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INVEX OPTIMISATION PROBLEMS

D.T. Luc AND C. MALIVERT

In this paper we extend the concept of invexity to set-valued maps and study
vector optimisation problems with invex set-valued data. Necessary and sufficient
optimality conditions are established in terms of contingent derivatives. Wolfe
type dual problems are constructed via two recently developed approaches which
guarantee the zero-gap duality property.

1. INTRODUCTION

Let / be a convex function on a topological vector space X. One of the most

useful properties is that, if / is finite and continuous at XQ G X, one has

f{x) - f(x0) > f'(xo)(x - x0), for all x G X.

where /'(xo) stands for the directional derivative at xo •
Generalising this property Craven [3, 4, 5, 6], Hanson [9] and others [2, 8, 17] et

cetera have introduced the concept of invexity and studied mathematical programming
problems with invex objectives and invex constraints. It is known, for invex problems,
traditional necessary optimality criteria are also sufficient. This makes it possible to
construct Wolfe type duality which satisfies the zero gap property, between the primal
and dual problems. In the mentioned works the theory has been developed for both
scalar and multiobjective problems. Even more, in [5] a nonsmooth version was treated,
thus justifying the methods of invex functions for a larger class of problems.

The aim of the present work is to extend the study of invexity to set-valued maps
and vector optimisation problems with set-valued data. In Section 2 we recall some def-
initions concerning contigent derivatives of set-valued maps [1, 10, 12, 15]. In Section
3, the concept of invexity is introduced for set-valued maps and several properties of
invex maps are provided. The link between invexity and convexity is also given. The
rest of the paper deals with vector optimisation problems whose data are invex maps.
Optimality conditions are established separately for three cases: unconstrained prob-
lems (Section 4), problems with inequality constraints and problems with inequality as
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48 D.T. Luc and C. Malivert [2]

well as equality constraints (Section 5). The last section is devoted to duality theory.
By making use of the axiomatic approach of [13] (see also [12]) and the generalised
Lagrangian approach of [7] (see also [14]), we obtain several Wolfe type duals for invex
problems and verify the exactness of duality.

2. CONTINGENT DERIVATIVES

In this section we recall the concept of contingent derivatives of set-valued maps
and establish a new result on the derivative of a product of maps which will be needed
in the sequel.

Let X and E be two topological vector spaces over R, and F a set-valued map
from X to E. The contingent derivative of F at a point (xo> 2/0) of the graph of
F is a set-valued map, denoted by DF(xo, j/o) from X to E whose graph is the
contingent cone to the graph of F at the point (xo>!/o); that is: for u £ X one
has v £ DF(XQ, yo)(u) if and only if there are a net {xa, ya} from the graph of F
converging to (xo, yo) and a net {ta} of positive numbers converging to +oo such that

limta(xa - x0, ya -Vo) = {u, v).

Given a direction u £ X, the Dini lower derivative of F at (xo, J/O) in direction u

is defined, using the lower Kuratowski-Painleve limit, by [15]:

I W ( , 0 , *)(«)= Km
(*,«')—(0+,ti) t

It is evident that DiowF(xo, 2/o)(w) C DF(xo, yo)(u) for every u £ X. Strict inclusion

may occur.

For the sake of convenience let us recall also that F is said to be lower semi-

differentiable at (xo, J/o) if, for every net {xa} from X converging to XQ and every

net {ta} of positive numbers such that lim<a(xa — x0) exists, there is a subnet {ya/}},

Vag £ F(xag) such that ]xmtag(yag —J/o) exists. It was noticed in [11] that if the

lower Dini derivative of F at (xo, yo) is nonempty in every direction of the contingent

cone to the set domF at Xo, denoted by T(dom.F, xo), then F is lower semidifferen-

tiable. The converse is, in general, not true. We refer the reader to [1] and [11] for

more information on contingent derivatives and set-valued maps.

Now, suppose that G is a set-valued map from X to another topological vector

space E\. The couple (F, G) is a set-valued map from X to E x E\ defined by

(F, G){x) — (F(x), G(x)). The following result compares the contingent derivatives

and the Dini lower derivatives of F and G with that of the couple (F, G).
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PROPOSITION 2 . 1 . Let (xo,yo) £ graph F, (x0, z0) £ graph G. Then tor

every u £ X one has

(i) Dlow(F, G){x0, T/o, zo)(u) = (Aowi^zo, yo), DlowG(x0, zo))(«),
(ii) (DiowF(xQ,y0), DG{x0, zo))(u) U (£>F(x0, y0), DiowG{x0, zo)){u)

C D(F, G)(x0) yo, zo){u) C (£>-F(x0, y0), DG(xQ, zo))(u).

PROOF: The first assertion and the second inclusion of the second assertion are
evident. Let us prove the first inclusion of the second assertion. Take any (v, w) £
(D\owF(xo, yo), DG(xo, zo))(u). This means in particular that w £ DG(XQ, ZO)(U),

that is, there are a net {(xa, za)} from graph G converging to (so, ^o) and a net of
positive numbers {<«} converging to +oo such that (u, w) = limta(xa — xo, za — z<j).
By definition of Diov,F(x0, yo), for two given nets {xa} and {ta} we can find ya £
F(xa) such that limta(ya - yo) = v. Since limta = +oo, we see that limj/a = y0 •
Hence (v, w) £ D(F, G)(x0, y0, zo)(u). The other case where DiowF and D\OVG
change the roles is proven by the same argument. D

PROPOSITION 2 . 2 . Let C be a convex cone in E with a nonempty interior.

Then the Dini lower derivative of the map F + C is lower semicontinuous.

PROOF: Let (x, y) £ graph (F + C), {u0, v0) £ graph Diow(F + C)(x, y). Let

V be any neighbourhood of zero in E. We shall prove the existence of a neighbourhood

U of zero in X such that

(2.1) Dlov{F + C){x,y){u)n{va + V)j:<b

for all u £ uo + U. To this end, take any c £ int C f! V. By definition of the Dini lower
derivatives, for the given neighbourhood of zero c— int C, one can find a neighbourhood
U\ of zero in X and a positive e such that

(2.2) {{F{x + tu) - y)/t - v0) n (c - int C - C) £ 0,

for all u £ uo + U\, t £ (0, e). Let U be any neighbourhood of zero with U + U C U\.

Now in order to complete the proof, it suffices to show that for every u £ «o + U,

(2.3) t>o + c£ Diow(F + C){x, yXu),

this relation implying (2.1) because c £ V. Let W be any neighbourhood of zero in
E. Since W — C contains —int C and u + U C uo + U + U C uo + f i , it follows from
(2.2) that

((F(x + tu') - y)/t -vo-c)n(W-C)^Q

for every u' £ u + U, t £ (0, e). This gives (2.3) and the proof is complete. D
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3. INVEX MAPS

We preserve the notations of the previous section. Moreover, the space E is sup-

posed to be partially ordered by a convex cone C C E, suppose to be pointed (that is,
cn-c = {0}).

DEFINITION 3.1: Let (x0, t/o) S graph F and r](x) a transformation on X (that
is, T](x) is a single-valued map from X to X) which depends, in general, on XQ or
(*o> 2/o) (sometimes we shall write T]XQ or Tj(Xo,yo) to indicate this dependence). Further
let A be a set-valued map from X to E. We say that F is A-invex at (xo, j/o) with
respect to V(xo,yo) ^ f°T every x e X,

(3-1) F(x)Cyo+A{rKx0tn)(x))+C.

If (3.1) holds for every y0 6 F(x0), F is called A-invex at x0 . We shall say simply that
F is invex instead of A-invex if A coincides with DF(xo, j/o) and that F is £>iow-invex
if A coincides with D\ov,F(xo, i/o)-

The concept of invexity was introduced in several papers of Craven, Hanson and
others for Frechet differentiable functions. In [5] Craven gave a nonsmooth version of
invexity as follows. A locally Lipschitz single-valu ed function F, from Kn to Rp, is
said to be invex at xo with respect to 77, if for every x 6 X one has

F(x) e F(x0) + f) M(v(x)) + C,

where dF(xo) is the generalised Jacobian of F at XQ • Here it is supposed that X

and E are finite dimensional spaces so that the generalised Jacobian is a nonempty
compact subset of linear operators. We observe that our definition coincides with that
of [5] whenever F is Frechet differentiable at x<>; however they are different in general:
choose for instance F(x) = — \x\ € K, (xo> 2/o) = (0, 0) and r)(x) — x.

By using properties of contingent derivatives one can easily provide conditions for a
sum or a composition of invex maps to be invex. Let us omit this routine work, although
we give here a result on the invexity of a product of invex maps which is useful in the
study of constrained optimisation problems. It is supposed that the space E\ is also
partially ordered by a convex cone K C Ei. Then the produce space E X E\ can be
ordered by the cone (C, K).

PROPOSITION 3 . 2 . Assume that F is D\OVI -in vex at (zo, Vo) £ graph F with

respect to r)xo. Then the product map (F, G) is invex (respectively D\ov -invex) at

(x0, i/o zo) £ grapi (F, G) with respect to rjXo if G is at (a;0) *o)-

PROOF: Suppose that G is invex at (a;0, «o) with respect to TJXO . For every x £ X,
one has

G(x) ezo + DG{x0, 20)(*?*„ (*)) + K-
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Since F is Diow-invex at (xo,yo), (3.1) holds with A = DiovF(x0, j/o)• This and
Proposition 2.1 (ii) imply that

(F, G)(x) C (y0, *o) + D(F, G)(z0, yo, * o ) ( W * ) ) + (C, tf).

Hence (J1, G) is invex at (xo, t/o> ZQ) with respect to TJXO(X). The case where G is

.Diow-invex is proven by the same argument by using Proposition 2.1 (i). D

Note that, in the proposition above, the condition that F be Z?iow-invex cannot be
weakened. More precisely, it is not difficult to construct two invex maps, the product
of which is not invex. For instance, take functions / and g on R defined by

f(x) = 0 and g(x) — 1/ \x\ if x is a nonzero rational number

f(x) = 1/ |x| and g(x) = 0 if x is an irrational number

/(0) = 0, 5(0) = 0.

Then / and g are invex at 0 with respect to r){x) — x, while (/ , g) is not invex there

(the cones, C and K are the set of non-negative numbers).

The next result shows the link between invexity and convexity. Recall that F is

C-convex if for every x\, X2 £ domF, A £ (0, 1) the following inclusion holds

AF(aii) + (1 - X)F(x») C F{\Xl + (1 - X)x2) + C.

PROPOSITION 3 . 3 . Assume that F is C-convex. Then the map F(x) + C is

invex at every point (zo, 3/o) G g^aph F with respect to the transformation TJXO(X) =

x — xo • It is D\ow-invex if in addition F is lower semicontinuous at Xg .

Conversely, assume that for each ig £ X , there exists j/o £ F(XQ) such that F

is A -invex at (x0, yo) with respect to r]xo(x) = x — x0 and that A is C-convex with

A(0) C C. Then F is C-convex.

PROOF: TO prove the first part of the proposition we have to show that

(3.2) F(x) + CCyo + D{F + C){x0, yo){x - x0) + C,

for all x £ X. It follows from the convexity that

(3.3) F{x) C j/o + (F(x0 + \{x - x0)) - yo)/X + C

is true for every x £ 5 , A £ (0, 1). The inclusion (3.3) can also be written as

F(x) Cyo+ {F{xQ + \{x - x0)) + C - yo)/X
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which implies (3.2), since by convexity, for each z £ X, (z — XQ, F(X) + C — yo) belongs
to the contingent cone at {XQ, J/O) to the set F + C. Thus F{x) + C is invex. Now
suppose in addition that F is lower semicontinuous at XQ and let w be any element of
the set F(xo + A(x — xo))—yo • For a fixed number Ag (0,1), for any neighbourhood V
of w there exists a neighbourhood U of X(x — xo) such that F(XQ + u) D (V + yo) ̂  0
whenever u E U. This and the convexity of F imply

(F(x0 + tu) - yo)/t n(V-C)^<b

for every t e (0, 1). Thus, w £ Diow(F + C)(x0, yo)(A(x - x0)), or equivalently, w/X €
DiOv,(F + C)(xo, yo)(x — XQ). We have established the inclusion

F{x<> + X(x - x0)) c Dloy,(F + C){x0, yo)(x - xQ)

which together with (3.3) shows that F(x) + C is _Diow-invex at (xo, yo) with respect
to rf(x) = x — xo •

For the second part, let xi, x^ 6 domF and A £ (0, 1). Set xo = Axi + (1 — A)x2
and suppose that j/o € -^(^o) is the point stated in the proposition. By the invexity,

F(xi)cyo + A(xi-xo) + C, i = 1, 2.

Using this and the properties of A we can write the following inclusions:

XF(Xl) + (1 - A)F(x2) C t/o + XA(Xl - x0) + (1 - A)^(x2 - x0) + C

CF(xo) + C.

Hence F is C-convex and the proof is complete. D

4. OPTIMALITY CONDITIONS WITHOUT CONSTRAINTS

In this section we assume that C is pointed with a nonempty interior int C. We
consider the following problem

minF(x)

x 6 X

We recall that the set of weak efficient values of (P) is the set

W Min F(X) := {a G F(X) : F{X) fl(a- int C) = 0}

and a point (xo, t/o) S graph F is called a weak minimiser of (P) if yo is a weak
efficient value of (P).

In the sequel we shall provide optimality criteria for problem (P) under invexity
assumptions.
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THEOREM 4 . 1 . Let (x0, yo) G graph F. Assume that F is A-invex at (x0, 2/o)
where A stands for DF(x0, yo) or D\owF(x0, yQ). Then (x0,3/0) is a wealr minimiser
of (P) if and only if, for all u G X,

(4.1) A(u) n -int C = <D.

PROOF: The necessary condition was established in [11, 12] for DF(x0, y0) even
without the invexity assumption. Since A(u) C DF(xo, 2/o)(u) for every u G X,

the relation (4.1) follows. For the sufficient condition, supposing to the contrary that
(zo> 2/o) is not a weak minimiser, one can find a point (x, y) G graph F such that
V G Vo — int C By the invexity,

F(x)cy0+A(rKx0tyo)(x)) + C,

where ^( I 0 ) J , 0 ) is a transformation with respect to which F is A-invex. Hence, there
exist some vectors v G J4(77(IOiJ)o)(a;)) , c G C such that

y = 2/o + v + c.

This implies v = y — t/o — c G — int C — C C — int C which contradicts (4.1). D

REMARK 4.2. It is clear that (xo, 2/0) G graph F is a weak minimiser of (P) if and

only if it is a weak minimiser of the problem

minF(z) + C.

x(=X

Hence, Theorem 4.1 remains valid if F(x) is replaced by F(x) + C.

We recall that (xo, 3/0) G graph F is said to be a local weak minimiser of (P) if it
is a weak minimiser of the problem

minF(z)

xexnu

where U is some neighbourhood of XQ in X .

COROLLARY 4 . 3 . Let [XQ, r/o) G graph F be a locaJ weak minimiser of (P). It

is also a wealr minimiser of the problem if the map F is A-invex at (XQ, t/o) where A

stands for DF(x0, yQ) or DiowF(xo, yo).

PROOF: In fact, as it was shown in [12], formula (4.1) is a necessary condition for
local weak minimisers. Hence in the case where F is .A-invex, Theorem 4.1 assures us
that the point is a global weak minimiser of the problem. D
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5. OPTIMALITY CONDITIONS WITH EXPLICIT CONSTRAINTS

Let us consider the constrained problem:

(CP) minF{x)

(5.1) G{x)C\-K£%

(5.2) 0 G P(x)

where F and G are, as before, set-valued maps from X to E and E\, P is a new
set-valued map from X to E% and A" a convex cone. The conditions (5.1) and (5.2)
generalise inequality and equality constraints in mathematical programming.

We recall that a point (a;o, yo, zo) € X x E x Ei is said to be a feasible triple of
(CP) (in this case xo is called a feasible solution) if t/o S F(xg), zo € G(xo) D —K and
0 G P(xo). A feasible triple (xo> 2/o, zo) is called a weak minimiser of (CP) if,

3/o £ PTMin{iJ1(x) : x is a feasible solution of (CP)}.

Observe that the space E x Ex x E2 may be considered as a partially ordered
space whose order is defined by the cone (C, K, {0}). Let A be a set-valued map from
X to E x Ei x E2 and L(Ei, E) the space of linear operators from E\ to E, while
L+(Ei, E) consists of those which carry K into C.

THEOREM 5 . 1 . Suppose that the following conditions hold at a feasible triple

{xo, 2/o, zo) of(CP):

(i) The map (F, G, P) is A-invexat (xo, yo, zo, 0) with respect to V(.x0,yo,z0)-

(ii) For every u G dom.4 and every (v, w, r) G A{u) there exist linear oper-

ators ieL+{E-i.,E), he L(E2, E) such that

(5.3) v + i(w + z0) + h(r) i - int C.

Then (zo, yo, zo) is a weak minimiser of (CP).

PROOF: Supposing to the contrary that (zoi 2/o> ̂ o) is not a weak minimiser of

(CP) we can find a feasible triple (a;, y, z) of (CP) such that

(5.4) y G 1/0 - int C.

By the invexity we have, denoting simply r\ instead of V(x0,vo,zo)>

(F, G, P)(x) C (yo, zo,0) + A(V(x)) + (C, K, {0}).

In particular,

(V, z, 0) G (yo, z0, 0) + A(r,(x)) + (C, K, {0})
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which means that there exist vectors (v, w, r) £ A(T]{X)) and (c, k, 0) 6 (C, K, {0})

such that (y, z, 0) = (yo, zo, 0) + (v, w, r) + (c, k, 0). This implies the equality v =

y — j/o — c > w + zQ — z — k and r = 0.

These latter relations together with (5.4) show that

v + l(w + z0) + h(r) £ - int C,

which contradicts (5.3). U

REMARK 5.2. It is useful to observe that a feasible triple (z, y, z) of (CP) is a weak
minimiser if and only if it is a weak minimiser of the problem obtained from (CP) by
substituting F(x) + C and G(x) + K in the place of F(x) and G(x) respectively.
So, the result of the previous theorem is still valid if F(x) and G(x) are replaced by
F(x) + C and G(x) + K.

REMARK 5.3. The result of Theorem 5.1 does not change if the second condition is

replaced by the following one:

(iii) For every u £ domA and every (v, w, r) 6 A(u) there exists a vector

(£, C, ") e (C, K, {0})' with £ £ 0 such that

(5.5) £{v) + ({w + z0) + u{r) ^ 0

where (C, K, {0})' is the nonnegative dual cone of (C, K, {0}). This

fact can be derived from the following lemma.

LEMMA 5 . 4 . Suppose that (5.5) is true. Then it is possible to construct linear

operators t £ i + ( ^ i , E), h G L(E2, E) which satisfy (5.3).

PROOF: Pick any e £ int C with £(e) = 1. (Such a vector exists because £ £ C"
and £ 7̂  0). For every (w, r) £ Ex x E2 define t(w) = C(u>)-e and h(r) — v{r).e. It is
obvious that I and h satisfy our requirements. U

In the rest of this section we shall provide necessary conditions for (CP). No invexity
assumptions are needed from now on. Let us consider first, the case where the equality
constraint (5.2) is absent, that is, we are dealing with the problem

minF(x)

G(x) n-K^O,

where K is assumed to have a nonempty relative interior.

THEOREM 5 . 5 . Let (zoi I/O) zo) be a (local) weak minimiser of (CP\). Then for
every u £ domD(F, G)(x0, yo, zo), every (u, w) £ D(F, G)(x0, j/o, ZQ)(U), there exists
a nonzero vector (£, £) £ (C, K) such that

(5.6) £(v) + ((w + zo) > 0.
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PROOF: Suppose to the contrary that there exist u and (u, w) as above, such that
for all nonzero (£, () E (C, K)' one has

(5.7) £(v) + ((w + z0) < 0.

This, in particular, implies that

(5.8) v £ - int C and w + z0 £ -K.

If int K = 0, since riK ^ 0, there exists a nonzero vector £ £ K' such that
C(k) = 0 for every k E K. By taking this £ and £ = 0 in (5.7) we get the contradiction
£(v) + ((w + ZQ ) — 0. Hence one may assume that int K ^ 0. In this case (5.7) implies
that

(5.9) w + z0 £ - int K.

By definition of contingent derivatives, for u and (v, w) as above, one can find a
net {(xa, ya, za)} from graph (F, G) converging to (zo, 3/o> zo) and a net of positive
numbers ta with limta — oo, such that ]imta(xa — xo, ya — J/0i Za — zo) = (w, v, w).
The relations (5.8) and (5.9) show that for a large enough, ta{ya — 2/o) 6 —int C and
ta(za — zo)+zo E — int K. In other words, ya £ yo— int C and za 6 ZQ— Zo/ta— int A".
Since lim(;zo/£a) = 0 and z§ E —K, the latter relation shows that za E — K for a
large enough. Thus, for these a, (xa, ya, za) are feasible triples with ya E yo — int C.
This contradicts the fact that (xo, j/o> zo) is a local weak minimiser of (CPi). D

The theorem above is an improvement of Corollary 3.3 of [16] for the reason that F
and G need not be lower semidifferentiable. Observe also that under the conditions of
the mentioned corollary, the last inclusion in (ii) of Proposition 2.1 becomes an equality
and in fact (5.6) is true for every v £ DF(xo, yo)(u), w £ DG(xo, zo)(u).

THEOREM 5 . 6 . Assume that (xo, t/0) zo) is a local weai minimiser of (CPi)
and int K is nonempty. For any vector u £ domD(F, G)(x0, yo, z0), if the set
D(F, G)(xo, yo, ZQ)(U) + (C, K) is convex, then there exists a nonzero vector (£, () £
(C, K)' such that for all (v, w) £ D(F, G)(x0, y0, zo){u) one has

(5.10) t{v) + C(w + z0) ^ 0.

Moreover, ii the set D(F, G)(x0, yo, *o)(-JQ + (C, K) is convex, then there exists a
nonzero vector ((, () E (C, K)' such that (5.10) is true for all u £ X and (,{z0) - 0.

Tie vector £ can be assured nonzero under an additional hypothesis called con-
straint qualification:

(5.11) D(F, G){x0, yo, zo){X) n ( - int K) ± 0.
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PROOF: It is clear that at a local weak minimiser (xo, r/o, zo), o n e n a s

D(F, G)(x0, 2/0, zo)(u) n ( - int C, z0 - int K) = 0, for all u £ X.

Under the convexity assumption, one can separate these sets by a nonzero vector
(£, Q ^ (C> ^ 0 ' • The inequality (5.10) is then immediate. In the case where the
set D(F, G)(x0, 1/0, Zo){X) + (C, K) is convex, by taking v = 0, w = 0 (which
corresponds to u = 0) we obtain from (5.10) that £(zo) ^ 0. Remembering that
zo G —K and £ £ If', we conclude £(z0) = 0. Finally, under the constraint qualifi-
cation, £ cannot be zero, otherwise a nonzero vector £ should separate the projection
of D(F, G)(xo, 2/0, zo){X) on E^ and the set — int K, and the intersection in (5.11)
should be empty. D

Let us now study the case of Problem (CP) where P is a single-valued map, the
Frechet derivative of which exists and is surjective. We denote this derivative by P'.

The spaces X and E^ axe now assumed to be Banach spaces.

THEOREM 5 . 7 . Let (XQ, 2/0, 20) be a local weak minimiser of (CP). Then for

every u £ X with P'(xo)(u) = 0 and for every (v, w) £ D\O7t(F, G)(x0, y0, zo), there

exists a nonzero vector (£, Q £ (C, K)' such that (5.6) holds.

PROOF: Suppose to the contrary that the statement is not true. As in the proof of
Theorem 5.5, for some u £ X, (v, w) £ £>iow(F, G)(x0, y0, zo)(u) one has P'(xo)(u) =

0, v £ — int C and

(5.12) w + z0 £ - int K.

In view of the Lyusternik theorem, there are a net {xa} converging to xo , a net of pos-
itive numbers {ta} converging to +00 such that P(xa) = 0 and l imi a (x a — xo) = u.

Then by definition of lower Dini derivatives, there exists a net {(ya, za)}, (ya £ F(xa),

za&G(xa)), converging to (y0, z0) such that l imi a (y o — y0, za — z0) — (v, w).

Hence, for a sufficiently large, (5.12) implies that

ta(ya - 2/o, z* - zo) S ( - int C, - z 0 - int K).

In other words, ya £ t/o — int C and za £ zo — Zo/ta — int K. When a is large, ta is
large too, and the latter inclusion with the fact zo £ —K show that za £ —K. In this
way, we have found a feasible triple (xa, ya, za) of (CP) for which

ya S 2/0 - int C.

This means that (zo, 2/0, zo) cannot be a local weak minimiser of (CP). The contradic-
tion completes the proof. U
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THEOREM 5 . 8 . Assume that (xo, yo, «o) is a local weak minimiser of (CP) and
int K is nonempty. For a vector u G domDiow(-f, G)(x0, yo, «o) with P'(xo)(u) = 0, if
the set Diow(F, G)(xo, yo, Zo)(u) + (C, K) is convex, then there exists a nonzero vector
(£, 0 e (C, K)' such that (5.10) holds for every (v, w) G Diow{F, G)(x0, y0, zo){u).
Moreover, if the set D\OW(F + C, G + K)(x0, yo, zo){X) + (C, K) is convex, there exists
a nonzero vector (£, (, v) G (C, K, {0})' such that ((z0) = 0 and

t(v) + CH + Hr) > 0

for every (v, w, r) £ Dioyr(F + C,G + K, P)(xQ, yo, *o, 0){X).
The vector £ is nonzero under the following hypothesis:

(5.13) Aow(^ + C,G + K, P){x0, yo, *o, 0)(X) n (E, - int K, {0}) ^ 0.

PROOF: Observe first that for every u £ X, one has

Aow^, G, P){x0, yo,z0, 0)(«) n ( - int C, z0 - int K, {0}) = 0.

By Proposition 2.1 and the fact D\ovlP(xo, 0)(u) = P'(xo)(u),

Dlow{F, G, P){x0, yo, z0, O)(tt) = {Diow(F, G){x0, y0, zo){u), P'(xo){u)).

Hence, for u g X with P'(xo)(u) = 0, we have

(Aow(iJT, G)(J;O, T/o, *o)(u) + (C, if)) n ( - int C, z0 - int K) = 0.

It suffices now to apply the Hahn-Banach separation theorem to get the assertion
of the first part.

For the second part of the theorem we show, at first, that the set

Q = Dlov,{F + C,G + K, P)(x0, yo, z0, 0){X) + (int C, z0 + int K, {0})

is open in the space E x Ei x Ei. Consider 90 = (yo + Co, zo +wo + ko, P'(xo)(uo)) £
Q, (v0, w0) £ Diow(F + C, G + K)(x0, yo,zo)(uo), c0 G int C, fc0 G int K, u0 £ X.
In virtue of Proposition 2.2, there exists a neighbourhood U of uo such that
(5.14)

Dlov,(F + C,G + K)(x0, yo, zo)(u) n L | | - int C, too + y - int K J ^ 0

for every u G U. By the assumptions of the theorem, the map P is open, that
is P'(xo)(U) contains an open set, say R. Then (5.14) shows that the open set
(i>o + co/2 + int C, zo + «>o + &o/2 + ^ K, R) contains 90 and is contained in Q.
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Furthermore, Q does not contain zero because (zo> Vo, «o) is a local weak min-
imiser. The closure of Q is the same as the closure of the convex set

(Dlow(F + C,G + K)(xQ, t/o, *o), P'(*oMX) + (C\ K, {0}),

hence is convex. By the separation theorem there is a nonzero vector (£, £, u) £
(Ex Ex x Ei)' such that ((, (,, u)(q) ^ 0, for every q 6 Q. This implies that
U, C, v) € (C, K, {0})' and £(v) + ({w + z0) + v(r) > 0 for every {v, w, r) G
Diow(F + C,G + K,P){x0,y0, zQ,0)(X). In particular, C(̂ o) > 0. This, and the
fact that ZQ £ —K imply C{zo) — 0- Finally, it is evident that £ ^ 0 under the
hypothesis (5.13). D

6. DUALITY

The purpose of this part is to construct dual problems of Wolfe type for a given
optimisation problem, whose objective and constraints are invex. The construction of
duals is based on the approach called axiomatic duality proposed in [115 13] and the
approach of [7, 14]. Let us consider the problem

( p . )
x £ Xo

where Xo is a subset of X.
By a dual of (Po), we mean any maximisation problem

a e 5

where S is a nonempty set, H is a set-valued map from S to E, which satisfies the
following weak duality relation

(WDA) H(a) n (F(x) + C \ {0}) = 0

for every a £ 5, x £ Xo.
Being a dual of (Po ), Problem (D) is called an exact dual if

It is evident that (D) is an exact dual of (Po) if and only if it is a dual and the two
problems have common values.
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REMARK 6.1. Let Ho be a submap of H, that is, graph Ho C graph H. Then the
subproblem,

is also a dual of (Po) whenever (D) is. However it is not necessarily exact if (D) is.

The very purpose of any duality in optimisation is to construct H and 5 such that
(D) is an exact dual of (Po ). Let us first apply the method of [11, 13]. For the sake of
convenience we consider the problem

minima;)
(CPo)

xex0, G{x)n-K^Q.

Many of the results to be established are true without requiring int K ̂  0, so in

fact problems with the presence of equality constraint (5.2) can be written in the form

of (CPo) by considering the cone (K, {0}) instead of K and therefore not much loss

of generahty occurs when we restrict the study to (CPo) alone.

Let Eo be a topological vector space which is partially ordered by a convex cone

M, not identical with a linear subspace of EQ . Denote by ^ the set of single-valued

maps s from Ex E\ to Eo which possess the property that s(o, 6) is increasing in the

first variable when the second one is zero, that is, for any a, a! £ E, a' > a implies

* ( a \ 0 ) > a ( a > 0 ) .

As it was proven in [11, 13], taking any 5 C S one obtains a dual for (CPo):

max H(s)
(DS) ^ ;

aeS

where H(s) = {deE: s(d, 0) e Mins(Q(X0))} and Q(X0) = {{F{x) + C, G(x) + K):

xEXo}.

The two following cases are of most interest:

(a) E0 = E, M = C;

(b) E0=R, M = R+.

We consider first the case (a).

For each vector (a;, y, z) g graph (F, G), let A(x<1)tZ) be a homogeneous submap
of D{F, G)(x, y, z), and let »7(j,,j,l2) be a transformation on X. As before, L+(Ei, E)

is the set of non-decreasing continuous linear operators h from E\ to E. We also
denote by LX(X, E) the set of continuous linear operators h from X to E with the
property h(T(Xo, x)) C C where T(X0, x) is the contingent cone to Xo at x. (It
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is supposed, of course, in this case that x G Xo ); further, consider two multivalued
mappings L\ and L2 from L+(Ei, E) into graph (F, G), defined by:

Li{t) = {{x, y, z) e graph (F, G) such that

v +lw C ( - C \ {0})c for aU {v, w) G A( X i ! / ) Z )(r , ( l ,S i Z )(Xo))};

L2{1) = {{x, y, z) G graph (F, G) such that there exists h G LX(X, E) with

for all (v, w) 6 A{XiytZ)(r){XtyiZ){X0)), x' E Xo} .

With i i and L2 in hand we are able to define two subsets 5"i and S2 of £ as
follows: Si consists of single-valued maps s from E x E\ to E of the form

s(a, 6) = a + £(b), for all (a, 6) e £ x E 1 ;

where ^ is such that £<(£) 7̂  0.

That Si and S2 are subsets of E is obvious because s(a, 0) = a, hence it is

increasing in a. Consequently, the problem (DS) with 5 being one of these subsets will

provide a dual for (CP0). Denote these duals by (DS 1) and (DS 2 )• In the sequel we

shall show that (DSi) and (DS2) provide subproblems written in the familar form of

Wolfe type duality. By saying (F, G) is j4-invexon Xo we mean that it is A^x^y%z)-invex

with respect to r^x>ytZ) at every (a:, y, z) G graph (F, G), x e Xo.

THEOREM 6 . 2 . Assume that (F, G) is A-invex on Xo • Then the dual

can be written in the form

3 € Si

where

(6.1) H^s) = {y + tz: (x, y, z) G L^l), x G Xo}

and I is the map which determines s.

Moreover, if, in addition, Problem (CPo) possesses a feasible triple (x, y, z) G
Li(l) with l(z) = 0, tien (DSx)is an exact dual of(CP0).

PROOF: By definition of H(s) it can be seen that

(6.2) H(«) = Min \J {F(x')
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where I is the linear operator which determines a £ S\. We prove that J?i(s) C U{a).

In fact, if not, there would exist a triple (x, y, z) E L\(l) and (x', y', z') £ graph(.F, G)

with x' E Xo such that

(6.3) y + Iz - (y1 + lz') £ C \ {0}.

By the invexity assumption,

(y1, *') e (y, z) + A(x<ViZ)(r,(XtytZ)(x')) + (C, K).

Taking into account the fact that I £ L+(Ei, E), the latter relation implies

y'

for some (v, w) G •^L(x,y,z){rl(x,y,z)(x')) • This and the fact that (a;, y, z) G L\(l) yield

(6.4) y + lz - (y' + lz') G - ( - C \ {0})c - C C (C \ {0})c

which contradicts (6.3). Finally, for a feasible triple (x, y, z) G L\(l) with lz = 0 one

has y G F[x) PI Hi(s), where s determined by I. Hence (DSi) is an exact dual of

(CPo). •

THEOREM 6 . 3 . Assume that (F, G) is A-invex on Xo and 7/(a.iS)2.)(X0) C

T(Xo, x) for every x £ XQ • Then the dual (DS2 ) can be written in the form

a £ S2

where

(6.5) H2(s) = {y + lz: (x, y, z) E L2{1), x £ Xo}

and I is the map which determines a.

Moreover, (DS2) is an exact dual of (CPo) provided Problem (CPo) possesses a

feasible triple (x, y, z) E L2(l) with l(z) - 0.

PROOF: AS in the proof of Theorem 6.2, we show that H2(s) C H(s). By invexity,
for every (a;', y', z') E graph (F, G), x' E XQ and every feasible solution I of (DS2 ),
one has

(6.6) (y1, z') £ (y, z) + A(*,y,*)(»?(*,*,*)(*')) + (<?, K).
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Remembering that I € i+(-Ei, E) and h £ LX(X, E) we have

y' + lz' - (y + lz) £ v + Iw + C

where (v, to) is some element of ^(X.J.^O/CB,»,*)(* '))• Hence j | < z E # ( s ) and in
fact H2(s) is a submap of H(a). Finally, observe that the value of the objective of
(DS 2 ) at a feasible solution I such that t{z) = 0 is {y}. Hence (DS2 ) and (CPo ) have
a common value and (DS2 ) is actually an exact dual of (CPo )• D

The two theorems above present a set-valued version of the results of [2, 3, 4, 5,
6]. It should be worthwhile noticing that the existence of an operator I solution of
problem (DS 1) is guaranteed by the results of the previous section. If such an operator
can be found, by taking h = 0 we have t and h satisfying the condition of Theorem
6.3.

Below we consider the case (b), when Eo = W-, M = R+, and we present a
nonstandard dual for the problem

minF(x)

G{x)n-K^%.

For each feasible solution (x, y, z) of (CP 1) we define the following set in the space

E x E^:

N(x, y, z) = {(0, z) + D(F, G ) ( . I , I , ) I J ( 8 I , , , ) ( X ) + (C, K)}.

Let us fix two vectors e 6 int C, ej £ int K (this time we assume that int K ^ 0).
Define a function s from E x Ei to I U {+00} by the rule: for every (a, b) £ E x E\,

(6.7) s(a, b) = sup{t e R : (o, 6) € {y, 0) + t{e, e i ) + N(x, y, z)}.

It is clear that a is increasing in the first variable on its domain when the second

one is zero. The order in E is understood as generated by int C U {0}; in other words

we are only dealing with weak minimality for (CP i ) .

Denote by S* the set of such functions a when (z, y, z) runs over graph (F, G)

and x runs over X. We then obtain a maximisation problem

«e5,

where H{a) = {d e E : a{d, 0) = min a{(F, G){X))}.
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THEOREM 6 . 4 . Assume that (CPi) possesses a weak minimiser (x, y, z), and
that at this minimiser, the map (F, G) is invex. Then (D* ) is an exact dual for (CPi ) .

PROOF: Observe that in the construction of duals by the axiomatic approach it is
possible to allow a to take the value +oo. This does not change (WDA). Hence (D»)
is actually a dual for (CPi ). To complete the proof we have to show that (CPi) and
(D«) have a common value. Let a be defined by (x, y, z) according to the formula
(6.7). By invexity, for every x' G X,

(F, G)(x') C (y, z) + D(F, G\x<ytZ)(V{Xty<z)(x')) + (C, K)

C (y, 0) + N(x, y, z).

This implies that s(a, b) ^ 0 for each (a, 6) G (F, G)X. On the other hand, a(y, 0) <
0. Indeed if we suppose to the contrary that a(y, 0) > 0, then there exist t > 0 and
(v, w) G D(F, ©)(.,,,,) (i?(.,,,,)(A1)) such that (0, z) + (i», w) e - int(C, K). Then for
each vector (£, () £ (C, K) we would have £(v) + ((w + z) < 0 contradicting Theorem
5.5. As (y, 0) G (F, G)x one gets finally s(y, 0) = 0. Thus s(a, b) ^ a(y, 0) = 0 for
every (a, b) G (F, G)X which implies y G H(s), that is, it is a common value for both
problems (CP i) and (D , ) . D

In the rest of this section we discuss a possible application of the generalised La-
grangian duality approach which was recently developed in [7, 14] to the case of invex
problems.

Let Z be a parameter space which for convenience is assumed to be linear topo-
logical. Let T be a set-valued map from X X Z to E such that F{x, 0) = F(x) for
every x G X. Problem (P) can be regarded as a particular case of the problem

min.F(s;, z)

X G A 0 ,

when z takes the value zero.
Furthermore, let 0 be a set of single-valued maps from X x Z to E which are

increasing in the first variable when the second one is zero. One can now define a
Lagrangian map £ as a set-valued map from X x (j> to E by the rule

L{x, f)=\J v{H*. *) + C, *)

for every x G X, <p G 4>-

With this Lagrangian map one defines a dual map H from <f> to E as

= MinL(X0, tp)
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and for a fixed subset 5 of <f> a maximisation problem:

maxH(ip).
(D) VPI

<peS

If every element <p £ 5 has the property that there is a single-valued map £ from
Z to E such that £(0) = 0 and ip(x, z) = x + £(z), for all x £ X, z £ Z, then
F(XOi 0) C L(XQ, ip) and the weak duality relation holds. Hence (D) becomes a dual
of (P). It is an exact dual if and only if there exists an optimal value ao of (P) such
that a0 £ Min \J (F(Xo, z) + C + £(z)). This inclusion means that £ is a subgradient

z€Z

of the map z —» ^(Xo, z) + C at (0, a 0 ) . The reader is referred to [7, 14] for more

details. For problem (CPo) one can take Z — E\ and

T(x Z) = 1F{X) i f G ( z ) n ( z - * ) ^ 0

[ <j> otherwise.

Problem (P z) corresponding to this case is of the form:

minF(x)

xeX»,G(x)r\{z-K)^%.

By choosing (, £ L+(Ei, E) and 5 as above, the dual map can be written as

H(<p) = Min{F(x) + £(z) : x 6 XOl G(x) n(z-K)^H)}

It is exactly the map of formula (6.2), that we have obtained by the method of axiomatic

duality.
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