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Abstract

It is proved that (|T(n)|n~"^2)* has a mean-value for 0 < S < 2, where T(/I) is Ramanujan's function
from modular arithmetic. Some further results are conjectured.

1980 Mathematics subject classification (Amer. Math. Soc): 10 H 25, 10 K 20.

Ramanujan's T-f unction is defined according to the identity

f <n)x" = x 5 (1 - xJf\
«=1 7=1

Our purpose is to prove the following

THEOREM. Let 0 < 8 < 2. Then

exists and is finite. In particular

lim x"13/2 2 |T(»)| -2AJH
x~'co n<x

exists. Moreover, either every As with 0 < S < 2 is zero, or the series

,11/2

taken over the prime-numbers, converges.
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REMARKS. The existence of the limit As is only new if 0 < S < 2. It follows
from a result of Rankin (1934) that A2 exists and is non-zero.

We deduce Theorem 1 from the following result, which is of independent
interest.

THEOREM 2. Let g(n) be a non-negative multiplicative arithmetic function which
has a mean-value. Then g(n)s has a mean-value for each 8, 0 < 8 < 1. Moreover,
if any of these latter mean-values is non-zero, then the series

converges.

REMARKS. In this formulation we interpret 0* to be zero. A function g(n) is
said to be arithmetic if it is defined on the positive integers, multiplicative if it
satisfies g(ab) = g(a)g(b) whenever the integers a and b are mutually prime, and
to have a mean-value if

lim J T 1 2 S{n)

exists and is. finite.
Our proof of Theorem 2 makes use of a number of results from the author's

paper Elliott (1980b)-this journal. We shall refer to it as E. We here note that on
pages 180, 195 and 202 of that paper the exponent -mit should be replaced by
-m{it + 1). In Lemma 8 of £ the condition (31) may be omitted (see Lemma 1
below). Moreover, the alternate proof of Theorem 1 (of E) which is mentioned
at the foot of page 179 is due to Daboussi, and not to Daboussi and Delange, as
was asserted.

LEMMA 1. Let g(n) be a multiplicative function for which the series

v \g(p)~ lj2
 v \g(p) ~ II" v \g(Pm)\

ZJ > Z* ~ ' Zi ITS
P l |>l /2 P p,m>2 P

converge, a > 1.
Then

{xh(\ogx)Yl 2 g(n)~*J, X-+CG,
n <JC

where
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is a slowly-oscillating function o /exp(«) , and the constant J is given by

PROOF. A proof of this result when a = 2 is indicated in Elliott (1980a),
Chapter 10. The present Lemma 1 is the same as Lemma 8 of £ with the
superfluous condition (32) of that formulation omitted.

LEMMA 2. The inequality \ys - 1| < 3\y ~ 1| holds uniformly for 0 < S < 1,
0 < y < 2.

PROOF. If 0 < y < 1 then 1 - ys < 1 - y2 = (1 + >>)(1 - y) < 2(1 - y). If
1 <y < 2 then./ - 1 < y2 - 1 = (y + l)(y - 1) < 3{y - 1).

PROOF OF THEOREM 2. We need only consider the case when for some value of
5, 0 < S < 1, g(rif does not have the mean-value zero, that is

lim sup x~x 2 g{nf > 0.

In particular, the value

A = lim x~x 2 g(n)

which exists by hypothesis, must be non-zero.

In the notation of E page 181, the function g(n) satisfies hypothesis H, and

from Lemma 1 of that paper we obtain the convergence of the series

2 ,
\g(p)-\\>l/2P

From Lemma 4 of E, with the notation h{ri) = g(nf, a = 1/8, we obtain the
convergence of the series

p, m>2 P

Note that if g(p) > 3/2 then

(g(p)S - I)'7* > (g(pf{l ~ (2/3)6})1/S = c(S)g(p)

for a certain positive constant c(8), so that the series

«(;>)> 3/2

converges.
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An integration by parts shows that as 5 —> 1 + ,

2 g(n)n-< ~ A(s - iy\

Since the Riemann zeta function
00

t(s) = 2J
 n ~ (s ~ 1)

n = l

as ,s —» 1 + ,
oo

lim f(s) 2 ^K")""1

exists and is non-zero.
We view this last ratio in terms of the corresponding Euler product(s):

We put into a product n2 those terms corresponding to primes p for which
\P(P) ~ M >!• From our above results this product is seen to be absolutely
convergent (with a non-zero value) if s > 1. The remaining terms we put into a
product II, which we rearrange into the form

n,= II (i+p-s{g(p)-1}
\g(p)-\\<\/2

where
OO

HP) = 2

Note that for a suitably chosen q,

2 I-H/OI < 2 [g(p)p-2 + 2 2 g(pm)p-m) < T-
P>1 P>1 \ m = 2 I ^

«(/>)< 3/2

Hence

\g(p)-\\<\/2

p>i
U(/.)-l|<!/2

- I)2 + 2 2|*(/0| < oo.
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Taking logarithms we deduce the finite existence of

Hm 2 P-S(S(P) ~ V-
S~*i+ \g(p)~\\<l/2

Applying the Hardy-Littlewood tauberian Theorem (Hardy (1949), Elliott,
(1979), Chapter 2) or a method of Daboussi and Delange (see E Lemma 9) we
obtain the convergence of the series

2 p~\g(p) - i).
|«(/>)-1|< 1/2

We now apply our present Lemma 1 to the function g(n)s, using a = 1/5. If
| g(pf - 11 < \ then | g(p) — 11 < d < 1 for a certain (positive) number d.
From Lemma 2,

2 p-]\g(pf - if < 3 2 P~l\g(p) - i|2

<3
|

The remaining conditions of Lemma 1 are readily seen to be satisfied and

{xA(log x)}"1 2 *(«)* -»•/, * -» oo.

where

Since

and when | g(p) - 11 < \

g(pf - 1 = {1 - (1 - g{p)))s - 1 = 5(1 - g(p)) +O(\l- g(p)\2),

the series

converges. A simple modification of Abel's well known theorem for power series
now gives the finite existence of lim A(w) as u -» oo, and so the existence of the
mean-value for g(n)s.

The final assertion of Theorem 2 follows, in the present circumstances, from
the inequalities

g if g > \ ,

3 ( g - l ) 2 i f ± < g < f ,
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REMARKS. The methods of E will allow the complete characterization of
multiplicative functions which satisfy hypothesis H with some a > 1. We note
here that in addition to the conditions given in Lemmas 1 and 4 of E, the
function w(x) which occurs on page 185 of that paper is to satisfy (16) there, and
to be bounded above uniformly for all x > 1.

PROOF OF THEOREM 1. It was conjecture by Ramanujan and proved by
Mordell (1917) that r{n) is multiplicative. With g(n) = ( |T(«)| /T1 1 / 2)2 we may
deduce Theorem 1 from Theorem 2 and Rankin's (1934) result that A2 exists.

CONCLUDING REMARKS. It was proved by Deligne that \r(p)\ < 2pll/2. If we
write r(p)p~n/2 = 2 Cos 9p then 9p is real and may be taken in the interval
0 < 9p < m.

Let us for the moment assume the validity of the Sato-Tate conjecture that as
p varies the 9p are distributed over this interval with a probability density
2(Sin 0 )7 77. Then

, 1 ( \T(D)\ .V , ,
~ c log log x, x —• oo,

with the constant

c = - r(2|Cos 0| - l)2(Sin 9)2d9 = 2.
77 J0

One would accordingly conjecture that every As with 0 < 8 < 2 has the value
zero.

Perhaps for each 8, 0 < 8 < 2, we have

Y ^ ') x > 2

with

h{8) = - C{\ - (2|Cos
If JQ

dO.

If now some As with 8 > 2 were to exist, then since A1¥
z 0 Theorem 2 would

assert the convergence of

,11/2 J

This, also, is incompatible with the Sato-Tate conjecture. Very likely no (finite)
mean-value A,, with 8 > 2 can exist.
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As to a finer behaviour of |x(n)|, let us assume that

S \_ c log log x

p<x P (-log w)
IT

holds uniformly for x > 2, x~x < w < w/4, for some fixed X > 0. This asserts a
local upper bound involving the distribution of the 0p near to w/2 which
although crude has a good uniformity. It is related to the Sato-Tate conjecture
somewhat in the manner that the Brun-Titchmarsh upper bound from sieve
theory is related to the classical prime number theorem.

Let us for the moment assume that r(n) is never zero, and define the additive
function f{n) = log|T(/j)|/Tll/2. Thus f(ab) = f(a) + f{b) whenever a, b are mutu-
ally prime positive integers.

Our assumptions up until now then allow the proof that as x —» oo

^ _ i C{\og2\Cos0\)(Sin0fd0=-\,
log log X /tx P 77 J0 2

T—} 2 — - » - /"(log 2|Cos 0|)2(Sin tf )2 d9 - M
2

log log x /£x p <n Jo

for some /x > 0. One can now treat /(«) within the framework of the probabilis-
tic theory of numbers, as if it were of the class H of Kubilius (Kubilius (1964),
Elliott (1980a), Chapter 12). The relevant step being justified by Lemma (11.1)
of Elliott (1980a). Hence we should obtain

\Fbn
oo,

the => denoting weak convergence. In the present circumstance this amounts to
proper convergence for each z. The symbol on the left hand side of this limiting
relation denotes the frequency

Number of integers n < x for which |T(«) | / I~"/2 < . . .
Number of integers n < x

If r{ri) vanishes sometimes, one would expect the series

T(p)-0P

to converge. Otherwise T(«) = 0 would hold on a sequence of integers of
asymptotic density one; almost always. (See, for example, Elliott (1979), Chapter
7.) If this last is not the case, then

lim x"1 2 1 = B > 0
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would hold and the above assertion concerning the limiting behaviour of
|T(«)|/I"I1/ /2 could still be made provided that in the frequency one counted only
integers for which T(«) =f= 0. This result may then be established (conditionally
upon the above assumptions) by means of a finite probability model for
non-negative multiplicative functions, constructed as in Chapter 3 of Elliott
(1979).
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