# Composition operators on $\mu$-Bloch spaces 

Huaihui Chen and Paul Gauthier

Abstract. Given a positive continuous function $\mu$ on the interval $0<t \leq 1$, we consider the space of so-called $\mu$-Bloch functions on the unit ball. If $\mu(t)=t$, these are the classical Bloch functions. For $\mu$, we define a metric $F_{z}^{\mu}(u)$ in terms of which we give a characterization of $\mu$-Bloch functions. Then, necessary and sufficient conditions are obtained in order that a composition operator be a bounded or compact operator between these generalized Bloch spaces. Our results extend those of Zhang and Xiao.

## 1 Introduction

Let $D$ denote the unit disk in the complex plane $\mathbb{C}$, and $H(D)$ the class of all holomorphic functions on $D$. A function $f \in H(D)$ is called a Bloch function if

$$
\|f\|=\sup \left\{\left(1-|z|^{2}\right)\left|f^{\prime}(z)\right|: z \in D\right\}<\infty
$$

The Bloch functions, with the norm

$$
\begin{equation*}
\|f\|_{\mathcal{B}}=|f(0)|+\|f\| \tag{1.1}
\end{equation*}
$$

form a Banach space, which is called the Bloch space and denoted by $\mathcal{B}$. The Bloch space of the unit disk has been investigated extensively, see [1].

The notion of Bloch function has been generalized to Riemann surfaces and domains in complex spaces of higher dimension. Let

$$
B^{n}=\left\{z=\left(z_{1}, \ldots, z_{n}\right):\left|z_{1}\right|^{2}+\cdots+\left|z_{n}\right|^{2}<1\right\}
$$

denote the unit ball in the complex space $\mathbb{C}^{n}$, and $H\left(B^{n}\right)$ the class of all holomorphic functions on $B^{n}$. For $f \in H\left(B^{n}\right)$, as in $[8,9]$, we define

$$
Q_{f}(z)=\sup \left\{\frac{|\nabla f(z) u|}{H_{z}(u, u)^{1 / 2}}: 0 \neq u \in \mathbb{C}^{n}\right\}
$$

where $\nabla f(z)=\left(\partial f / \partial z_{1}, \ldots, \partial f / \partial z_{n}\right)$ denotes the complex gradient of $f, \nabla f(z) u$ denotes the inner product $\langle\nabla f(z), \bar{u}\rangle$ of $\nabla f(z)$ and $\bar{u}$ and $H_{z}(u, u)$ is the Bergman metric on $B^{n}$ which is defined by

$$
H_{z}(u, u)=\frac{n+1}{2} \frac{\left(1-|z|^{2}\right)|u|^{2}+|\langle u, z\rangle|^{2}}{\left(1-|z|^{2}\right)^{2}}
$$

[^0]We remark that $Q_{f}^{\mu}(z)$ is the norm of $u \rightarrow \nabla f(z) u$ as a linear functional on the tangent space at $z\left(u \in \mathbb{C}^{n}\right.$ regarded as a tangent vector to the unit ball at $z$, taking the norm of $u$ to be the norm on tangent vectors associated with the Bergman metric). A function $f \in H\left(B^{n}\right)$ is called a Bloch function on $B^{n}$ if

$$
\begin{equation*}
\|f\|=\sup \left\{Q_{f}(z): z \in B^{n}\right\}<\infty \tag{1.2}
\end{equation*}
$$

and the Bloch space of $B^{n}$ consists of all Bloch functions on $B^{n}$ with the same norm (1.1) and is also denoted by $\mathcal{B}$.

Let $\phi$ be a holomorphic mapping of $D$ into itself. The composition operator $C_{\phi}$ on $H(D)$, induced by $\phi$, is defined by $C_{\phi}(f)=f \circ \phi$ for $f \in H(D)$. Since the classical Schwarz-Pick lemma [2] asserts that

$$
\frac{\left(1-|z|^{2}\right)\left|\phi^{\prime}(z)\right|}{1-|\phi(z)|^{2}} \leq 1 \quad \text { for } z \in D
$$

$C_{\phi}$ is always a bounded operator on $\mathcal{B}$. In 1995, K. Madigan and A. Matheson [4] proved that a composition operator $C_{\phi}$ is compact if and only if

$$
\frac{\left(1-|z|^{2}\right)\left|\phi^{\prime}(z)\right|}{1-|\phi(z)|^{2}} \rightarrow 0 \quad \text { as } \phi(z) \rightarrow \partial D
$$

We recall that a linear operator is compact if the image of a bounded sequence contains a convergent subsequence.

In the case of higher dimension, for a holomorphic mapping $\phi$ of $B^{n}$ into itself the composition operator $C_{\phi}$ induced by $\phi$ is defined in the same way. It is also a bounded operator on $\mathcal{B}$, because by the Schwarz-Pick lemma for the unit ball $B^{n}$,

$$
\begin{equation*}
\frac{H_{\phi(z)}\left(\phi^{\prime}(z) u, \phi^{\prime}(z) u\right)}{H_{z}(u, u)} \leq 1 \tag{1.3}
\end{equation*}
$$

holds for $z \in B^{n}$ and $0 \neq u \in \mathbb{C}^{n}$. Similarly to the case of one dimension, the necessary and sufficient condition for $C_{\phi}$ to be compact on $\mathcal{B}$ should be

$$
\frac{H_{\phi(z)}\left(\phi^{\prime}(z) u, \phi^{\prime}(z) u\right)}{H_{z}(u, u)} \rightarrow 0 \quad \text { as } \phi(z) \rightarrow \partial B^{n}
$$

This has been proved by J. Shi and L. Luo [7]. Instead of the unit ball, Z. Zhou and J. Shi [13] consider the composition operators of the Bloch space on the polydisc.

The so-called $\alpha$-Bloch spaces have been introduced and studied by a number of authors (for the general theory of $\alpha$-Bloch functions see [14]). For $\alpha>0$, a holomorphic function $f$ on the unit disk $D$ is called an $\alpha$-Bloch function, if

$$
\sup \left\{\left(1-|z|^{2}\right)^{\alpha}|f(z)|: z \in D\right\}<\infty
$$

The $\alpha$-Bloch space $\mathcal{B}^{\alpha}$ is defined in the same way. S. Ohno, K. Stroethoff and R. Zhao [6] studied the boundedness and compactness of a composition operator $C_{\phi}$ between
$\alpha$-Bloch spaces, and proved that $C_{\phi}$ is a bounded operator of $\mathcal{B}^{\alpha}$ into $\mathcal{B}^{\beta}$ if and only if

$$
\sup \left\{\frac{\left(1-|z|^{2}\right)^{\beta}\left|\phi^{\prime}(z)\right|}{\left(1-|\phi(z)|^{2}\right)^{\alpha}}: z \in D\right\}<\infty
$$

and that a bounded composition operator $C_{\phi}$ of $\mathcal{B}^{\alpha}$ into $\mathcal{B}^{\beta}$ is compact if and only if

$$
\frac{\left(1-|z|^{2}\right)^{\beta}\left|\phi^{\prime}(z)\right|}{\left(1-|\phi(z)|^{2}\right)^{\alpha}} \rightarrow 0 \quad \text { as } \phi(z) \rightarrow \partial D
$$

Let $\alpha>0$. We may call an $f \in H\left(B^{n}\right)$ an $\alpha$-Bloch function on $B^{n}$, if

$$
\|f\|_{\alpha, 1}=\sup \left\{\left(1-|z|^{2}\right)^{\alpha}|\nabla f(z)|: z \in B^{n}\right\}<\infty
$$

Meanwhile, we define

$$
\|f\|_{\alpha, 2}=\sup \left\{\left(1-|z|^{2}\right)^{\alpha}|\mathcal{R} f(z)|: z \in B^{n}\right\}<\infty
$$

where $\mathcal{R} f(z)=\nabla f(z) z=\langle\nabla f(z), \bar{z}\rangle$ is the radial derivative of $f$. The equivalence of these two norms is proved by W. Yang and C. Ouyang [11]. For $\alpha=1$, they are equivalent to the norm (1.2), see $[8,9]$. Now, the question is how to define the third equivalent norm, like (1.2), for an arbitrary $\alpha$. For $\alpha>1 / 2$, the answer can be found in [15]. In this paper, we solve this problem in a more general situation.

Let $\mathcal{M}$ be the class of all positive and non-decreasing continuous functions $\mu(t)$, $0<t \leq 1$, such that $\mu(t) \rightarrow 0$ as $t \rightarrow 0$. In addition, we assume that every function in $\mu$ possesses the property
$(\dagger) \quad$ there exists a $\delta>0$ such that $\mu(t) / t^{\delta}$ is decreasing for small $t$.
As a consequence of property $(\dagger)$, we have

$$
\mu(\sigma t) \geq \frac{\mu(t)}{C_{\mu, \sigma}} \quad \text { for } 0<\sigma<1,0<t \leq 1
$$

For $\mu \in \mathcal{M}$, a function $f \in H\left(B^{n}\right)$ is called a $\mu$-Bloch function if

$$
\|f\|_{\mu, 1}=\sup \left\{\mu\left(1-|z|^{2}\right)|\nabla f(z)|: z \in B^{n}\right\}<\infty .
$$

As in the case of $\alpha$-Bloch functions, for $f \in H\left(B^{n}\right)$ and $\mu \in \mathcal{M}$, we define

$$
\|f\|_{\mu, 2}=\sup \left\{\mu\left(1-|z|^{2}\right)|\mathcal{R} f(z)|: z \in B^{n}\right\}<\infty
$$

$\mu$-Bloch functions were recently studied by Z . Hu [3] for the polydisc, and by X. Zhang and J. Xiao for the unit ball [12]. Since $\mu$-Bloch functions are not invariant under Möbius mappings of $B^{n}$, it is more difficult to treat these function spaces. Zhang and Xiao gave another definition of $\mu$-Bloch function and set necessary and sufficient conditions for the boundedness and compactness of $C_{\phi}$, as a composition
operator between $\mu$-Bloch spaces, under an appropriate assumption on $\mu$ such that the equivalence of their definition and the above is guaranteed.

In Section 2 of this paper, for $\mu \in \mathcal{M}$, we give an estimate of the tangential derivative of a function $f \in H\left(B^{n}\right)$ in terms of the norm $\|f\|_{\mu, 2}$. In Section 3, we define a metric $F_{z}^{\mu}(u)$, by which the third equivalent norm $\|f\|_{\mu, 3}$ is defined. The equivalence of these norms is proved in Section 4. In Section 5, interesting examples of $\mu$-Bloch functions are constructed by gap series for an arbitrary $\mu \in \mathcal{M}$. They will be used in the proof of the necessity of the conditions for boundedness and compactness in Sections 6 and 7. One of them will show that our estimate for the tangential derivative in Section 2 is precise. Sections 6 and 7 are devoted to the discussion of boundedness and compactness. Necessary and sufficient conditions for the boundedness and compactness of $C_{\phi}$ as a composition operator between $\mu$-Bloch spaces are obtained. Under an appropriate assumption on $\mu$, our results become those of Zhang and Xiao [12].

## 2 The Radial Derivative and Tangential Derivative

In the following theorem and throughout this paper, $C_{\mu}$ denotes a positive number depending on $\mu$ only, which may assume different values when appearing at different places.

Theorem 2.1 Let $\mu \in \mathcal{M}$ and $f \in H\left(B^{n}\right)$. Then, for any $z \in B^{n}$ and $\zeta \in \partial B^{n}$ with $\zeta \perp z$, we have

$$
\begin{equation*}
|\nabla f(z) \zeta| \leq C_{\mu}\|f\|_{\mu, 2}\left(1+\int_{1-|z|^{2}}^{1} \frac{d t}{t^{1 / 2} \mu(t)}\right) \tag{2.1}
\end{equation*}
$$

If

$$
\begin{equation*}
I_{\mu}=\int_{0}^{1} \frac{d t}{t^{1 / 2} \mu(t)}<\infty \tag{2.2}
\end{equation*}
$$

then (2.1) becomes

$$
\begin{equation*}
|\nabla f(z) \zeta| \leq C_{\mu}\|f\|_{\mu, 2} \tag{2.3}
\end{equation*}
$$

Proof To prove (2.1) and (2.3) we may, by a unitary change of coordinates, assume that $z=\left(r_{0}, 0, \ldots, 0\right)$ with $0 \leq r_{0}<1$ and $\zeta=(0,1,0, \ldots, 0)$. Then

$$
\begin{equation*}
\nabla f(z) \zeta=\frac{\partial f}{\partial z_{2}}\left(r_{0}, 0, \ldots, 0\right) \tag{2.4}
\end{equation*}
$$

Let $f(z)=\sum_{\lambda} a_{\lambda} z^{\lambda}$, where $\lambda=\left(\lambda_{1}, \ldots, \lambda_{n}\right)$ with integers $\lambda_{k} \geq 0$ and $z^{\lambda}=$ $z_{1}^{\lambda_{1}} \cdots z_{n}^{\lambda_{n}}$. Then,

$$
\frac{\partial f(z)}{\partial z_{2}}=\sum_{\lambda_{2} \neq 0} a_{\lambda} \lambda_{2} z^{\lambda} / z_{2}, \quad \mathcal{R} f(z)=\sum_{\lambda} a_{\lambda}|\lambda| z^{\lambda}
$$

where $|\lambda|=\lambda_{1}+\cdots+\lambda_{n}$, and

$$
\begin{aligned}
\frac{\partial f}{\partial z_{2}}\left(z_{1}, 0, \ldots, 0\right) & =\sum_{\lambda_{1}=0}^{\infty} a_{\left(\lambda_{1}, 1,0, \ldots, 0\right)} z_{1}^{\lambda_{1}} \\
\frac{\partial \mathcal{R} f}{\partial z_{2}}\left(z_{1}, 0, \ldots, 0\right) & =\sum_{\lambda_{1}=0}^{\infty}\left(\lambda_{1}+1\right) a_{\left(\lambda_{1}, 1,0, \ldots, 0\right)} z_{1}^{\lambda_{1}}
\end{aligned}
$$

Thus,

$$
\begin{equation*}
r_{0} \cdot \frac{\partial f}{\partial z_{2}}\left(r_{0}, 0, \ldots, 0\right)=\int_{0}^{r_{0}} \frac{\partial \mathcal{R} f}{\partial z_{2}}(r, 0, \ldots, 0) d r \tag{2.5}
\end{equation*}
$$

For a fixed $r \geq 0$, the function $g\left(z_{2}\right)=\mathcal{R} f\left(r, z_{2}, 0, \ldots, 0\right)$ is estimated by

$$
\left|g\left(z_{2}\right)\right| \leq \frac{\|f\|_{\mu, 2}}{\mu\left(3\left(1-r^{2}\right) / 4\right)} \leq \frac{C_{\mu}\|f\|_{\mu, 2}}{\mu\left(1-r^{2}\right)} \quad \text { for }\left|z_{2}\right|<\frac{1}{2}\left(1-r^{2}\right)^{1 / 2}
$$

Here property $\dagger \dagger$ is used. Using Cauchy's inequality, we have

$$
\begin{equation*}
\left|\frac{\partial \mathcal{R} f}{\partial z_{2}}(r, 0, \ldots, 0)\right|=\left|g^{\prime}(0)\right| \leq \frac{C_{\mu}\|f\|_{\mu, 2}}{\left(1-r^{2}\right)^{1 / 2} \mu\left(1-r^{2}\right)} \tag{2.6}
\end{equation*}
$$

and, by (2.4) - (2.6),

$$
\begin{equation*}
|\nabla f(z) \zeta| \leq \frac{C_{\mu}\|f\|_{\mu, 2}}{|z|} \int_{0}^{|z|} \frac{d r}{\left(1-r^{2}\right)^{1 / 2} \mu\left(1-r^{2}\right)} \tag{2.7}
\end{equation*}
$$

Since

$$
\begin{gathered}
\frac{1}{|z|} \int_{0}^{|z|} \frac{d r}{\left(1-r^{2}\right)^{1 / 2} \mu\left(1-r^{2}\right)} \leq C_{\mu}+2 \int_{1 / 2}^{|z|^{2}} \frac{d r}{(1-r)^{1 / 2} \mu(1-r)} \\
=C_{\mu}+2 \int_{1-|z|^{2}}^{1} \frac{d t}{t^{1 / 2} \mu(t)} \quad \text { for }|z| \geq 1 / 2
\end{gathered}
$$

and

$$
\frac{1}{|z|} \int_{0}^{|z|} \frac{d r}{\left(1-r^{2}\right)^{1 / 2} \mu\left(1-r^{2}\right)} \leq C_{\mu} \quad \text { for } 0 \neq|z| \leq 1 / 2
$$

(2.1) follows from (2.7) if $z \neq 0$. By continuity, (2.1) also holds for $z=0$. (2.3) follows from (2.1) under the assumption (2.2). The theorem is proved.

The estimate (2.1) for $\mu(t)=t^{\alpha}$ with $0<\alpha<1 / 2$ or $1 / 2<\alpha<1$ can be found in Rudin's book [5]. In Section 5, we will give an example to show that the estimate (2.1) is sharp.

Lemma 2.2 Let $\mu \in \mathcal{M}$. Then, we have

$$
\begin{equation*}
1+\int_{t}^{1} \frac{d \tau}{\tau^{1 / 2} \mu(\tau)} \geq \frac{1}{C_{\mu}} \cdot \frac{t^{1 / 2}}{\mu(t)} \quad \text { for } 0<t \leq 1 \tag{2.8}
\end{equation*}
$$

Proof According to the property ( $\dagger$ ), there exists a $\delta>0$ such that $\mu(t) / t^{\delta}$ is decreasing for $0<t \leq t_{0}<1$. Then, $t^{1 / 2+\delta} / \mu(t)$ is increasing for $0<t \leq t_{0}$ and, consequently,

$$
\int_{t}^{1} \frac{d \tau}{\tau^{1 / 2} \mu(\tau)}>\int_{t}^{t_{0}} \frac{\tau^{1 / 2+\delta} d \tau}{\tau^{1+\delta} \mu(\tau)}>\frac{1}{\delta} \frac{t^{1 / 2+\delta}}{\mu(t)}\left(\frac{1}{t^{\delta}}-\frac{1}{t_{0}^{\delta}}\right)
$$

Thus, there exists a positive $t^{\prime}<t_{0}$ such that

$$
\int_{t}^{1} \frac{d t}{t^{1 / 2} \mu(t)}>\frac{1}{2 \delta} \frac{t^{1 / 2}}{\mu(t)} \quad \text { for } 0<t<t^{\prime}
$$

This shows that (2.8) holds for $0<t<t^{\prime}$. (2.8) is obviously true for $t^{\prime} \leq t \leq 1$. The lemma is proved.

Lemma 2.3 Let $\mu \in \mathcal{M}$. If there exists $\delta>0$ such that $\mu(t) / t^{1 / 2+\delta}$ is increasing for sufficiently small $t$, or $1 / M \leq \mu(t) / t^{1 / 2+\delta} \leq M$ for $0<t \leq 1$, then $I_{\mu}=\infty$ and

$$
\begin{equation*}
1+\int_{t}^{1} \frac{d \tau}{\tau^{1 / 2} \mu(\tau)} \leq C_{\mu} \cdot \frac{t^{1 / 2}}{\mu(t)} \quad \text { for } 0<t \leq 1 \tag{2.9}
\end{equation*}
$$

Proof Let $\mu(t) / t^{1 / 2+\delta}$ be increasing for $0<t \leq t_{0}<1$. Then,

$$
I_{\mu}>\int_{0}^{t_{0}} \frac{d \tau}{\tau^{1 / 2} \mu(t)} \geq \frac{t_{0}^{1 / 2+\delta}}{\mu\left(t_{0}\right)} \int_{0}^{t_{0}} \frac{d \tau}{\tau^{1+\delta}}=\infty
$$

As in the proof of the preceding lemma, for $0<t<t_{0}$, we have

$$
\int_{t}^{t_{0}} \frac{d \tau}{\tau^{1 / 2} \mu(\tau)}=\int_{t}^{t_{0}} \frac{\tau^{1 / 2+\delta} d \tau}{\tau^{1+\delta} \mu(\tau)}<\frac{t^{1 / 2+\delta}}{\mu(t)} \int_{t}^{t_{0}} \frac{d \tau}{\tau^{1+\delta}}<\frac{1}{\delta} \frac{t^{1 / 2}}{\mu(t)}
$$

Thus, there exists a positive $t^{\prime}<t_{0}$ such that

$$
1+\int_{t}^{1} \frac{d \tau}{\tau^{1 / 2} \mu(\tau)}<\frac{2}{\delta} \frac{t^{1 / 2}}{\mu(t)} \quad \text { for } 0<t<t^{\prime}
$$

since $t^{1 / 2} / \mu(t) \rightarrow \infty$ as $t \rightarrow 0$ by the assumption that $\mu(t) / t^{1 / 2+\delta}$ is increasing for small $t$. This shows that (2.9) holds for $0<t<t^{\prime}$. (2.9) is obviously true for $t^{\prime} \leq t \leq 1$.

Now, assume that $1 / M \leq \mu(t) / t^{1 / 2+\delta} \leq M$ for $0<t \leq 1$. Then,

$$
I_{\mu}=\int_{0}^{1} \frac{\tau^{1 / 2+\delta} d \tau}{\tau^{1+\delta} \mu(\tau)} \geq \frac{1}{M} \int_{0}^{1} \frac{d \tau}{\tau^{1+\delta}}=\infty
$$

and there exist a $t^{\prime}<1$ such that

$$
\begin{aligned}
1+\int_{t}^{1} \frac{d \tau}{\tau^{1 / 2} \mu(\tau)} \leq & 1+M \int_{t}^{1} \frac{d \tau}{\tau^{1+\delta}} \\
& =1+\frac{M}{\delta}\left(\frac{1}{t^{\delta}}-1\right) \leq \frac{2 M}{\delta t^{\delta}} \leq \frac{2 M}{\delta} \frac{t^{1 / 2}}{\mu(t)}, \quad \text { for } 0<t<t^{\prime}
\end{aligned}
$$

This shows that (2.9) holds for $0<t<t^{\prime}$. (2.9) is obviously true for $t^{\prime} \leq t \leq 1$. The lemma is proved.

The above lemmas show that if $\mu \in \mathcal{M}$ satisfies the condition formulated in Lemma 2.3, then

$$
\begin{equation*}
\frac{1}{C_{\mu}} \frac{t^{1 / 2}}{\mu(t)} \leq 1+\int_{t}^{1} \frac{d \tau}{\tau^{1 / 2} \mu(\tau)} \leq C_{\mu} \cdot \frac{t^{1 / 2}}{\mu(t)}, \quad \text { for } 0<t \leq 1 \tag{2.10}
\end{equation*}
$$

and (2.1) can be replaced by

$$
|\nabla f(z) \zeta| \leq \frac{C_{\mu}\left(1-|z|^{2}\right)^{1 / 2}}{\mu\left(1-|z|^{2}\right)} \cdot\|f\|_{\mu, 2}
$$

## $3 \mu$-Metrics

Let $\mu \in \mathcal{M}$. If the integral $I_{\mu}$ defined in Theorem 2.1 is divergent, we denote

$$
\nu(t)=\nu_{\mu}(t)=\left(\frac{1}{\mu(1)}+\int_{t}^{1} \frac{d t}{t^{1 / 2} \mu(t)}\right)^{-1}
$$

otherwise, let $\nu_{\mu}(t) \equiv \mu(1)$. The metric $F_{z}^{\mu}(u)$ corresponding to $\mu$ is defined by

$$
F_{z}^{\mu}(u)=\sqrt{\frac{n+1}{2}} \frac{1}{\mu\left(1-|z|^{2}\right)}\left\{\frac{\mu\left(1-|z|^{2}\right)^{2}}{\nu\left(1-|z|^{2}\right)^{2}}|u|^{2}+\left(1-\frac{\mu\left(1-|z|^{2}\right)^{2}}{\nu\left(1-|z|^{2}\right)^{2}}\right) \frac{|\langle u, z\rangle|^{2}}{|z|^{2}}\right\}^{1 / 2}
$$

for $0 \neq z \in B^{n}$ and $u \in \mathbb{C}^{n}$. For $z=0$, we put $F_{0}^{\mu}(u)=\sqrt{(n+1) / 2}|u| / \mu(1)$.
It is easy to verify that for $z \in B^{n}$, we have

$$
\begin{equation*}
\frac{\sqrt{n+1}|u|}{\sqrt{2} \max \left\{\mu\left(1-|z|^{2}\right), \nu\left(1-|z|^{2}\right)\right\}} \leq F_{z}^{\mu}(u) \leq \frac{\sqrt{n+1}|u|}{\sqrt{2} \min \left\{\mu\left(1-|z|^{2}\right), \nu\left(1-|z|^{2}\right)\right\}} \tag{3.1}
\end{equation*}
$$

Indeed, if $z \neq 0$, we may write $u=u_{1} z /|z|+u_{2} \zeta$, where $z \perp \zeta$ and $|\zeta|=1$. Thus, $\left|u_{1}\right|^{2}=|\langle u, z\rangle|^{2} /|z|^{2},\left|u_{2}\right|^{2}=|u|^{2}-\left|u_{1}\right|^{2}$ and

$$
F_{z}^{\mu}(u)=\sqrt{\frac{n+1}{2}}\left(\frac{\left|u_{1}\right|^{2}}{\mu\left(1-|z|^{2}\right)^{2}}+\frac{\left|u_{2}\right|^{2}}{\nu\left(1-|z|^{2}\right)^{2}}\right)^{1 / 2}
$$

from which (3.1) follows. Note that

$$
\frac{1}{\nu(t)} \leq \frac{1}{\mu(1)}+\frac{1}{\mu(t)} \int_{0}^{1} \frac{d \tau}{\tau^{1 / 2}}=\frac{1}{\mu(1)}+\frac{2}{\mu(t)} \leq \frac{3}{\mu(t)}
$$

Thus, (3.1) becomes

$$
\begin{equation*}
\frac{\sqrt{n+1}|u|}{3 \sqrt{2} \nu\left(1-|z|^{2}\right)} \leq F_{z}^{\mu}(u) \leq \frac{3 \sqrt{n+1}|u|}{\sqrt{2} \mu\left(1-|z|^{2}\right)} \quad \text { for } z \in B^{n} \tag{3.2}
\end{equation*}
$$

It follows from (3.2) that

$$
\begin{equation*}
F_{z}^{\mu}(u) \geq \frac{\sqrt{n+1}|u|}{\sqrt{2} \mu(1)} \quad \text { for } z \in B^{n} \tag{3.3}
\end{equation*}
$$

and since $\mu$ is non-decreasing,

$$
F_{z}^{\mu}(u) \leq \frac{3 \sqrt{n+1}|u|}{\sqrt{2} \mu\left(1-r^{2}\right)} \quad \text { for }|z| \leq r<1
$$

Lemma 3.1 If $\mu$ satisfies the condition in Lemma 2.3, then $F_{z}^{\mu}(u)$ is equivalent to

$$
\left(\left(1-|z|^{2}\right) / \mu\left(1-|z|^{2}\right)\right) H_{z}(u, u)^{1 / 2}
$$

where $H_{z}(u, u)$ is the Bergman metric of $B^{n}$ formulated in the Introduction.
Proof Assume that $\mu$ satisfies the condition in Lemma 2.3. Then, by (2.10),

$$
\frac{1}{C_{\mu}} \frac{t^{1 / 2}}{\mu(t)} \leq \frac{1}{\nu(t)} \leq C_{\mu} \cdot \frac{t^{1 / 2}}{\mu(t)}, \quad \text { for } 0<t \leq 1
$$

and

$$
\begin{aligned}
F_{z}^{\mu}(u)^{2} & =\frac{n+1}{2} \frac{1}{\mu\left(1-|z|^{2}\right)^{2}}\left\{\frac{\mu\left(1-|z|^{2}\right)^{2}}{\nu\left(1-|z|^{2}\right)^{2}}\left(|u|^{2}-\frac{|\langle u, z\rangle|^{2}}{|z|^{2}}\right)+\frac{|\langle u, z\rangle|^{2}}{|z|^{2}}\right\} \\
& \leq \frac{n+1}{2} \frac{C_{\mu}}{\mu\left(1-|z|^{2}\right)^{2}}\left\{\left(1-|z|^{2}\right)\left(|u|^{2}-\frac{|\langle u, z\rangle|^{2}}{|z|^{2}}\right)+\frac{|\langle u, z\rangle|^{2}}{|z|^{2}}\right\} \\
& =\frac{n+1}{2} \frac{C_{\mu}}{\mu\left(1-|z|^{2}\right)^{2}}\left\{\left(1-|z|^{2}\right)|u|^{2}+|\langle u, z\rangle|^{2}\right\} \\
& =C_{\mu}\left(\frac{1-|z|^{2}}{\mu\left(1-|z|^{2}\right)}\right)^{2} H_{z}(u, u) .
\end{aligned}
$$

For the same reason

$$
F_{z}^{\mu}(u)^{2} \geq \frac{1}{C_{\mu}}\left(\frac{1-|z|^{2}}{\mu\left(1-|z|^{2}\right)}\right)^{2} H_{z}(u, u)
$$

This proves the lemma.
Note that in terms of the function $\nu$, (2.1) in Theorem 2.1 can be written in

$$
\begin{equation*}
|\nabla f(z) \zeta| \leq \frac{C_{\mu}\|f\|_{\mu, 2}}{\nu\left(1-|z|^{2}\right)} \tag{3.4}
\end{equation*}
$$

## 4 Equivalent Norms of $\mu$-Bloch Functions

For $\mu \in \mathcal{M}$ and $f \in H\left(B^{n}\right)$, we define

$$
Q_{f}^{\mu}(z)=\sup \left\{\frac{|\nabla f(z) u|}{F_{z}^{\mu}(u)}: 0 \neq u \in \mathbb{C}^{n}\right\}, \quad \text { for } z \in B^{n}
$$

and

$$
\|f\|_{\mu, 3}=\sup \left\{Q_{f}^{\mu}(z): z \in B^{n}\right\}
$$

If $\mu$ satisfies the condition in Lemma 2.3, by Lemma 3.1 $F_{z}^{\mu}(u)$ is equivalent to

$$
\left(\left(1-|z|^{2}\right) / \mu\left(1-|z|^{2}\right)\right) H_{z}(u, u)^{1 / 2}
$$

and $\|f\|_{\mu, 3}$ is equivalent to

$$
\sup \left\{\frac{\mu\left(1-|z|^{2}\right)|\nabla f(z) u|}{\left(1-|z|^{2}\right) H_{z}(u, u)}: 0 \neq u \in \mathbb{C}^{n}\right\}
$$

It is the norm that was defined by Zhang and Xiao in [12].
Theorem 4.1 For $\mu \in \mathcal{M}$, the norms $\|f\|_{\mu, 1},\|f\|_{\mu, 2}$ and $\|f\|_{\mu, 3}$ are equivalent.
Proof Assume that $f \in B^{n}$ and $\mu \in \mathcal{M}$. It is obvious that $\|f\|_{\mu, 2} \leq\|f\|_{\mu, 1}$. Let $z \in B^{n}$. If $\nabla f(z) \neq 0$, letting $u=\nabla f(z) /|\nabla f(z)|$, we have

$$
\begin{aligned}
\mu\left(1-|z|^{2}\right)|\nabla f(z)| & =\mu\left(1-|z|^{2}\right)|\nabla f(z) \bar{u}| \\
& \leq \mu\left(1-|z|^{2}\right) Q_{f}^{\mu}(z) F_{z}^{\mu}(\bar{u}, \bar{u})^{1 / 2} \leq 3 \sqrt{\frac{n+1}{2}} Q_{f}^{\mu}(z),
\end{aligned}
$$

where (3.2) is used. This shows that

$$
\begin{equation*}
\|f\|_{\mu, 1} \leq 3 \sqrt{(n+1) / 2}\|f\|_{\mu, 3} \tag{4.1}
\end{equation*}
$$

Now, let $1 / 2 \leq|z|<1$ and $0 \neq u \in \mathbb{C}^{n}$. There exists a $\zeta$ such that $|\zeta|=1$, $\langle\zeta, z\rangle=0$ and $u=u_{1} z /|z|+u_{2} \zeta$. Then, $|u|^{2}=\left|u_{1}\right|^{2}+\left|u_{2}\right|^{2}$ and $u_{1}=\langle u, z\rangle /|z|$. By (3.4), we have

$$
\begin{aligned}
|\nabla f(z) u|^{2} & =\left|u_{1} \nabla f(z)(z /|z|)+u_{2} \nabla f(z) \zeta\right|^{2} \leq 8\left(\left|u_{1}\right|^{2}|\nabla f(z) z|^{2}+\left|u_{2}\right|^{2}|\nabla f(z) \zeta|^{2}\right) \\
& \leq \frac{8 C_{\mu}^{2}\|f\|_{\mu, 2}^{2}}{\mu\left(1-|z|^{2}\right)^{2}}\left(\left|u_{1}\right|^{2}+\left|u_{2}\right|^{2} \frac{\mu\left(1-|z|^{2}\right)^{2}}{\nu\left(1-|z|^{2}\right)^{2}}\right) \\
& =\frac{8 C_{\mu}^{2}\|f\|_{\mu, 2}^{2}}{\mu\left(1-|z|^{2}\right) 2}\left(\frac{\mu\left(1-|z|^{2}\right)^{2}}{\nu\left(1-|z|^{2}\right)^{2}}|u|^{2}+\left(1-\frac{\mu\left(1-|z|^{2}\right)^{2}}{\nu\left(1-|z|^{2}\right)^{2}}\right)\left|u_{1}\right|^{2}\right) \\
& =\frac{8 C_{\mu}^{2}\|f\|_{\mu, 2}^{2}}{\mu\left(1-|z|^{2}\right)^{2}}\left(\frac{\mu\left(1-|z|^{2}\right)^{2}}{\nu\left(1-|z|^{2}\right)^{2}}|u|^{2}+\left(1-\frac{\mu\left(1-|z|^{2}\right)^{2}}{\nu\left(1-|z|^{2}\right)^{2}}\right) \frac{|\langle u, z\rangle|^{2}}{|z|^{2}}\right) \\
& =\frac{16 C_{\mu}^{2}\|f\|_{\mu, 2}^{2}}{n+1} F_{z}^{\mu}(u)^{2} .
\end{aligned}
$$

It is proved that

$$
\begin{equation*}
\frac{|\nabla f(z) u|}{F_{z}^{\mu}(u)} \leq \frac{C_{\mu}}{\sqrt{n+1}}\|f\|_{\mu, 2} \tag{4.2}
\end{equation*}
$$

holds for $1 / 2 \leq|z|<1$ and $0 \neq u \in \mathbb{C}^{n}$. Combining (4.2) with (3.2) gives

$$
\begin{equation*}
|\nabla f(z) u| \leq C_{\mu}\|f\|_{\mu, 2}|u| \tag{4.3}
\end{equation*}
$$

for $|z|=1 / 2$ and $0 \neq u \in \mathbb{C}^{n}$. Since $|\nabla f(z) u|$ is subharmonic for a fixed $u$, (4.3) holds for $|z| \leq 1 / 2$. It follows from (4.3) and (3.3) that (4.2) holds for $|z| \leq 1 / 2$ and $0 \neq u \in \mathbb{C}^{n}$ also. This shows that

$$
\begin{equation*}
\|f\|_{\mu, 3} \leq \frac{C_{\mu}}{\sqrt{n+1}} \cdot\|f\|_{\mu, 2} \tag{4.4}
\end{equation*}
$$

The theorem is proved.
The equivalence of the norms for $\mu(t)=t^{\alpha}$ with $\alpha>1 / 2$ was indicated in [14].

## 5 Examples of $\mu$-Bloch functions

The following lemma is due to $\mathrm{Z} . \mathrm{Hu}$ [3]. For the convenience of our readers, we include the proof.

Lemma 5.1 Let $\gamma(\rho), 0 \leq \rho<1$, be an non-decreasing and positive continuous function with the property that $\gamma(\rho) \rightarrow \infty$ as $\rho \rightarrow 1$ and there exist positive numbers $\delta$ and $\rho_{0}, \rho_{0}<1$, such that $\gamma(\rho)(1-\rho)^{\delta}$ is decreasing for $\rho_{0} \leq \rho<1$. Then, there exists a function $\Gamma(\omega)$, holomorphic in the unit disk $D$ and represented by a gap series with positive coefficients, such that $\gamma(\rho) / M \leq \Gamma(\rho) \leq M \gamma(\rho)$ with $M>0$ for $0 \leq \rho<1$.

Proof Let $\rho_{k}$ be the smallest $\rho$ such that

$$
\begin{equation*}
\frac{\gamma\left(\rho_{k+1}\right)}{\gamma\left(\rho_{k}\right)}=8^{\delta} \quad \text { for } k=0,1,2, \ldots \tag{*}
\end{equation*}
$$

Let $n_{k}=\left[A / \log \left(1 / \rho_{k}\right)\right]$ for $k=0,1,2, \ldots$, where $A=\log \left(4 \cdot 8^{\delta}\right)$. Then there exists a positive integer $K$ such that for $k \geq K$, we have

$$
\frac{1-\rho_{k}}{1-\rho_{k+1}} \geq\left(\frac{\gamma\left(\rho_{k+1}\right)}{\gamma\left(\rho_{k}\right)}\right)^{1 / \delta}=8
$$

since $\gamma(\rho)(1-\rho)^{\delta}$ is decreasing for $\rho_{0} \leq \rho<1$, and

$$
\begin{equation*}
e^{-A}=\rho_{k}^{A / \log \left(1 / \rho_{k}\right)} \leq \rho_{k}^{n_{k}}<\rho_{k}^{A / \log \left(1 / \rho_{k}\right)-1}<2 e^{-A}=\frac{8^{-\delta}}{2} \tag{**}
\end{equation*}
$$

$$
\begin{aligned}
& (* * *) \quad \frac{n_{k+1}}{n_{k}} \geq \frac{A / \log \left(1 / \rho_{k+1}\right)-1}{A / \log \left(1 / \rho_{k}\right)}>\frac{A /\left(2\left(1-\rho_{k+1}\right)\right)-1}{A /\left(1-\rho_{k}\right)} \\
& =\frac{\left(1 / 2-\left(1-\rho_{k+1}\right) / A\right)\left(1-\rho_{k}\right)}{1-\rho_{k+1}} \\
& \geq 8\left(1 / 2-\left(1-\rho_{k+1}\right) / A\right)>2 \text {. }
\end{aligned}
$$

We define

$$
\Gamma(\omega)=\sum_{k=K}^{\infty} \gamma\left(\rho_{k}\right) \omega^{n_{k}}
$$

Let $\rho_{K} \leq \rho_{m-1} \leq \rho<\rho_{m} . \operatorname{By}(*),(* *)$, and $(* * *)$,

$$
\begin{aligned}
\Gamma(\rho)<\Gamma\left(\rho_{m}\right) & =\sum_{k=K}^{\infty} \gamma\left(\rho_{k}\right) \rho_{m}^{n_{k}}=\sum_{k=K}^{m-1} \gamma\left(\rho_{k}\right) \rho_{m}^{n_{k}}+\sum_{k=m}^{\infty} \gamma\left(\rho_{k}\right) \rho_{m}^{n_{k}} \\
& <\sum_{k=K}^{m-1} \gamma\left(\rho_{k}\right)+\sum_{k=m}^{\infty} \gamma\left(\rho_{k}\right)\left(\rho_{m}^{n_{m}}\right)^{n_{k} / n_{m}} \\
& <\gamma\left(\rho_{m}\right) \sum_{k=K}^{m-1} 8^{-(m-k) \delta}+\gamma\left(\rho_{m}\right) \sum_{k=m}^{\infty} 8^{(k-m) \delta}\left(\frac{8^{-\delta}}{2}\right)^{2^{k-m}} \\
& <\gamma\left(\rho_{m}\right) \sum_{k=K}^{m-1} 8^{-(m-k) \delta}+\gamma\left(\rho_{m}\right) \sum_{k=m}^{\infty} 8^{(k-m) \delta}\left(\frac{8^{-\delta}}{2}\right)^{k-m+1} \\
& <\gamma\left(\rho_{m}\right)\left(\frac{8^{-\delta}}{1-8^{-\delta}}+8^{-\delta}\right)<\frac{2 \cdot 8^{-\delta}}{1-8^{-\delta}} \cdot \gamma\left(\rho_{m}\right)
\end{aligned}
$$

On the other hand, by $(* *)$,

$$
\Gamma(\rho) \geq \Gamma\left(\rho_{m-1}\right)>\gamma\left(\rho_{m-1}\right) \rho_{m-1}^{n_{m-1}} \geq e^{-A} \gamma\left(\rho_{m-1}\right)=\frac{8^{-\delta}}{4} \cdot \gamma\left(\rho_{m-1}\right)
$$

Thus, since $\gamma$ is non-decreasing, we have

$$
\frac{8^{-2 \delta}}{4}=\frac{8^{-\delta}}{4} \cdot \frac{\gamma\left(\rho_{m-1}\right)}{\gamma\left(\rho_{m}\right)} \leq \frac{\Gamma(\rho)}{\gamma(\rho)} \leq \frac{2 \cdot 8^{-\delta}}{1-8^{-\delta}} \cdot \frac{\gamma\left(\rho_{m}\right)}{\gamma\left(\rho_{m-1}\right)}=\frac{2}{1-8^{-\delta}}
$$

The above estimate has been proved for $\rho \geq \rho_{K}$. For $0 \leq \rho \leq \rho_{K}$, the ratio $\Gamma(\rho) / \gamma(\rho)$ is bounded above and has a positive lower bound, since both $\Gamma(\rho)$ and $\gamma(\rho)$ are positive and continuous. This shows that $\Gamma(\omega)$ is the function required and the lemma is proved.

By using the above lemma, we may construct useful examples of $\mu$-Bloch functions.

Example 1 For $\mu \in \mathcal{M}$, let $\Gamma_{\mu}(\omega)$ be the function constructed for $\gamma(\rho)=1 / \mu(1-$ $\rho$ ) in the above lemma. Let

$$
G_{\mu}(\omega)=\int_{0}^{\omega} \Gamma_{\mu}(w) d w \quad \text { for } \omega \in D
$$

For $z_{0} \in \partial B^{n}$, define $g(z)=g_{\mu, z_{0}}(z)=G_{\mu}\left(\left\langle z, z_{0}\right\rangle\right)$ for $z \in B^{n}$. Then, for $z \in B^{n}$,

$$
\begin{equation*}
\nabla g(z)=\Gamma_{\mu}\left(\left\langle z, z_{0}\right\rangle\right) \bar{z}_{0} \tag{5.1}
\end{equation*}
$$

and
$\mu\left(1-|z|^{2}\right)|\nabla g(z)|=\mu\left(1-|z|^{2}\right)\left|\Gamma_{\mu}\left(\left\langle z, z_{0}\right\rangle\right)\right| \leq \mu\left(1-|z|^{2}\right) \Gamma_{\mu}(|z|) \leq \frac{C_{\mu} \mu\left(1-|z|^{2}\right)}{\mu(1-|z|)}$.
It follows from ( $\dagger \dagger$ ) that

$$
\begin{equation*}
\frac{\mu\left(1-r^{2}\right)}{\mu(1-r)} \leq \frac{\mu\left(1-r^{2}\right)}{\mu\left(\left(1-r^{2}\right) / 2\right)} \leq C_{\mu} \quad \text { for } 0 \leq r<1 \tag{5.2}
\end{equation*}
$$

Thus,

$$
\begin{equation*}
\|g\|_{\mu, 1}=\sup _{z \in B^{n}} \mu\left(1-|z|^{2}\right)|\nabla g(z)| \leq C_{\mu} \tag{5.3}
\end{equation*}
$$

This means that $g \in \mathcal{B}^{\mu}$.
On the other hand, taking $z=r z_{0}$ with $0 \leq r<1$, we have $\nabla g(z) \zeta=0$ and

$$
\begin{aligned}
\mu\left(1-|z|^{2}\right)|\nabla g(z)| & =\mu\left(1-|z|^{2}\right)\left|\nabla g(z) z_{0}\right| \\
& =\mu\left(1-r^{2}\right) \Gamma_{\mu}(r) \geq \frac{1}{C_{\mu}} \cdot \frac{\mu\left(1-r^{2}\right)}{\mu(1-r)} \geq \frac{1}{C_{\mu}}
\end{aligned}
$$

This shows that on the line $z=r z_{0}$ with $0 \leq r<1$, all tangential derivatives of $g$ are equal to 0 , and the radial derivative attains $1 / \mu\left(1-|z|^{2}\right)$ up to a constant factor depending on $\mu$ only.

Example 2 For $\mu \in \mathcal{M}$, let $\Gamma_{\mu}(\omega)$ be the function formulated in Example 1,

$$
\Lambda_{\mu}(\omega)=\frac{\Gamma(\omega)}{(1-\omega)^{1 / 2}}
$$

and

$$
L_{\mu}(\omega)=1+\int_{0}^{\omega} \Lambda_{\mu}(z) d z \quad \text { for } \omega \in D
$$

Then, for $0 \leq r<1$, since $1 /\left(C_{\mu} \mu(1-\rho)\right) \leq \Gamma(\rho) \leq C_{\mu} / \mu(1-\rho)$ by Lemma 5.1, we have

$$
\begin{equation*}
L_{\mu}(r) \leq 1+C_{\mu} \int_{0}^{r} \frac{d \rho}{(1-\rho)^{1 / 2} \mu(1-\rho)} \tag{5.4}
\end{equation*}
$$

and

$$
\begin{equation*}
L_{\mu}(r) \geq \frac{1}{C_{\mu}}\left(1+\int_{0}^{r} \frac{d \rho}{(1-\rho)^{1 / 2} \mu(1-\rho)}\right)=\frac{1}{C_{\mu}}\left(1+\int_{1-r}^{1} \frac{d t}{t^{1 / 2} \mu(t)}\right) \tag{5.5}
\end{equation*}
$$

For $z_{0}, \zeta \in \partial B^{n}$ with $\zeta \perp z_{0}$, define $l(z)=l_{\mu, z_{0}, \zeta}=\langle z, \zeta\rangle L_{\mu}\left(\left\langle z, z_{0}\right\rangle\right)$ for $z \in B^{n}$. Then, for $z \in B^{n}$,

$$
\begin{equation*}
\nabla l(z)=L_{\mu}\left(\left\langle z, z_{0}\right\rangle\right) \bar{\zeta}+\langle z, \zeta\rangle \Lambda_{\mu}\left(\left\langle z, z_{0}\right\rangle\right) \bar{z}_{0} \tag{5.6}
\end{equation*}
$$

and

$$
\begin{equation*}
\mu\left(1-|z|^{2}\right)|\nabla l(z)| \leq \mu\left(1-|z|^{2}\right) L_{\mu}(|z|)+\mu\left(1-|z|^{2}\right)|\langle z, \zeta\rangle| \Lambda_{\mu}\left(\left|\left\langle z, z_{0}\right\rangle\right|\right) \tag{5.7}
\end{equation*}
$$

Since $\Lambda_{\mu}(\rho) \leq C_{\mu} /\left((1-\rho)^{1 / 2} \mu(1-\rho)\right)$, by (5.2), we have

$$
\begin{array}{r}
\mu\left(1-|z|^{2}\right)|\langle z, \zeta\rangle| \Lambda_{\mu}\left(\left|\left\langle z, z_{0}\right\rangle\right|\right) \leq \frac{C_{\mu}|\langle z, \zeta\rangle|}{\left(1-\left|\left\langle z, z_{0}\right\rangle\right|\right)^{1 / 2}} \frac{\mu\left(1-|z|^{2}\right)}{\mu\left(1-\left|\left\langle z, z_{0}\right\rangle\right|\right)}  \tag{5.8}\\
\quad \leq \frac{C_{\mu}\left(1-\left|\left\langle z, z_{0}\right\rangle\right|^{2}\right)^{1 / 2}}{\left(1-\left|\left\langle z, z_{0}\right\rangle\right|\right)^{1 / 2}} \frac{\mu\left(1-|z|^{2}\right)}{\mu(1-|z|)} \leq \frac{C_{\mu} \sqrt{2} \mu\left(1-|z|^{2}\right)}{\mu(1-|z|)} \leq C_{\mu}^{\prime}
\end{array}
$$

where the inequality $|\langle z, \zeta\rangle|^{2}+\left|\left\langle z, z_{0}\right\rangle\right|^{2} \leq|z|^{2}<1$ is used, and by (5.4) and (5.2),

$$
\begin{align*}
\mu\left(1-|z|^{2}\right) L_{\mu}(|z|) & \leq \mu(1)+C_{\mu} \mu\left(1-|z|^{2}\right) \int_{0}^{|z|} \frac{d r}{(1-r)^{1 / 2} \mu(1-r)}  \tag{5.9}\\
& \leq \mu(1)+\frac{C_{\mu} \mu\left(1-|z|^{2}\right)}{\mu(1-|z|)} \int_{0}^{1} \frac{d r}{(1-r)^{1 / 2}} \leq C_{\mu}^{\prime}
\end{align*}
$$

It follows from (5.2), (5.7), (5.8), and (5.9) that

$$
\begin{equation*}
\|l\|_{\mu, 1}=\sup _{z \in B^{n}} \mu\left(1-|z|^{2}\right)|\nabla l(z)| \leq C_{\mu} \tag{5.10}
\end{equation*}
$$

and $l \in \mathcal{B}^{\mu}$.
On the other hand, taking $z=r z_{0}$ with $r \geq 0$, we have $\nabla l(z) z_{0}=0$ and by (5.5),

$$
\nabla l(z) \zeta=L_{\mu}(r)>L_{\mu}\left(r^{2}\right) \geq \frac{1}{C_{\mu}}\left(1+\int_{1-r^{2}}^{1} \frac{d t}{t^{1 / 2} \mu(t)}\right)
$$

This shows that on the line $z=r z_{0}$ with $r \geq 0$, the radial derivative of $l$ is equal to 0 and the tangential derivative along $\zeta$ attains the upper bound (2.1) in Theorem 2.1 up to a constant factor depending only on $\mu$. So (2.1) is sharp.

## 6 Bounded Composition Operators Between $\mu$-Bloch Spaces

Theorem 6.1 Let $\mu_{1}, \mu_{2} \in \mathcal{M}$, and let $\phi$ be a holomorphic mapping of $B^{n}$ into itself. Then the following conditions are equivalent:
(i) $C_{\phi}: \mathcal{B}^{\mu_{1}} \longrightarrow \mathcal{B}^{\mu_{2}}$ is bounded;
(ii) $\sup \left\{\mu_{2}\left(1-|z|^{2}\right) F_{\phi(z)}^{\mu_{1}}\left(\phi^{\prime}(z) z\right): z \in B^{n}\right\}=M_{1}<\infty$;
(iii)

$$
\sup \left\{\frac{F_{\phi(z)}^{\mu_{1}}\left(\phi^{\prime}(z) u\right)}{F_{z}^{\mu_{2}}(u)}: z \in B^{n}, 0 \neq u \in \mathbb{C}^{n}\right\}=M_{2}<\infty
$$

Proof It is immediate that (iii) implies (ii). In fact, for $0 \neq z \in B^{n}$, we have $F_{z}^{\mu_{2}}(z)=$ $|z| / \mu_{2}\left(1-|z|^{2}\right)$ and, by (iii),

$$
M_{2} \geq \frac{F_{\phi(z)}^{\mu_{1}}\left(\phi^{\prime}(z) z\right)}{F_{z}^{\mu_{2}}(z)}>\mu_{2}\left(1-|z|^{2}\right) F_{\phi(z)}^{\mu_{1}}\left(\phi^{\prime}(z) z\right)
$$

Now assume that (ii) holds. Let $f \in \mathcal{B}^{\mu_{1}}$ and $z \in B^{n}$. If $\phi^{\prime}(z) z=0$,

$$
\mu_{2}\left(1-|z|^{2}\right)|\nabla(f \circ \phi)(z) z|=\mu_{2}\left(1-|z|^{2}\right)\left|\nabla f(\phi(z)) \phi^{\prime}(z) z\right|=0 .
$$

If $\phi^{\prime}(z) z \neq 0$, then

$$
\begin{aligned}
& \mu_{2}\left(1-|z|^{2}\right)|\nabla(f \circ \phi)(z) z| \\
& \\
& \quad=\mu_{2}\left(1-|z|^{2}\right) F_{\phi(z)}^{\mu_{1}}\left(\phi^{\prime}(z) z\right) \cdot \frac{\left|\nabla f(\phi(z)) \phi^{\prime}(z) z\right|}{F_{\phi(z)}^{\mu_{1}}\left(\phi^{\prime}(z) z\right)} \leq M_{1}\|f\|_{\mu_{1}, 3}
\end{aligned}
$$

It is proved that $\left\|C_{\phi}(f)\right\|_{\mu_{2}, 2} \leq M_{1}\|f\|_{\mu_{1}, 3}$. Consequently, by (4.1) and (4.4),

$$
\left\|C_{\phi}(f)\right\|_{\mu_{2}, 1} \leq \frac{C_{\mu_{1}} C_{\mu_{2}} M_{1}}{\sqrt{n+1}} \cdot\|f\|_{\mu_{1}, 1} \leq \frac{C_{\mu_{1}} C_{\mu_{2}} M_{1}}{\sqrt{n+1}} \cdot\|f\|_{\mathcal{B}^{\mu_{1}}}
$$

On the other hand,

$$
\begin{aligned}
|f(\phi(0))| & \leq|f(0)|+\int_{0}^{\phi(0)}|\nabla f(\zeta)||d \zeta| \\
& \leq|f(0)|+\|f\|_{\mu_{1}, 1} \int_{0}^{|\phi(0)|} \frac{d r}{\mu_{1}\left(1-r^{2}\right)}=C_{\mu_{1}, \phi}\|f\|_{\mathcal{B}^{\mu_{1}}}
\end{aligned}
$$

Thus,

$$
\left\|C_{\phi}(f)\right\|_{\mathcal{B}^{\mu_{2}}}=|f(\phi(0))|+\frac{C_{\mu_{1}} C_{\mu_{2}} M_{1}}{\sqrt{n+1}} \cdot\|f\|_{\mu_{1}, 1} \leq C_{\mu_{2}} C_{\mu_{1}, \phi}\left(1+M_{1}\right)\|f\|_{\mathcal{B}^{\mu_{1}}}
$$

This shows that $C_{\phi}: \mathcal{B}^{\mu_{1}} \longrightarrow \mathcal{B}^{\mu_{2}}$ is bounded. It is proved that (ii) implies (i).

Finally, assume that $C_{\phi}: \mathcal{B}^{\mu_{1}} \longrightarrow \mathcal{B}^{\mu_{2}}$ is bounded. For $z^{\prime} \in B^{n}$ and $0 \neq u \in \mathbb{C}^{n}$ with $\phi\left(z^{\prime}\right) \neq 0$ and $\phi^{\prime}\left(z^{\prime}\right) u \neq 0$, let $w^{\prime}=\phi\left(z^{\prime}\right), z_{0}=w^{\prime} /\left|w^{\prime}\right|, v^{\prime}=\phi^{\prime}\left(z^{\prime}\right) u=$ $v_{1} z_{0}+v_{2} \zeta=e^{i \theta_{1}}\left|v_{1}\right| z_{0}+e^{i \theta_{2}}\left|v_{2}\right| \zeta$ with $\zeta \perp w^{\prime}$ and $|\zeta|=1$. Define

$$
f(z)=f_{z^{\prime}, u}(z)=e^{-i \theta_{1}} g_{\mu_{1}, z_{0}}(z)+e^{-i \theta_{2}} l_{\mu_{1}, z_{0}, \zeta}(z) \quad \text { for } z \in B^{n},
$$

where $g_{\mu_{1}, z_{0}}$ and $l_{\mu_{1}, z_{0}, \zeta}(z)$ are the functions defined in Examples 1 and 2. Then,

$$
\begin{equation*}
f(0)=0 \quad \text { and }\|f\|_{\mu_{1}, 1} \leq C_{\mu_{1}} \tag{6.1}
\end{equation*}
$$

by (5.3) and (5.10). On the other hand, it follows from (5.1) and (5.6) that

$$
\nabla f\left(w^{\prime}\right)=e^{-i \theta_{1}} \Gamma_{\mu_{1}}\left(\left|w^{\prime}\right|\right) \bar{z}_{0}+e^{-i \theta_{2}} L_{\mu_{1}}\left(\left|w^{\prime}\right|\right) \bar{\zeta}
$$

and

$$
\nabla f\left(w^{\prime}\right) v^{\prime}=\left|v_{1}\right| \Gamma_{\mu_{1}}\left(\left|w^{\prime}\right|\right)+\left|v_{2}\right| L_{\mu_{1}}\left(\left|w^{\prime}\right|\right)
$$

We have

$$
\Gamma\left(\left|w^{\prime}\right|\right) \geq \frac{1}{C_{\mu_{1}} \mu_{1}\left(1-\left|w^{\prime}\right|\right)}, \quad L_{\mu_{1}}\left(\left|w^{\prime}\right|\right) \geq \frac{1}{C_{\mu_{1}} \nu_{\mu_{1}}\left(1-\left|w^{\prime}\right|^{2}\right)}
$$

The last inequality follows from (5.2). Thus,

$$
\begin{aligned}
\left|\nabla f\left(w^{\prime}\right) v^{\prime}\right| & \geq \frac{1}{C_{\mu_{1}}}\left(\frac{\left|v_{1}\right|}{\mu_{1}\left(1-\left|w^{\prime}\right|\right)}+\frac{\left|v_{2}\right|}{\nu_{\mu_{1}}\left(1-\left|w^{\prime}\right|^{2}\right)}\right) \\
& \geq \frac{1}{C_{\mu_{1}}}\left(\frac{\left|v_{1}\right|^{2}}{\mu_{1}\left(1-\left|w^{\prime}\right|^{2}\right)^{2}}+\frac{\left|v_{2}\right|^{2}}{\nu_{\mu_{1}}\left(1-\left|w^{\prime}\right|^{2}\right)^{2}}\right)^{1 / 2}=\frac{\sqrt{2}}{C_{\mu_{1}} \sqrt{n+1}} F_{w^{\prime}}^{\mu_{1}}\left(v^{\prime}\right)
\end{aligned}
$$

This shows that

$$
\begin{equation*}
\frac{\left|\nabla f\left(w^{\prime}\right) v^{\prime}\right|}{F_{w^{\prime}}^{\mu_{1}}\left(v^{\prime}\right)} \geq \frac{1}{C_{\mu_{1}} \sqrt{n+1}} \tag{6.2}
\end{equation*}
$$

Since $C_{\phi}$ is bounded, by (6.1) and (6.2), we have

$$
\begin{aligned}
C_{\mu_{1}}\left\|C_{\phi}\right\| & \geq\left\|C_{\phi}\right\| \cdot\|f\|_{\mu_{1}, 1}=\left\|C_{\phi}\right\| \cdot\|f\|_{\mathcal{B}^{\mu_{1}}} \geq\left\|C_{\phi}(f)\right\|_{\mathcal{B}^{\mu_{2}}} \\
& \geq\left\|C_{\phi}(f)\right\|_{\mu_{2}, 1} \geq \frac{\sqrt{n+1}}{C_{\mu_{2}}}\left\|C_{\phi}(f)\right\|_{\mu_{2}, 3} \geq \frac{\sqrt{n+1}}{C_{\mu_{2}}} \frac{\left|\nabla f\left(\phi\left(z^{\prime}\right)\right) \phi^{\prime}\left(z^{\prime}\right) u\right|}{F_{z^{\prime}}^{\mu_{2}}(u)} \\
& =\frac{\sqrt{n+1}}{C_{\mu_{2}}} \frac{\left|\nabla f\left(\phi\left(z^{\prime}\right)\right) \phi^{\prime}\left(z^{\prime}\right) u\right|}{F_{\phi\left(z^{\prime}\right)}^{\mu_{1}}\left(\phi^{\prime}\left(z^{\prime}\right) u\right)} \frac{F_{\phi\left(z^{\prime}\right)}^{\mu_{1}}\left(\phi^{\prime}\left(z^{\prime}\right) u\right)}{F_{z^{\prime}}^{\mu_{2}}(u)} \\
& =\frac{\sqrt{n+1}}{C_{\mu_{2}}} \frac{\left|\nabla f\left(w^{\prime}\right) v^{\prime}\right|}{F_{w^{\prime}}^{\mu_{1}}\left(v^{\prime}\right)} \frac{F_{\phi\left(z^{\prime}\right)}^{\mu_{1}}\left(\phi^{\prime}\left(z^{\prime}\right) u\right)}{F_{z^{\prime}}^{\mu_{2}}(u)} \geq \frac{1}{C_{\mu_{2}} C_{\mu_{1}}} \frac{F_{\phi\left(z^{\prime}\right)}^{\mu_{1}}\left(\phi^{\prime}\left(z^{\prime}\right) u\right)}{F_{z^{\prime}}^{\mu_{2}}(u)} .
\end{aligned}
$$

Thus,

$$
\frac{F_{\phi\left(z^{\prime}\right)}^{\mu_{1}}\left(\phi^{\prime}\left(z^{\prime}\right) u\right)}{F_{z^{\prime}}^{\mu_{2}}(u)} \leq C_{\mu_{2}} C_{\mu_{1}}\left\|C_{\phi}\right\|
$$

when $\phi\left(z^{\prime}\right) \neq 0$ and $\phi^{\prime}\left(z^{\prime}\right) u \neq 0$. The same inequality also holds if $\phi\left(z^{\prime}\right)=0$ and $\phi^{\prime}\left(z^{\prime}\right) u=0$ by continuity. This shows that (i) implies (iii). The theorem is proved.

Lemma 6.2 $C_{\phi}: \mathcal{B}^{\mu} \longrightarrow \mathcal{B}^{\mu}$ is bounded for any $\phi \in \operatorname{Aut}\left(B^{n}\right)$ and $\mu \in \mathcal{M}$.
Proof Let $\phi \in \operatorname{Aut}\left(B^{n}\right)$ and $\mu \in \mathcal{M}$. Assume that $\phi=\psi \circ \phi_{a}$, where $\psi$ is a mapping defined by a unitary matrix and $\phi_{a}$ is a mapping in $\operatorname{Aut}\left(B^{n}\right)$ which exchanges $a$ with the origin. A well-known identity asserts that

$$
1-|\phi(z)|^{2}=1-\left|\phi_{a}(z)\right|^{2}=\frac{\left(1-|a|^{2}\right)\left(1-|z|^{2}\right)}{|1-\langle z, a\rangle|^{2}}
$$

Thus,

$$
\begin{equation*}
\frac{1-|\phi(z)|^{2}}{1-|z|^{2}} \geq \frac{1-|a|^{2}}{2} \quad \text { for } z \in B^{n} \tag{6.3}
\end{equation*}
$$

Let $z \in B^{n}$. If $|\phi(z)| \leq|z|$, by (3.2), we have

$$
\mu\left(1-|z|^{2}\right) F_{\phi(z)}^{\mu}\left(\phi^{\prime}(z) z\right) \leq \frac{3 \sqrt{n+1} \mu\left(1-|z|^{2}\right)\left|\phi^{\prime}(z) z\right|}{\sqrt{2} \mu\left(1-|\phi(z)|^{2}\right)} \leq C_{n}\left|\phi^{\prime}(z)\right|
$$

where $\left|\phi^{\prime}(z)\right|$ is the operator norm of $\phi^{\prime}(z)$, which is defined by

$$
\left|\phi^{\prime}(z)\right|=\sup \left\{\left|\phi^{\prime}(z) u\right|: u \in \partial B^{n}\right\} .
$$

In the case $|\phi(z)| \geq|z|$, because of (6.3) and ( $\dagger \dagger$ ),

$$
\begin{aligned}
\mu\left(1-|z|^{2}\right) F_{\phi(z)}^{\mu}\left(\phi^{\prime}(z) z\right) & \leq \frac{C_{n} \mu\left(1-|z|^{2}\right)\left|\phi^{\prime}(z)\right|}{\mu\left(1-|\phi(z)|^{2}\right)} \\
& \leq \frac{C_{n} \mu\left(1-|z|^{2}\right)\left|\phi^{\prime}(z)\right|}{\mu\left(\left(1-|a|^{2}\right)\left(1-|z|^{2}\right) / 2\right)} \leq C_{n} C_{a, \mu}\left|\phi^{\prime}(z)\right|
\end{aligned}
$$

Now $\phi$ is holomorphic on the closed ball $\bar{B}^{n}$ and so $\left|\phi^{\prime}(z)\right|$ is bounded on $B^{n}$. This shows that the condition (ii) in Theorem 6.1 is satisfied. By Theorem 6.1, $C_{\phi}: \mathcal{B}^{\mu} \longrightarrow \mathcal{B}^{\mu}$ is bounded and the lemma is proved.

Lemma 6.3 Let $\mu \in \mathcal{M}$ with the property that $\mu(t) / t$ is increasing for small $t$ or there is a $\delta \geq 0$ such that $m t^{1+\delta} \leq \mu(t) \leq M t^{1+\delta}$ for $0<t \leq 1$, and let $\phi$ be a holomorphic mapping of $B^{n}$ into itself such that $\bar{\phi}(0)=0$. Then $C_{\phi}: \mathcal{B}^{\mu} \longrightarrow \mathcal{B}^{\mu}$ is bounded.

Proof Assume that $\mu(t) / t$ is increasing for $0<t \leq t_{0}<1$. Then $\mu$ satisfies the assumption in Lemma 2.3. By the Schwarz-Pick lemma, $|\phi(z)| \leq|z|$ and $1-|z|^{2} \leq$ $1-|\phi(z)|^{2}$ since $\phi(0)=0$. For $z \in B^{n}$ and $0 \neq u \in \mathbb{C}^{n}$, applying Lemma 3.1 and (1.3), we have

$$
\frac{F_{\phi(z)}^{\mu}\left(\phi^{\prime}(z) u\right)}{F_{z}^{\mu}(u)} \leq C_{\mu} \cdot \frac{\mu\left(1-|z|^{2}\right)}{\left(1-|z|^{2}\right)} \frac{1-|\phi(z)|^{2}}{\mu\left(1-|\phi(z)|^{2}\right)}
$$

If $1-|\phi(z)|^{2} \leq t_{0}$, since $\mu(t) / t$ is increasing for $0<t \leq t_{0}$, we have

$$
\frac{\mu\left(1-|z|^{2}\right)}{1-|z|^{2}} \leq \frac{\mu\left(1-|\phi(z)|^{2}\right)}{1-|\phi(z)|^{2}}
$$

If $1-|\phi(z)|^{2} \geq t_{0}$, then

$$
\frac{1-|\phi(z)|^{2}}{\mu\left(1-|\phi(z)|^{2}\right)} \leq \max \left\{t / \mu(t): t_{0} \leq t \leq 1\right\}
$$

If $1-|z|^{2} \leq t_{0}$, since $\mu(t) / t$ is increasing for $0<t \leq t_{0}$, we have

$$
\frac{\mu\left(1-|z|^{2}\right)}{\left(1-|z|^{2}\right)} \leq \frac{\mu\left(t_{0}\right)}{t_{0}}
$$

If $1-|z|^{2} \geq t_{0}$, then

$$
\frac{\mu\left(1-|z|^{2}\right)}{\left(1-|z|^{2}\right)} \leq \max \left\{\mu(t) / t: t_{0} \leq t \leq 1\right\}
$$

Combining the above estimates we conclude that the condition (iii) in Theorem 6.1 is satisfied and $C_{\phi}: \mathcal{B}^{\mu} \longrightarrow \mathcal{B}^{\mu}$ is bounded.

If there is a $\delta \geq 0$ such that $\left.m t^{1+\delta} \leq \mu(t) \leq M t^{1+\delta}\right)$ for $0<t \leq 1$, then $\mu$ satisfies the assumption in Lemma 2.3 also and, for $z \in B^{n}$ and $0 \neq u \in \mathbb{C}^{n}$,

$$
\frac{F_{\phi(z)}^{\mu}\left(\phi^{\prime}(z) u\right)}{F_{z}^{\mu}(u)} \leq \frac{C_{\mu} M}{m} \cdot \frac{\left(1-|z|^{2}\right)^{\delta}}{\left(1-|\phi(z)|^{2}\right)^{\delta}} \leq \frac{C_{\mu} M}{m}
$$

The condition (iii) is satisfied and $C_{\phi}$ is bounded. The lemma is proved.
As a consequence of the above two lemmas, we have the following theorem.
Theorem 6.4 Let $\mu \in \mathcal{N}$ with the property that $\mu(t) / t$ is increasing for small $t$ or there is a $\delta \geq 0$ such that $m t^{1+\delta} \leq \mu(t) \leq M t^{1+\delta}$ for $0<t \leq 1$, and let $\phi$ be a holomorphic mapping of $B^{n}$ into itself. Then $C_{\phi}$ is a bounded operator of $\mathcal{B}^{\mu}$ into itself. Further, if $\mu_{1} \in \mathcal{M}$ and $\mu_{1}(t) \geq m \mu(t)$ for small $t$ with $m>0$, then $C_{\phi}: \mathcal{B}^{\mu_{1}} \longrightarrow \mathcal{B}^{\mu}$ is bounded.

Proof Let $\phi=\psi \circ \sigma$, where $\psi \in \operatorname{Aut}\left(B^{n}\right)$ and $\sigma(0)=0$. Then $C_{\phi}=C_{\sigma} \circ C_{\psi}$. By the above lemmas, $C_{\sigma}$ and $C_{\psi}$ are both bounded operators of $\mathcal{B}^{\mu}$ into itself and, consequently, $C_{\phi}$ is.

If $\mu_{1}(t) \geq m \mu(t)$ for $0<t \leq t_{0}=1-r_{0}^{2}$, then, for $f \in H\left(B^{n}\right)$, we have

$$
\sup _{|z| \geq r_{0}} \mu\left(1-|z|^{2}\right)|\nabla f(z)| \leq \frac{1}{m} \sup _{|z| \geq r_{0}} \mu_{1}\left(1-|z|^{2}\right)|\nabla f(z)| \leq \frac{1}{m}\|f\|_{\mu_{1}, 1}
$$

On the other hand,

$$
\begin{aligned}
\sup _{|z| \leq r_{0}} \mu\left(1-|z|^{2}\right)|\nabla f(z)| & \leq \mu(1) \max _{|z|=r_{0}}|\nabla f(z)| \\
& \leq \frac{\mu(1)}{\mu_{1}\left(t_{0}\right)} \max _{|z|=r_{0}} \mu_{1}\left(1-|z|^{2}\right)|\nabla f(z)| \leq \frac{\mu(1)}{\mu_{1}\left(t_{0}\right)}\|f\|_{\mu_{1}, 1}
\end{aligned}
$$

It is proved that $\|f\|_{\mu, 1} \leq \max \left\{1 / m, \mu(1) / \mu_{1}\left(t_{0}\right)\right\}\|f\|_{\mu_{1}, 1}$. So, if we let $i$ be the identity mapping of $B^{n}$, then $C_{i}$ is a bounded operator $\mathcal{B}^{\mu_{1}}$ into $\mathcal{B}^{\mu}$. It follows that $C_{\phi}=C_{\phi} \circ C_{i}$ is a bounded operator of $\mathcal{B}^{\mu_{1}}$ into $\mathcal{B}^{\mu}$, since we have proved that $C_{\phi}$ is a bounded operator of $\mathcal{B}^{\mu}$ into itself. The theorem is proved.

## 7 Compact Composition Operators Between $\mu$-Bloch Spaces

Lemma 7.1 For $\mu \in \mathcal{M}$ with $I_{\mu}=\infty, 0 \neq w \in B^{n}$ and $0 \neq v \in \mathbb{C}^{n}$, there exists a function $f_{\mu, w, v}$ such that
(i) $\quad f_{\mu, w, \nu}(0)=0$ and $\left\|f_{\mu, w, \nu}\right\|_{\mu, 1} \leq C_{\mu}$;
(ii) $\left|\nabla f_{\mu, w, v}(w) v\right| / F_{w}^{\mu}(v) \geq 1 / C_{\mu, n}$.

Further, for a fixed $\mu, f_{\mu, w, v}(z) \rightarrow 0$ as $w \rightarrow \partial B^{n}$ locally uniformly in $B^{n}$. Precisely speaking, for $\epsilon>0,0<r<1$, there exists an $r_{\mu, \epsilon, r}^{\prime}$ such that $\left|f_{\mu, w, v}(z)\right|<\epsilon$ for $|w|>r^{\prime},|z| \leq r$ and $0 \neq v \in \mathbb{C}^{n}$.

Proof Let $\mu \in \mathcal{M}, 0 \neq w \in B^{n}$ and $0 \neq v \in \mathbb{C}^{n}$ be fixed, let $v=v_{1} w /|w|+v_{2} \zeta$ with $\zeta \perp w$ and $|\zeta|=1$, and let $v_{1}=\left|v_{1}\right| e^{i \theta_{1}}$ and $v_{2}=\left|v_{2}\right| e^{i \theta_{2}}$. We define

$$
\begin{aligned}
& f(z)=f_{\mu, w, v}(z)=e^{-i \theta_{1}}\left(1-|w|^{2}\right)^{1 / 2} L_{\mu}(\langle z, w\rangle) /|w| \\
&+\frac{e^{-i \theta_{2}}\langle z, \zeta\rangle L_{\mu}(\langle z, w\rangle)^{2}}{L_{\mu}\left(|w|^{2}\right)}-\frac{e^{-i \theta_{1}}\left(1-|w|^{2}\right)^{1 / 2}}{|w|}
\end{aligned}
$$

where $L(\omega)=L_{\mu}(\omega)$ is the function defined in Example 2. Then, $f(0)=0$ and

$$
\begin{aligned}
& \nabla f(z)=e^{-i \theta_{1}}\left(1-|w|^{2}\right)^{1 / 2} \Lambda(\langle z, w\rangle) \bar{w} /|w| \\
&+\frac{e^{-i \theta_{2}} L(\langle z, w\rangle)^{2} \bar{\zeta}}{L\left(|w|^{2}\right)}+\frac{2 e^{-i \theta_{2}}\langle z, \zeta\rangle L(\langle z, w\rangle) \Lambda(\langle z, w\rangle) \bar{w}}{L\left(|w|^{2}\right)}
\end{aligned}
$$

It is obvious that

$$
\begin{gathered}
|\Lambda(\langle z, w\rangle)| \leq \Lambda(|\langle z, w\rangle|) \leq \Lambda(|z||w|) \leq \Lambda(|w|) \\
|L(\langle z, w\rangle)| \leq L(|w|), \quad|L(\langle z, w\rangle)| \leq L(|z|)
\end{gathered}
$$

Thus, since $\Lambda(\rho) \leq C_{\mu} /\left((1-\rho)^{1 / 2} \mu(1-\rho)\right)$ for $0 \leq \rho<1$, we have

$$
\begin{aligned}
|\nabla f(z)| \leq & \left(1-|w|^{2}\right)^{1 / 2} \Lambda(|z||w|)+\frac{L(|z|) L(|w|)}{L\left(|w|^{2}\right)}+\frac{2|\langle z, \zeta\rangle| L(|w|) \Lambda(|\langle z, w\rangle|)}{L\left(|w|^{2}\right)} \\
\leq & \frac{C_{\mu}\left(1-|w|^{2}\right)^{1 / 2}}{(1-|z||w|)^{1 / 2} \mu(1-|z||w|)}+\frac{L(|z|) L(|w|)}{L\left(|w|^{2}\right)} \\
& \quad+\frac{2 C_{\mu}|\langle z, \zeta\rangle| L(|w|)}{(1-|\langle z, w\rangle|)^{1 / 2} \mu(1-|\langle z, w\rangle|) L\left(|w|^{2}\right)}
\end{aligned}
$$

and

$$
\begin{align*}
& \mu\left(1-|z|^{2}\right)\left|\nabla f_{\mu, w, v}(z)\right| \leq \frac{C_{\mu} \mu\left(1-|z|^{2}\right)}{\mu(1-|z|)} \cdot \frac{\left(1-|w|^{2}\right)^{1 / 2}}{(1-|w|)^{1 / 2}}  \tag{7.1}\\
+ & \mu\left(1-|z|^{2}\right) L(|z|) \cdot \frac{L(|w|)}{L\left(|w|^{2}\right)}+\frac{2 C_{\mu} \mu\left(1-|z|^{2}\right)}{\mu(1-|z|)} \cdot \frac{|\langle z, \zeta\rangle|}{(1-|\langle z, w\rangle|)^{1 / 2}} \cdot \frac{L(|w|)}{L\left(|w|^{2}\right)}
\end{align*}
$$

If $|w| \geq 1 / 2$, since

$$
\begin{aligned}
\int_{1 / 2}^{|w|} \frac{d \rho}{(1-\rho)^{1 / 2} \mu(1-\rho)} & \leq \int_{1 / 4}^{|w|^{2}} \frac{d \rho}{(1-\sqrt{\rho})^{1 / 2} \mu(1-\sqrt{\rho})} \\
& \leq \sqrt{2} \int_{1 / 4}^{|w|^{2}} \frac{d \rho}{(1-\rho)^{1 / 2} \mu((1-\rho) / 2)} \\
& \leq \sqrt{2} C_{\mu} \int_{1 / 4}^{|w|^{2}} \frac{d \rho}{(1-\rho)^{1 / 2} \mu((1-\rho)}
\end{aligned}
$$

where the property $(\dagger \dagger)$ is used, we have, by (5.4) and (5.5),

$$
\begin{equation*}
L(|w|) \leq C_{\mu}^{\prime}\left(1+\int_{0}^{|w|^{2}} \frac{d \rho}{(1-\rho)^{1 / 2} \mu((1-\rho)}\right) \leq C_{\mu}^{\prime} L\left(|w|^{2}\right) \tag{7.2}
\end{equation*}
$$

The above estimate is evidently true for $|w| \leq 1 / 2$.
It is obvious that

$$
\begin{equation*}
\frac{\left(1-|w|^{2}\right)^{1 / 2}}{(1-|w|)^{1 / 2}} \leq \sqrt{2} \tag{7.3}
\end{equation*}
$$

and, by (5.2),

$$
\begin{equation*}
\frac{\mu\left(1-|z|^{2}\right)}{\mu(1-|z|)} \leq C_{\mu} \quad \text { for } z \in B^{n} \tag{7.4}
\end{equation*}
$$

For $z \in B^{n}$, let $u=\langle z, w /| w| \rangle w /|w|+\langle z, \zeta\rangle \zeta$. Then, $(z-u) \perp u$ and

$$
\left.1>|z|^{2} \geq|u|^{2}=|\langle z, w /| w|\right\rangle\left.\right|^{2}+|\langle z, \zeta\rangle|^{2}>|\langle z, w\rangle|^{2}+|\langle z, \zeta\rangle|^{2} .
$$

Consequently,

$$
\begin{equation*}
\frac{|\langle z, \zeta\rangle|}{(1-|\langle z, w\rangle|)^{1 / 2}}<\frac{\sqrt{2}|\langle z, \zeta\rangle|}{\left(1-|\langle z, w\rangle|^{2}\right)^{1 / 2}}<\sqrt{2} \tag{7.5}
\end{equation*}
$$

Now, replacing (5.9), (7.2)-(7.5), in (7.1), we obtain

$$
\mu\left(1-|z|^{2}\right)|\nabla f(z)| \leq C_{\mu} \quad \text { for } z \in B^{n}
$$

This shows that $\|f\|_{\mu, 1} \leq C_{\mu}$, and (i) is proved.
On the other hand, since $\Lambda(\rho) \geq 1 /\left(C_{\mu}(1-\rho)^{1 / 2} \mu(1-\rho)\right)$ for $0 \leq \rho<1$ and $L(r) \geq 1 /\left(C_{\mu} \nu(1-r)\right)$ by (5.5), we have

$$
\begin{aligned}
|\nabla f(w) v| & =\left|v_{1}\right|\left(1-|w|^{2}\right)^{1 / 2} \Lambda\left(|w|^{2}\right)+\left|v_{2}\right| L\left(|w|^{2}\right) \\
& \geq \frac{1}{C_{\mu}}\left(\frac{\left|v_{1}\right|}{\mu\left(1-|w|^{2}\right)}+\frac{\left|v_{2}\right|}{\nu_{\mu}\left(1-|w|^{2}\right)}\right) \\
& \geq \frac{1}{C_{\mu}}\left(\frac{\left|v_{1}\right|^{2}}{\mu\left(1-|w|^{2}\right)^{2}}+\frac{\left|v_{2}\right|^{2}}{\nu_{\mu}\left(1-|w|^{2}\right)^{2}}\right)^{1 / 2} \\
& =\frac{1}{C_{\mu, n}} \cdot F_{w}^{\mu}(v)
\end{aligned}
$$

This shows (ii).
Let $0<r<1$ be given. For $|z| \leq r$, we have

$$
\left|f_{\mu, w, v}(z)\right| \leq \frac{\left(1-|w|^{2}\right)^{1 / 2} L_{\mu}(r)}{|w|}+\frac{L_{\mu}(r)^{2}}{L_{\mu}\left(|w|^{2}\right)}+\frac{\left(1-|w|^{2}\right)^{1 / 2}}{\mu(1)|w|}
$$

The right side of the above tends to 0 as $|w| \rightarrow 1$ since $L_{\mu}(|w|) \rightarrow \infty$ as $|w| \rightarrow 1$ for $I_{\mu}=\infty$. The second part of the lemma is proved.

Lemma 7.2 For $\mu \in \mathcal{M}$ with $I_{\mu}<\infty$ and $0 \neq w \in B^{n}$, there exists a function $f_{\mu, w}$ such that
(i) $\quad f_{\mu, w}(0)=0$ and $\left\|f_{\mu, w, v}\right\|_{\mu} \leq C_{\mu}$;
(ii) $\mu\left(1-|w|^{2}\right)\left|\nabla f_{\mu, w}(w) v\right| /|\langle v, w\rangle| \geq 1 / C_{\mu}$.

Further, for a fixed $\mu, f_{\mu, w}(z) \rightarrow 0$ as $w \rightarrow \partial B^{n}$ locally uniformly in $B^{n}$.
Proof For $\mu \in \mathcal{M}$ with $I_{\mu}<\infty$ and $0 \neq w \in B^{n}$, let

$$
f(z)=f_{\mu, w}(z)=\left(1-|w|^{2}\right)^{1 / 2} L_{\mu}(\langle z, w\rangle) /|w|-\frac{\left(1-|w|^{2}\right)^{1 / 2}}{|w|}
$$

Then, as in the proof of Lemma 7.1, we have $f_{\mu, w}(0)=0,\left\|f_{\mu, w}\right\|_{\mu, 1} \leq C_{\mu}$ and, for $0 \neq v=v_{1} w /|w|+v_{2} \zeta$ with $\zeta \perp w$ and $|\zeta|=1$,

$$
|\nabla f(w) v|=\left|v_{1}\right|\left(1-|w|^{2}\right)^{1 / 2} \Lambda\left(|w|^{2}\right) \geq \frac{1}{C_{\mu}} \frac{\left|v_{1}\right|}{\mu\left(1-|w|^{2}\right)}=\frac{1}{C_{\mu}} \frac{|\langle v, w\rangle|}{\mu\left(1-|w|^{2}\right)}
$$

The second part of the lemma is obvious.

Lemma 7.3 Let $f \in H\left(B^{n}\right)$ and $\mu \in \mathcal{M}$ with $I_{\mu}<\infty$. If $|\nabla f(z)| \leq m$ for $|z| \leq r_{0}$, $1 / 2 \leq r_{0}<1$, then for $r_{0} \leq|z|<1$ and $\zeta \perp z$ with $|\zeta|=1$, we have

$$
|\nabla f(z) \zeta| \leq m+C_{\mu, r_{0}}\|f\|_{\mu, 1}
$$

where $C_{\mu, r_{0}} \rightarrow 0$ as $r_{0} \rightarrow 1$.
Proof It is sufficient to prove the lemma for $z=(\rho, 0, \ldots, 0)$ with $\rho \geq r_{0}$ and $\zeta=(0,1,0, \ldots, 0)$. As in the proof of Theorem 2.1,

$$
\begin{aligned}
& \rho \frac{\partial f}{\partial z_{2}}(\rho, 0, \ldots, 0)-r_{0} \frac{\partial f}{\partial z_{2}}\left(r_{0}, 0, \ldots, 0\right)=\int_{r_{0}}^{\rho} \frac{\partial \mathcal{R} f}{\partial z_{2}}\left(z_{1}, 0, \ldots, 0\right) d z_{1} \\
&|\nabla f(z) \zeta|=\left|\frac{\partial f}{\partial z_{2}}(\rho, 0, \ldots, 0)\right| \\
& \leq\left|\frac{\partial f}{\partial z_{2}}\left(r_{0}, 0, \ldots, 0\right)\right|+C_{\mu}\|f\|_{\mu, 2} \int_{r_{0}}^{\rho} \frac{d r}{\left(1-r^{2}\right)^{1 / 2} \mu\left(1-r^{2}\right)} \\
& \leq m+C_{\mu}\|f\|_{\mu, 1} \int_{0}^{1-r_{0}^{2}} \frac{d t}{t^{1 / 2} \mu(t)}
\end{aligned}
$$

Theorem 7.4 Let $\mu_{1}, \mu_{2} \in \mathcal{M}$, and let $\phi$ be a holomorphic mapping of $B^{n}$ into itself and $C_{\phi}: \mathcal{B}^{\mu_{1}} \longrightarrow \mathcal{B}^{\mu_{2}}$ be bounded. If $I_{\mu_{1}}=\infty$, then the following conditions are equivalent:
(i) $C_{\phi}: \mathcal{B}^{\mu_{1}} \longrightarrow \mathcal{B}^{\mu_{2}}$ is compact;
(ii) $\mu_{2}\left(1-|z|^{2}\right) F_{\phi(z)}^{\mu_{1}}\left(\phi^{\prime}(z) z\right) \longrightarrow 0 \quad$ as $\phi(z) \rightarrow \partial B^{n}$;
(iii) $\frac{F_{\phi(z)}^{\mu_{1}}\left(\phi^{\prime}(z) u\right)}{F_{z}^{\mu_{2}}(u)} \longrightarrow 0 \quad$ as $\phi(z) \rightarrow \partial B^{n}$.

If $I_{\mu_{1}}<\infty$, then the following conditions and (i) are equivalent:
(ii')

$$
\frac{\mu_{2}\left(1-|z|^{2}\right)\left|\left\langle\phi^{\prime}(z) z, \phi(z)\right\rangle\right|}{\mu_{1}\left(1-|\phi(z)|^{2}\right)} \longrightarrow 0 \quad \text { as } \phi(z) \rightarrow \partial B^{n} ;
$$

(iii')

$$
\frac{\left|\left\langle\phi^{\prime}(z) u, \phi(z)\right\rangle\right|}{F_{z}^{\mu_{2}}(u) \mu_{1}\left(1-|\phi(z)|^{2}\right)} \longrightarrow 0 \quad \text { as } \phi(z) \rightarrow \partial B^{n}
$$

Proof As in the proof of Theorem 6.1, it is obvious that (iii) implies (ii) and (iii') implies ( $\mathrm{ii}^{\prime}$ ). Since $C_{\phi}$ is bounded, by Theorem 6.1,

$$
\begin{equation*}
\sup \left\{\mu_{2}\left(1-|z|^{2}\right) F_{\phi(z)}^{\mu_{1}}\left(\phi^{\prime}(z) z\right): z \in B^{n}\right\}=M<\infty \tag{7.6}
\end{equation*}
$$

First assume that $I_{\mu}=\infty$. Let (ii) hold. Let $f_{k} \in B^{\mu_{1}}$ and $\left\|f_{k}\right\|_{B^{\mu_{1}}}=1$, for $k=$ $1,2, \ldots$. Applying Montel's theorem, by choosing a subsequence, we may assume that $f_{k}$ converges to a function $f$ locally uniformly in $B^{n}$. It is easy to see that $\|f\|_{B^{\mu_{1}}} \leq$ 1 . Let $g_{k}=f_{k}-f$. Then, $g_{k} \rightarrow 0$ locally uniformly in $B^{n}$ and

$$
\begin{equation*}
\left\|g_{k}\right\|_{\mathcal{B}^{\mu_{1}}} \leq 2 \quad \text { for } k=1,2, \ldots \tag{7.7}
\end{equation*}
$$

Let $\epsilon>0$ be given. By the assumption (ii), there exists an $r_{0}<1$ such that

$$
\begin{equation*}
\mu_{2}\left(1-|z|^{2}\right) F_{\phi(z)}^{\mu_{1}}\left(\phi^{\prime}(z) z\right)<\epsilon \quad \text { if }|\phi(z)|>r_{0} \tag{7.8}
\end{equation*}
$$

Since $g_{k}(w) \rightarrow 0$ uniformly for $|w| \leq r_{0}$, by (3.3), there exists a $K$ such that

$$
\begin{equation*}
\frac{\left|\nabla g_{k}(w) v\right|}{F_{w}^{\mu_{1}}(v, v)^{1 / 2}} \leq \frac{3 \sqrt{2} \mu(1)}{\sqrt{n+1}}\left|\nabla g_{k}(w)\right|<\epsilon \tag{7.9}
\end{equation*}
$$

for $k>K,|w| \leq r_{0}$ and $0 \neq v \in \mathbb{C}^{n}$.
Let $k>K$ and $z \in B^{n}$. To estimate $\mu_{2}\left(1-|z|^{2}\right)\left|\mathcal{R} C_{\phi}\left(g_{k}\right)(z)\right|$, we distinguish three cases.
(a) If $\phi^{\prime}(z) z=0, \mu_{2}\left(1-|z|^{2}\right)\left|\mathcal{R} C_{\phi}\left(g_{k}\right)(z)\right|=\mu_{2}\left(1-|z|^{2}\right)\left|\nabla g_{k}(\phi(z)) \phi^{\prime}(z) z\right|=0$. (b) If $\phi^{\prime}(z) z \neq 0$ and $|\phi(z)| \leq r_{0}$, then, by (7.6) and (7.9),

$$
\mu_{2}\left(1-|z|^{2}\right)\left|\mathcal{R} C_{\phi}\left(g_{k}\right)(z)\right|=\mu_{2}\left(1-|z|^{2}\right) F_{\phi(z)}^{\mu_{1}}\left(\phi^{\prime}(z) z\right) \frac{\left|\nabla g_{k}(\phi(z)) \phi^{\prime}(z) z\right|}{F_{\phi(z)}^{\mu_{1}}\left(\phi^{\prime}(z) z\right)}<M \epsilon
$$

(c) If $\phi^{\prime}(z) z \neq 0$ and $|\phi(z)|>r_{0}$, it follows from (7.7) and (7.8) that

$$
\mu_{2}\left(1-|z|^{2}\right)\left|\mathcal{R} C_{\phi}\left(g_{k}\right)(z)\right| \leq \epsilon\left\|g_{k}\right\|_{\mu_{1}, 3}<C_{\mu_{1}} \epsilon
$$

We conclude that $\left\|C_{\phi}\left(g_{k}\right)\right\|_{\mu_{2}, 2}<\epsilon \max \left\{M, C_{\mu_{1}}\right\}$ for $k>K$. This shows that

$$
\left\|C_{\phi}\left(g_{k}\right)\right\|_{\mu_{2}, 2} \rightarrow 0
$$

and, consequently, $\left\|C_{\phi}\left(g_{k}\right)\right\|_{\mathcal{B}^{\mu_{2}}} \rightarrow 0$ as $k \rightarrow \infty$, since

$$
\left\|C_{\phi}\left(g_{k}\right)\right\|_{\mu_{2}, 1} \leq C_{\mu_{2}}\left\|C_{\phi}\left(g_{k}\right)\right\|_{\mu_{2}, 2}
$$

and $g_{k}(\phi(0)) \rightarrow 0$ as $k \rightarrow \infty$. Thus, $f_{k} \circ \phi \rightarrow f \circ \phi$ according to the $\mathcal{B}^{\mu_{2}}$ norm. The compactness of $C_{\phi}$ is proved. This shows that (ii) implies (i).

Now, assume that (i) holds. Suppose on the contrary that (iii) doesn't hold. Then, there exist $\delta>0$, sequences $z_{k}$ and $u_{k} \neq 0$, such that

$$
\begin{equation*}
\frac{F_{\phi\left(z_{k}\right)}^{\mu_{1}}\left(\phi^{\prime}\left(z_{k}\right) u_{k}\right)}{F_{z_{k}}^{\mu_{2}}\left(u_{k}\right)}>\delta, \quad \text { for } k=1,2, \ldots \tag{7.10}
\end{equation*}
$$

where $w_{k}=\phi\left(z_{k}\right) \rightarrow \partial B^{n}$ as $k \rightarrow \infty$. For $k=1,2, \ldots$, let $v_{k}=\phi^{\prime}\left(z_{k}\right) u_{k}$ and $f_{k}=f_{\mu_{1}, w_{k}, v_{k}}$ be functions defined in Lemma 7.1. Then, $f_{k}$ and, consequently, $C_{\phi}\left(f_{k}\right)$ converge to 0 locally uniformly in $B^{n}$. Since $C_{\phi}$ is compact and $f_{k}$ is a bounded sequence in $\mathcal{B}^{\mu_{1}}$ by (i) in Lemma 7.1, by choosing a subsequence, we may assume that there is a function $g \in \mathcal{B}^{\mu_{2}}$ such that $\left\|C_{\phi}\left(f_{k}\right)-g\right\|_{\mathcal{B}^{\mu_{2}}} \rightarrow 0 . g$ must be equal to 0 identically for $C_{\phi}\left(f_{k}\right)$ converges to 0 locally uniformly in $B^{n}$. Thus, $\left\|C_{\phi}\left(f_{k}\right)\right\|_{\mathcal{B}^{\mu_{2}}} \rightarrow 0$. In particular,

$$
\begin{equation*}
\frac{\left|\nabla C_{\phi}\left(f_{k}\right)\left(z_{k}\right) u_{k}\right|}{F_{z_{k}}^{\mu_{2}}\left(u_{k}\right)}=\frac{\left|\nabla f_{k}\left(\phi\left(z_{k}\right)\right) \phi^{\prime}\left(z_{k}\right) u_{k}\right|}{F_{z_{k}}^{\mu_{2}}\left(u_{k}\right)} \rightarrow 0 \tag{7.11}
\end{equation*}
$$

However, by (ii) in Lemma 7.1,

$$
\begin{equation*}
\frac{\left|\nabla f_{k}\left(\phi\left(z_{k}\right)\right) \phi^{\prime}\left(z_{k}\right) u_{k}\right|}{F_{\phi\left(z_{k}\right)}^{\mu_{1}}\left(\phi^{\prime}\left(z_{k}\right) u_{k}\right)} \geq \frac{1}{C_{n, \mu_{1}}}, \quad \text { for } k=1,2, \ldots \tag{7.12}
\end{equation*}
$$

Combining (7.10) and (7.12), we have

$$
\frac{\left|\nabla f_{k}\left(\phi\left(z_{k}\right)\right) \phi^{\prime}\left(z_{k}\right) u_{k}\right|}{F_{z_{k}}^{\mu_{2}}\left(u_{k}\right)} \geq \frac{\delta}{C_{n, \mu_{1}}}
$$

This contradicts (7.11). This shows that (i) implies (iii). The theorem is proved for $I_{\mu}=\infty$.

Now we consider the case that $I_{\mu}<\infty$. Assume that (ii') holds. As above, for a bounded sequence in $\mathcal{B}^{\mu_{1}}$, we have subsequence $f_{k} \in \mathcal{B}^{\mu_{1}}$ and an $f \in \mathcal{B}^{\mu_{1}}$ such that $g_{k}=f_{k}-f \rightarrow 0$ locally uniformly in the unit disk, $\left\|f_{k}\right\|_{\mathcal{B}^{\mu_{1}}} \leq 1$ and (7.7) holds. Let $\epsilon>0$ be given. By Lemma 7.3 and the assumption (ii'), there exists an $r_{0} \geq 1 / 2$ such that $C_{\mu_{1}, r_{0}}<\epsilon$, where $C_{\mu_{1}, r_{0}}$ is the number in Lemma 7.3, and

$$
\begin{equation*}
\frac{\mu_{2}\left(1-|z|^{2}\right)\left|\left\langle\phi^{\prime}(z) z, \phi(z)\right\rangle\right|}{\mu_{1}\left(1-|\phi(z)|^{2}\right)}<\epsilon \quad \text { if }|\phi(z)|>r_{0} \tag{7.13}
\end{equation*}
$$

Since $g_{k}(w) \rightarrow 0$ uniformly on $|w| \leq r_{0}$, by (3.3), there exists a $K$ such that

$$
\begin{equation*}
\left|\nabla g_{k}(w)\right|<\epsilon \quad \text { for } k>K,|w| \leq r_{0} \tag{7.14}
\end{equation*}
$$

and

$$
\frac{\left|\nabla g_{k}(w) v\right|}{F_{w}^{\mu_{1}}(v)}<\epsilon \quad \text { for } k>K,|w| \leq r_{0}, 0 \neq v \in \mathbb{C}^{n}
$$

Let $k>K$ and $z \in B^{n}$. By the same reasoning as in the case $I_{\mu}=\infty$, we have

$$
\mu_{2}\left(1-|z|^{2}\right)\left|\mathcal{R} C_{\phi}\left(g_{k}\right)(z) z\right|<M \epsilon
$$

if $\phi^{\prime}(z) z=0$ or $\phi^{\prime}(z) z \neq 0$ and $|\phi(z)| \leq r_{0}$. In the case $\phi^{\prime}(z) z \neq 0$ and $|\phi(z)|>$ $r_{0}$, let $\phi^{\prime}(z) z=u_{1} \phi(z) /|\phi(z)|+u_{2} \zeta$ with $\zeta \perp \phi(z)$ and $|\zeta|=1$. Then $u_{1}=$ $\left\langle\phi^{\prime}(z) z, \phi(z) /\right| \phi(z)\left\rangle, u_{2}=\left\langle\phi^{\prime}(z) z, \zeta\right\rangle\right.$, and we have

$$
\begin{aligned}
\left|\mathcal{R} C_{\phi}\left(g_{k}\right)(z) z\right| & =\left|\nabla g_{k}(\phi(z)) \phi^{\prime}(z) z\right| \\
& =\left|\nabla g_{k}(\phi(z))\left(\left\langle\phi^{\prime}(z) z, \phi(z) /\right| \phi(z)| \rangle \phi(z) /|\phi(z)|+\left\langle\phi^{\prime}(z) z, \zeta\right\rangle \zeta\right)\right| \\
& \leq 4\left|\left\langle\phi^{\prime}(z) z, \phi(z)\right\rangle\right|\left|\nabla g_{k}(\phi(z)) \phi(z)\right|+\left|\left\langle\phi^{\prime}(z) z, \zeta\right\rangle\right|\left|\nabla g_{k}(\phi(z)) \zeta\right|
\end{aligned}
$$

and

$$
\begin{align*}
\mu_{2}(1- & \left.|z|^{2}\right)\left|\mathcal{R} C_{\phi}\left(g_{k}\right)(z) z\right| \leq \mu_{2}\left(1-|z|^{2}\right)\left|\left\langle\phi^{\prime}(z) z, \zeta\right\rangle\right|\left|\nabla g_{k}(\phi(z)) \zeta\right|  \tag{7.15}\\
& +4 \mu_{1}\left(1-|\phi(z)|^{2}\right)\left|\nabla g_{k}(\phi(z)) \phi(z)\right| \cdot \frac{\mu_{2}\left(1-|z|^{2}\right)\left|\left\langle\phi^{\prime}(z) z, \phi(z)\right\rangle\right|}{\mu_{1}\left(1-|\phi(z)|^{2}\right)}
\end{align*}
$$

Estimating the right side of (7.15), we have, by (3.3) and (7.6),

$$
\begin{align*}
\mu_{2}\left(1-|z|^{2}\right)\left|\left\langle\phi^{\prime}(z) z, \zeta\right\rangle\right| & \leq \mu_{2}\left(1-|z|^{2}\right)\left|\phi^{\prime}(z) z\right|  \tag{7.16}\\
& \leq \mu_{1}(1) \mu_{2}\left(1-|z|^{2}\right) F_{\phi(z)}^{\mu_{1}}\left(\phi^{\prime}(z) z\right) \leq \mu_{1}(1) M
\end{align*}
$$

and, by Lemma 7.3 and (7.14),

$$
\begin{equation*}
\left|\nabla g_{k}(\phi(z)) \zeta\right|<\epsilon+C_{\mu_{1}, r_{0}}\left\|g_{k}\right\|_{\mu_{1}, 1} \leq \epsilon+\epsilon\left\|g_{k}\right\|_{\mathcal{B}^{\mu_{1}}}<3 \epsilon \tag{7.17}
\end{equation*}
$$

and, by (7.7) and the definition of $F_{z}^{\mu}$,

$$
\begin{align*}
\mu_{1}\left(1-|\phi(z)|^{2}\right)\left|\nabla g_{k}(\phi(z)) \phi(z)\right| & =\sqrt{\frac{n+1}{2}} \frac{|\phi(z)|\left|\nabla g_{k}(\phi(z)) \phi(z)\right|}{F_{\phi(z)}^{\mu_{1}}(\phi(z))}  \tag{7.18}\\
& \leq \sqrt{\frac{n+1}{2}}\left\|g_{k}\right\|_{\mu_{1}, 3} \leq C_{\mu_{1}}\left\|g_{k}\right\|_{\mu_{1}, 1} \\
& \leq C_{\mu_{1}}^{\prime}\left\|g_{k}\right\|_{\mathcal{B}^{\mu_{1}}} \leq 2 C_{\mu_{1}}^{\prime}
\end{align*}
$$

Thus, substituting in (7.15) by (7.16), (7.17), (7.18) and (7.13), we obtain

$$
\mu_{2}\left(1-|z|^{2}\right)\left|\mathcal{R} C_{\phi}\left(g_{k}\right)(z) z\right| \leq\left(3 \mu_{1}(1) M+8 C_{\mu_{1}}^{\prime}\right) \epsilon
$$

Thus, $\left\|C_{\phi}\left(g_{k}\right)\right\|_{\mu_{2}, 2} \rightarrow 0$ as $k \rightarrow \infty$. As above, this shows that $f_{k} \circ \phi \rightarrow f \circ \phi$ according to the $\mathcal{B}^{\mu_{2}}$ norm, and $C_{\phi}: \mathcal{B}^{\mu_{1}} \longrightarrow \mathcal{B}^{\mu_{2}}$ is compact. We have proved that (ii') implies (i).

Now, assume that $C_{\phi}: \mathcal{B}^{\mu_{1}} \longrightarrow \mathcal{B}^{\mu_{2}}$ is compact. To prove (iii'), suppose on the contrary that there exist $\delta>0$, sequences $z_{k}$ and $u_{k} \neq 0$, such that $\phi\left(z_{k}\right) \rightarrow \partial B^{n}$ and

$$
\begin{equation*}
\frac{\left|\left\langle\phi^{\prime}\left(z_{k}\right) u_{k}, \phi\left(z_{k}\right)\right\rangle\right|}{F_{z_{k}}^{\mu_{2}}\left(u_{k}\right) \mu_{1}\left(1-\left|\phi\left(z_{k}\right)\right|^{2}\right)}>\delta, \quad \text { for } k=1,2, \ldots \tag{7.19}
\end{equation*}
$$

For $k=1,2, \ldots$, let $w_{k}=\phi\left(z_{k}\right)$ and $f_{k}=f_{\mu_{1}, w_{k}}$ be the functions defined in Lemma 7.2. Then, as above, by choosing a subsequence, we may assume that $\left\|C_{\phi}\left(f_{k}\right)\right\|_{\mathcal{B}^{\mu_{2}}} \rightarrow$ 0 as $k \rightarrow \infty$. In particular,

$$
\begin{equation*}
\frac{\left|\nabla C_{\phi}\left(f_{k}\right)\left(z_{k}\right) u_{k}\right|}{F_{z_{k}}^{\mu_{2}}\left(u_{k}\right)}=\frac{\left|\nabla f_{k}\left(w_{k}\right) \phi^{\prime}\left(z_{k}\right) u_{k}\right|}{F_{z_{k}}^{\mu_{2}}\left(u_{k}\right)} \rightarrow 0 \tag{7.20}
\end{equation*}
$$

However, by (ii) in Lemma 7.2,

$$
\begin{equation*}
\mu_{1}\left(1-\left|w_{k}\right|^{2}\right) \frac{\left|\nabla f_{k}\left(w_{k}\right) \phi^{\prime}\left(z_{k}\right) u_{k}\right|}{\left|\left\langle\phi^{\prime}\left(z_{k}\right) u_{k}, w_{k}\right\rangle\right|}>\frac{1}{C_{\mu_{1}}} \quad \text { for } k=1,2, \ldots \tag{7.21}
\end{equation*}
$$

(7.19) and (7.21) contradict (7.20). This shows that (i) implies (iii').

If $v=v_{1} w /|w|+v_{2} \zeta$ with $\zeta \perp w$ and $|\zeta|=1$, then

$$
\begin{aligned}
F_{w}^{\mu}(v) & =\sqrt{\frac{n+1}{2}}\left(\frac{\left|v_{1}\right|^{2}}{\mu\left(1-|w|^{2}\right)^{2}}+\frac{\left|v_{2}\right|^{2}}{\nu_{\mu}\left(1-|w|^{2}\right)^{2}}\right)^{1 / 2} \\
& =\sqrt{\frac{n+1}{2}}\left(\frac{|\langle v, w /| w|\rangle\left.\right|^{2}}{\mu\left(1-|w|^{2}\right)^{2}}+\frac{|\langle v, \zeta\rangle|^{2}}{\nu_{\mu}\left(1-|w|^{2}\right)^{2}}\right)^{1 / 2} \geq \sqrt{\frac{n+1}{2}} \frac{|\langle v, w\rangle|}{\mu\left(1-|w|^{2}\right)}
\end{aligned}
$$

This shows that the conditions (ii') and (iii') are weaker than (ii) and (iii) respectively.

If $\mu_{1}$ and $\mu_{2}$ satisfy the condition in Lemma 2.3 (then $I_{\mu_{1}}=I_{\mu_{2}}=\infty$ ), then condition (iii) in Theorems 6.1 and condition (iii) in Theorem 7.4 become

$$
\sup \left\{\frac{\mu\left(1-|z|^{2}\right)\left(1-|\phi(z)|^{2}\right) H_{\phi(z)}\left(\phi^{\prime}(z) u, \phi^{\prime}(z) u\right)}{\mu\left(1-|\phi(z)|^{2}\right)\left(1-|z|^{2}\right) H_{z}(u, u)}: z \in B^{n} 0 \neq u \in \mathbb{C}^{n}\right\}<\infty
$$

and

$$
\frac{\mu\left(1-|z|^{2}\right)\left(1-|\phi(z)|^{2}\right) H_{\phi(z)}\left(\phi^{\prime}(z) u, \phi^{\prime}(z) u\right)}{\mu\left(1-|\phi(z)|^{2}\right)\left(1-|z|^{2}\right) H_{z}(u, u)} \rightarrow 0 \quad \text { as } \phi(z) \rightarrow \partial B^{n}
$$

respectively. These are the necessary and sufficient conditions established by Zhang and Xiao in [12].

## References

[1] J. M. Anderson, J. Clunie and Ch. Pommerenke, On Bloch functions and normal functions, J. Reine Angew. Math. 240(1974), 12-37.
[2] L. V. Ahlfors, Conformal Invariants: topics in geometric function theory. McGraw-Hill, New York, 1973.
[3] Z. Hu, Composition operators between Bloch-type spaces in the polydisc, Sci. China, Ser. A 48(Supp)(2005), 268-282.
[4] K. Madigan and A. Matheson, Compact composition operators on the Bloch space, Trans. Amer. Math. Soc. 437(1995), no. 7, 2679-2687.
[5] W. Rudin, Function Theory in the Unit Ball of $\mathbb{C}^{n}$. Springer-Verlag, New York-Heidelberg-Berlin, 1980, pp. 23-30.
[6] S. Ohno, K. Stroethoff and R. Zhao, Weighted composition operators between Bloch-type spaces, Rocky Mountain J. Math. 33(2003), no. 1, 191-215.
[7] J. Shi and L. Luo, Composition operators on the Bloch space of several complex variables. Acta Math. Sin.(Engl. Ser.) 16(2000), no. 1, 85-98.
[8] R. Timoney, Bloch functions in several complex variables I. Bull. London Math. Soc. 12(1980), no. 4, 241-267.
[9] Bloch functions in several complex variables II. J. Reine Angew. Math. 319(1980), 1-22.
[10] M. Tsuji, Potential Theory in Modern Function Theory. Maruzen Co., Ltd., Tokyo, 1959, pp. 259-260.
[11] W. Yang and C. Ouyang, Exact location of $\alpha$-Bloch spaces in $L_{\alpha}^{p}$ and $H^{p}$ of a complex unit ball, Rocky Mountain J. Math. 30(2000), no. 3, 1151-1169.
[12] X. Zhang and J. Xiao, Weighted composition operators between $\mu$-Bloch spaces on the unit ball. Sci.China Ser. A 48(2005), no. 10, 1349-1368.
[13] Z. Zhou and J. Shi, Compact composition operators on the Bloch space of polydiscs, Science in China, Series A, 31 (2001), 111-116.
[14] K. Zhu, Bloch type spaces of analytic functions. Rocky Mountain J. Math. 23(1993), no. 3, 1143-1177.
[15] K. Zhu, Spaces of holomorphic functions in the unit ball. Graduate Texts in Mathematics, 226, Springer-Verlag, New York, 2005.

Department of Mathematics, Nanjing Normal University, Nanjing 210097, P.R.China e-mail: hhchen@njnu.edu.cn

Mathématiques et statistique, Université de Montréal, CP-6128 Centre Ville, Montréal, QC, H3C $3 J 7$ e-mail: gauthier@dms.umontreal.ca


[^0]:    Received by the editors January 25, 2006; revised July 4, 2006.
    Research supported in part by NSFC (China), NSERC (Canada).
    AMS subject classification: Primary: 47B33; secondary: 32A18, 32A70, 46E15.
    (C)Canadian Mathematical Society 2009.

