and all x > 0,

P(Mn(w) > x) ≥
n∑

k=1

P(wkXk > x) −
∑

1≤k �=l≤n

P(wkXk > x, wlXl > x)

≥
n∑

k=1

P(wkXk > x) −
( n∑

k=1

P(wkXk > x)

)2

≥
n∑

k=1

P(wkXk > x)

(
1 −

∞∑
k=1

P(wkXk > x)

)
.

Relation (4.3) trivially implies that
∑∞

k=1 P(wkXk > x) tends to 0 as x → ∞. Hence, we
obtain the desired result, namely that, uniformly for n = 1, 2, . . . ,

P(Mn(w) > x) �
n∑

k=1

P(wkXk > x).

4.2.4. Under (3.3), P(Sn(w) > x) ∼ ∑n
k=1 P(wkXk > x) holds uniformly for n. Applying the

result proved in Section 4.2.2, we know that the relation

P(Sn(w) > x) ≤ P(S+
n (w) > x) ∼

n∑
k=1

P(wkXk > x)

holds uniformly for n = 1, 2, . . . . Thus, it remains to prove the uniformity of the relation

P(Sn(w) > x) �
n∑

k=1

P(wkXk > x). (4.14)

We go back to the results of Section 4.2.1. From (4.8), we know that the two sides of relation
(4.14) are asymptotically equal to one another for 1 ≤ n ≤ m. For n > m, we have

P(Sn(w) > x) ≥ P

(
Sm(w) −

n∑
k=m+1

wkX
−
k > x

)
≥ P

(
Sm(w) −

∞∑
k=m+1

wkX
−
k > x

)
.
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Note that, under condition (3.3), the series U−
m (w) := ∑∞

k=m+1 wkX
−
k is a well-defined

nonnegative random variable, the random variables Sm(w) and U−
m (w) are independent, and

the partial sum Sm(w) is long tailed. Applying the dominated convergence theorem, we obtain

P

(
Sm(w) −

∞∑
k=m+1

wkX
−
k > x

)
∼ P(Sm(w) > x).

Hence, for any ε > 0 and n > m, by applying (4.8) we have

P(Sn(w) > x) �
m∑

k=1

P(wkXk > x)

≥
( n∑

k=1

−
∞∑

k=m+1

)
P(wkXk > x)

� (1 − ε)

n∑
k=1

P(wkXk > x),

as in Section 4.2.1. By the arbitrariness of ε > 0, we conclude that (4.14) holds uniformly for
n = 1, 2, . . . . This ends the proof of Theorem 3.1.
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