
Canad. J. Math. Vol. 61 (1), 2009 pp. 50–75

Composition operators on µ-Bloch spaces

Huaihui Chen and Paul Gauthier

Abstract. Given a positive continuous function µ on the interval 0 < t ≤ 1, we consider the space of

so-called µ-Bloch functions on the unit ball. If µ(t) = t , these are the classical Bloch functions. For

µ, we define a metric F
µ
z (u) in terms of which we give a characterization of µ-Bloch functions. Then,

necessary and sufficient conditions are obtained in order that a composition operator be a bounded

or compact operator between these generalized Bloch spaces. Our results extend those of Zhang and

Xiao.

1 Introduction

Let D denote the unit disk in the complex plane C, and H(D) the class of all holo-

morphic functions on D. A function f ∈ H(D) is called a Bloch function if

‖ f ‖ = sup{(1 − |z|2)| f ′(z)| : z ∈ D} <∞.

The Bloch functions, with the norm

(1.1) ‖ f ‖B = | f (0)| + ‖ f ‖,

form a Banach space, which is called the Bloch space and denoted by B. The Bloch

space of the unit disk has been investigated extensively, see [1].

The notion of Bloch function has been generalized to Riemann surfaces and do-

mains in complex spaces of higher dimension. Let

Bn
= {z = (z1, . . . , zn) : |z1|2 + · · · + |zn|2 < 1}

denote the unit ball in the complex space C
n, and H(Bn) the class of all holomorphic

functions on Bn. For f ∈ H(Bn), as in [8, 9], we define

Q f (z) = sup
{ |∇ f (z)u|

Hz(u, u)1/2
: 0 6= u ∈ C

n
}

,

where ∇ f (z) = (∂ f /∂z1, . . . , ∂ f /∂zn) denotes the complex gradient of f , ∇ f (z)u

denotes the inner product 〈∇ f (z), u〉 of ∇ f (z) and u and Hz(u, u) is the Bergman

metric on Bn which is defined by

Hz(u, u) =
n + 1

2

(1 − |z|2)|u|2 + |〈u, z〉|2
(1 − |z|2)2

.
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We remark that Q
µ
f (z) is the norm of u → ∇ f (z)u as a linear functional on the

tangent space at z (u ∈ C
n regarded as a tangent vector to the unit ball at z, taking the

norm of u to be the norm on tangent vectors associated with the Bergman metric).

A function f ∈ H(Bn) is called a Bloch function on Bn if

(1.2) ‖ f ‖ = sup{Q f (z) : z ∈ Bn} <∞,

and the Bloch space of Bn consists of all Bloch functions on Bn with the same norm

(1.1) and is also denoted by B.

Let φ be a holomorphic mapping of D into itself. The composition operator Cφ

on H(D), induced by φ, is defined by Cφ( f ) = f ◦φ for f ∈ H(D). Since the classical

Schwarz–Pick lemma [2] asserts that

(1 − |z|2)|φ′(z)|
1 − |φ(z)|2 ≤ 1 for z ∈ D,

Cφ is always a bounded operator on B. In 1995, K. Madigan and A. Matheson [4]

proved that a composition operator Cφ is compact if and only if

(1 − |z|2)|φ′(z)|
1 − |φ(z)|2 → 0 as φ(z) → ∂D.

We recall that a linear operator is compact if the image of a bounded sequence con-

tains a convergent subsequence.

In the case of higher dimension, for a holomorphic mapping φ of Bn into itself

the composition operator Cφ induced by φ is defined in the same way. It is also a

bounded operator on B, because by the Schwarz–Pick lemma for the unit ball Bn,

(1.3)
Hφ(z)(φ

′(z)u, φ′(z)u)

Hz(u, u)
≤ 1

holds for z ∈ Bn and 0 6= u ∈ C
n. Similarly to the case of one dimension, the

necessary and sufficient condition for Cφ to be compact on B should be

Hφ(z)(φ
′(z)u, φ′(z)u)

Hz(u, u)
→ 0 as φ(z) → ∂Bn.

This has been proved by J. Shi and L. Luo [7]. Instead of the unit ball, Z. Zhou and J.

Shi [13] consider the composition operators of the Bloch space on the polydisc.

The so-called α-Bloch spaces have been introduced and studied by a number of

authors (for the general theory of α-Bloch functions see [14]). For α > 0, a holo-

morphic function f on the unit disk D is called an α-Bloch function, if

sup
{

(1 − |z|2)α| f (z)| : z ∈ D
}

<∞.

The α-Bloch space Bα is defined in the same way. S. Ohno, K. Stroethoff and R. Zhao

[6] studied the boundedness and compactness of a composition operator Cφ between
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α-Bloch spaces, and proved that Cφ is a bounded operator of Bα into Bβ if and only

if

sup
{ (1 − |z|2)β |φ′(z)|

(1 − |φ(z)|2)α
: z ∈ D

}

<∞,

and that a bounded composition operator Cφ of Bα into Bβ is compact if and only if

(1 − |z|2)β |φ′(z)|
(1 − |φ(z)|2)α

→ 0 as φ(z) → ∂D.

Let α > 0. We may call an f ∈ H(Bn) an α-Bloch function on Bn, if

‖ f ‖α,1 = sup
{

(1 − |z|2)α|∇ f (z)| : z ∈ Bn
}

<∞.

Meanwhile, we define

‖ f ‖α,2 = sup
{

(1 − |z|2)α|R f (z)| : z ∈ Bn
}

<∞,

where R f (z) = ∇ f (z)z = 〈∇ f (z), z〉 is the radial derivative of f . The equivalence

of these two norms is proved by W. Yang and C. Ouyang [11]. For α = 1, they are

equivalent to the norm (1.2), see [8, 9]. Now, the question is how to define the third

equivalent norm, like (1.2), for an arbitrary α. Forα > 1/2, the answer can be found

in [15]. In this paper, we solve this problem in a more general situation.

Let M be the class of all positive and non-decreasing continuous functions µ(t),

0 < t ≤ 1, such that µ(t) → 0 as t → 0. In addition, we assume that every function

in µ possesses the property

(†) there exists a δ > 0 such that µ(t)/tδ is decreasing for small t.

As a consequence of property (†), we have

(††) µ(σt) ≥ µ(t)

Cµ,σ
for 0 < σ < 1, 0 < t ≤ 1.

For µ ∈ M, a function f ∈ H(Bn) is called a µ-Bloch function if

‖ f ‖µ,1 = sup
{

µ(1 − |z|2)|∇ f (z)| : z ∈ Bn
}

<∞.

As in the case of α-Bloch functions, for f ∈ H(Bn) and µ ∈ M, we define

‖ f ‖µ,2 = sup
{

µ(1 − |z|2)|R f (z)| : z ∈ Bn
}

<∞.

µ-Bloch functions were recently studied by Z. Hu [3] for the polydisc, and by

X. Zhang and J. Xiao for the unit ball [12]. Since µ-Bloch functions are not invari-

ant under Möbius mappings of Bn, it is more difficult to treat these function spaces.

Zhang and Xiao gave another definition of µ-Bloch function and set necessary and

sufficient conditions for the boundedness and compactness of Cφ, as a composition
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operator between µ-Bloch spaces, under an appropriate assumption on µ such that

the equivalence of their definition and the above is guaranteed.

In Section 2 of this paper, for µ ∈ M, we give an estimate of the tangential deriva-

tive of a function f ∈ H(Bn) in terms of the norm ‖ f ‖µ,2. In Section 3, we define a

metric Fµz (u), by which the third equivalent norm ‖ f ‖µ,3 is defined. The equivalence

of these norms is proved in Section 4. In Section 5, interesting examples of µ-Bloch

functions are constructed by gap series for an arbitrary µ ∈ M. They will be used in

the proof of the necessity of the conditions for boundedness and compactness in Sec-

tions 6 and 7. One of them will show that our estimate for the tangential derivative

in Section 2 is precise. Sections 6 and 7 are devoted to the discussion of bounded-

ness and compactness. Necessary and sufficient conditions for the boundedness and

compactness of Cφ as a composition operator between µ-Bloch spaces are obtained.

Under an appropriate assumption on µ, our results become those of Zhang and Xiao

[12].

2 The Radial Derivative and Tangential Derivative

In the following theorem and throughout this paper, Cµ denotes a positive number

depending on µ only, which may assume different values when appearing at different

places.

Theorem 2.1 Let µ ∈ M and f ∈ H(Bn). Then, for any z ∈ Bn and ζ ∈ ∂Bn with

ζ ⊥ z, we have

(2.1) |∇ f (z)ζ| ≤ Cµ‖ f ‖µ,2
(

1 +

∫ 1

1−|z|2

dt

t1/2µ(t)

)

.

If

(2.2) Iµ =

∫ 1

0

dt

t1/2µ(t)
<∞,

then (2.1) becomes

(2.3) |∇ f (z)ζ| ≤ Cµ‖ f ‖µ,2.

Proof To prove (2.1) and (2.3) we may, by a unitary change of coordinates, assume

that z = (r0, 0, . . . , 0) with 0 ≤ r0 < 1 and ζ = (0, 1, 0, . . . , 0). Then

(2.4) ∇ f (z)ζ =
∂ f

∂z2
(r0, 0, . . . , 0).

Let f (z) =
∑

λ aλzλ, where λ = (λ1, . . . , λn) with integers λk ≥ 0 and zλ =

zλ1

1 · · · zλn
n . Then,

∂ f (z)

∂z2
=

∑

λ2 6=0

aλλ2zλ/z2, R f (z) =

∑

λ

aλ|λ|zλ,
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where |λ| = λ1 + · · · + λn, and

∂ f

∂z2
(z1, 0, . . . , 0) =

∞
∑

λ1=0

a(λ1,1,0,...,0)z
λ1

1 ,

∂R f

∂z2
(z1, 0, . . . , 0) =

∞
∑

λ1=0

(λ1 + 1)a(λ1,1,0,...,0)z
λ1

1 .

Thus,

(2.5) r0 ·
∂ f

∂z2
(r0, 0, . . . , 0) =

∫ r0

0

∂R f

∂z2
(r, 0, . . . , 0)dr.

For a fixed r ≥ 0, the function g(z2) = R f (r, z2, 0, . . . , 0) is estimated by

|g(z2)| ≤ ‖ f ‖µ,2
µ(3(1 − r2)/4)

≤ Cµ‖ f ‖µ,2
µ(1 − r2)

for |z2| <
1

2
(1 − r2)1/2.

Here property †† is used. Using Cauchy’s inequality, we have

(2.6)
∣

∣

∣

∂R f

∂z2
(r, 0, . . . , 0)

∣

∣

∣
= |g ′(0)| ≤ Cµ‖ f ‖µ,2

(1 − r2)1/2µ(1 − r2)
,

and, by (2.4) – (2.6),

(2.7) |∇ f (z)ζ| ≤ Cµ‖ f ‖µ,2
|z|

∫ |z|

0

dr

(1 − r2)1/2µ(1 − r2)
.

Since

1

|z|

∫ |z|

0

dr

(1 − r2)1/2µ(1 − r2)
≤ Cµ + 2

∫ |z|2

1/2

dr

(1 − r)1/2µ(1 − r)

= Cµ + 2

∫ 1

1−|z|2

dt

t1/2µ(t)
for |z| ≥ 1/2,

and
1

|z|

∫ |z|

0

dr

(1 − r2)1/2µ(1 − r2)
≤ Cµ for 0 6= |z| ≤ 1/2,

(2.1) follows from (2.7) if z 6= 0. By continuity, (2.1) also holds for z = 0. (2.3)

follows from (2.1) under the assumption (2.2). The theorem is proved.

The estimate (2.1) for µ(t) = tα with 0 < α < 1/2 or 1/2 < α < 1 can be found

in Rudin’s book [5]. In Section 5, we will give an example to show that the estimate

(2.1) is sharp.
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Lemma 2.2 Let µ ∈ M. Then, we have

(2.8) 1 +

∫ 1

t

dτ

τ 1/2µ(τ)
≥ 1

Cµ
· t1/2

µ(t)
for 0 < t ≤ 1.

Proof According to the property (†), there exists a δ > 0 such that µ(t)/tδ is de-

creasing for 0 < t ≤ t0 < 1. Then, t1/2+δ/µ(t) is increasing for 0 < t ≤ t0 and,

consequently,

∫ 1

t

dτ

τ 1/2µ(τ)
>

∫ t0

t

τ 1/2+δdτ

τ 1+δµ(τ)
>

1

δ

t1/2+δ

µ(t)

( 1

tδ
− 1

tδ0

)

.

Thus, there exists a positive t ′ < t0 such that

∫ 1

t

dt

t1/2µ(t)
>

1

2δ

t1/2

µ(t)
for 0 < t < t ′.

This shows that (2.8) holds for 0 < t < t ′. (2.8) is obviously true for t ′ ≤ t ≤ 1. The

lemma is proved.

Lemma 2.3 Let µ ∈ M. If there exists δ > 0 such that µ(t)/t1/2+δ is increasing for

sufficiently small t, or 1/M ≤ µ(t)/t1/2+δ ≤ M for 0 < t ≤ 1, then Iµ = ∞ and

(2.9) 1 +

∫ 1

t

dτ

τ 1/2µ(τ)
≤ Cµ ·

t1/2

µ(t)
for 0 < t ≤ 1.

Proof Let µ(t)/t1/2+δ be increasing for 0 < t ≤ t0 < 1. Then,

Iµ >

∫ t0

0

dτ

τ 1/2µ(t)
≥ t

1/2+δ
0

µ(t0)

∫ t0

0

dτ

τ 1+δ
= ∞.

As in the proof of the preceding lemma, for 0 < t < t0, we have

∫ t0

t

dτ

τ 1/2µ(τ)
=

∫ t0

t

τ 1/2+δdτ

τ 1+δµ(τ)
<

t1/2+δ

µ(t)

∫ t0

t

dτ

τ 1+δ
<

1

δ

t1/2

µ(t)
.

Thus, there exists a positive t ′ < t0 such that

1 +

∫ 1

t

dτ

τ 1/2µ(τ)
<

2

δ

t1/2

µ(t)
for 0 < t < t ′,

since t1/2/µ(t) → ∞ as t → 0 by the assumption that µ(t)/t1/2+δ is increasing for

small t . This shows that (2.9) holds for 0 < t < t ′. (2.9) is obviously true for

t ′ ≤ t ≤ 1.

Now, assume that 1/M ≤ µ(t)/t1/2+δ ≤ M for 0 < t ≤ 1. Then,

Iµ =

∫ 1

0

τ 1/2+δdτ

τ 1+δµ(τ)
≥ 1

M

∫ 1

0

dτ

τ 1+δ
= ∞,
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and there exist a t ′ < 1 such that

1 +

∫ 1

t

dτ

τ 1/2µ(τ)
≤ 1 + M

∫ 1

t

dτ

τ 1+δ

= 1 +
M

δ

( 1

tδ
− 1

)

≤ 2M

δtδ
≤ 2M

δ

t1/2

µ(t)
, for 0 < t < t ′.

This shows that (2.9) holds for 0 < t < t ′. (2.9) is obviously true for t ′ ≤ t ≤ 1. The

lemma is proved.

The above lemmas show that if µ ∈ M satisfies the condition formulated in

Lemma 2.3, then

(2.10)
1

Cµ

t1/2

µ(t)
≤ 1 +

∫ 1

t

dτ

τ 1/2µ(τ)
≤ Cµ ·

t1/2

µ(t)
, for 0 < t ≤ 1,

and (2.1) can be replaced by

|∇ f (z)ζ| ≤ Cµ(1 − |z|2)1/2

µ(1 − |z|2)
· ‖ f ‖µ,2.

3 µ-Metrics

Let µ ∈ M. If the integral Iµ defined in Theorem 2.1 is divergent, we denote

ν(t) = νµ(t) =

( 1

µ(1)
+

∫ 1

t

dt

t1/2µ(t)

)−1

;

otherwise, let νµ(t) ≡ µ(1). The metric Fµz (u) corresponding to µ is defined by

Fµz (u) =

√

n + 1

2

1

µ(1 − |z|2)

{ µ(1 − |z|2)2

ν(1 − |z|2)2
|u|2 +

(

1 − µ(1 − |z|2)2

ν(1 − |z|2)2

) |〈u, z〉|2
|z|2

} 1/2

for 0 6= z ∈ Bn and u ∈ C
n. For z = 0, we put F

µ
0 (u) =

√

(n + 1)/2|u|/µ(1).

It is easy to verify that for z ∈ Bn, we have

(3.1) √
n + 1|u|√

2 max{µ(1 − |z|2), ν(1 − |z|2)}
≤ Fµz (u) ≤

√
n + 1|u|√

2 min{µ(1 − |z|2), ν(1 − |z|2)}
.

Indeed, if z 6= 0, we may write u = u1z/|z| + u2ζ, where z ⊥ ζ and |ζ| = 1. Thus,

|u1|2 = |〈u, z〉|2/|z|2, |u2|2 = |u|2 − |u1|2 and

Fµz (u) =

√

n + 1

2

( |u1|2
µ(1 − |z|2)2

+
|u2|2

ν(1 − |z|2)2

) 1/2

,
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from which (3.1) follows. Note that

1

ν(t)
≤ 1

µ(1)
+

1

µ(t)

∫ 1

0

dτ

τ 1/2
=

1

µ(1)
+

2

µ(t)
≤ 3

µ(t)
.

Thus, (3.1) becomes

(3.2)

√
n + 1|u|

3
√

2ν(1 − |z|2)
≤ Fµz (u) ≤ 3

√
n + 1|u|√

2µ(1 − |z|2)
for z ∈ Bn.

It follows from (3.2) that

(3.3) Fµz (u) ≥
√

n + 1|u|√
2µ(1)

for z ∈ Bn,

and since µ is non-decreasing,

Fµz (u) ≤ 3
√

n + 1|u|√
2µ(1 − r2)

for |z| ≤ r < 1.

Lemma 3.1 If µ satisfies the condition in Lemma 2.3, then Fµz (u) is equivalent to

((1 − |z|2)/µ(1 − |z|2))Hz(u, u)1/2,

where Hz(u, u) is the Bergman metric of Bn formulated in the Introduction.

Proof Assume that µ satisfies the condition in Lemma 2.3. Then, by (2.10),

1

Cµ

t1/2

µ(t)
≤ 1

ν(t)
≤ Cµ ·

t1/2

µ(t)
, for 0 < t ≤ 1,

and

Fµz (u)2
=

n + 1

2

1

µ(1 − |z|2)2

{ µ(1 − |z|2)2

ν(1 − |z|2)2

(

|u|2 − |〈u, z〉|2
|z|2

)

+
|〈u, z〉|2
|z|2

}

≤ n + 1

2

Cµ

µ(1 − |z|2)2

{

(1 − |z|2)
(

|u|2 − |〈u, z〉|2
|z|2

)

+
|〈u, z〉|2
|z|2

}

=
n + 1

2

Cµ

µ(1 − |z|2)2

{

(1 − |z|2)|u|2 + |〈u, z〉|2
}

= Cµ

( 1 − |z|2
µ(1 − |z|2)

) 2

Hz(u, u).

For the same reason

Fµz (u)2 ≥ 1

Cµ

( 1 − |z|2
µ(1 − |z|2)

) 2

Hz(u, u).

This proves the lemma.

Note that in terms of the function ν, (2.1) in Theorem 2.1 can be written in

(3.4) |∇ f (z)ζ| ≤ Cµ‖ f ‖µ,2
ν(1 − |z|2)

.
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4 Equivalent Norms of µ-Bloch Functions

For µ ∈ M and f ∈ H(Bn), we define

Q
µ
f (z) = sup

{ |∇ f (z)u|
F
µ
z (u)

: 0 6= u ∈ C
n
}

, for z ∈ Bn,

and

‖ f ‖µ,3 = sup
{

Q
µ
f (z) : z ∈ Bn

}

.

If µ satisfies the condition in Lemma 2.3, by Lemma 3.1 Fµz (u) is equivalent to

((1 − |z|2)/µ(1 − |z|2))Hz(u, u)1/2,

and ‖ f ‖µ,3 is equivalent to

sup
{ µ(1 − |z|2)|∇ f (z)u|

(1 − |z|2)Hz(u, u)
: 0 6= u ∈ C

n
}

,

It is the norm that was defined by Zhang and Xiao in [12].

Theorem 4.1 For µ ∈ M, the norms ‖ f ‖µ,1, ‖ f ‖µ,2 and ‖ f ‖µ,3 are equivalent.

Proof Assume that f ∈ Bn and µ ∈ M. It is obvious that ‖ f ‖µ,2 ≤ ‖ f ‖µ,1. Let

z ∈ Bn. If ∇ f (z) 6= 0, letting u = ∇ f (z)/|∇ f (z)|, we have

µ(1 − |z|2)|∇ f (z)| = µ(1 − |z|2)|∇ f (z)u|

≤ µ(1 − |z|2)Q
µ
f (z)Fµz (u, u)1/2 ≤ 3

√

n + 1

2
Q
µ
f (z),

where (3.2) is used. This shows that

(4.1) ‖ f ‖µ,1 ≤ 3
√

(n + 1)/2‖ f ‖µ,3.

Now, let 1/2 ≤ |z| < 1 and 0 6= u ∈ C
n. There exists a ζ such that |ζ| = 1,

〈ζ, z〉 = 0 and u = u1z/|z| + u2ζ. Then, |u|2 = |u1|2 + |u2|2 and u1 = 〈u, z〉/|z|. By

(3.4), we have

|∇ f (z)u|2 = |u1∇ f (z)(z/|z|) + u2∇ f (z)ζ|2 ≤ 8(|u1|2|∇ f (z)z|2 + |u2|2|∇ f (z)ζ|2)

≤
8C2

µ‖ f ‖2
µ,2

µ(1 − |z|2)2

(

|u1|2 + |u2|2
µ(1 − |z|2)2

ν(1 − |z|2)2

)

=
8C2

µ‖ f ‖2
µ,2

µ(1 − |z|2)2

( µ(1 − |z|2)2

ν(1 − |z|2)2
|u|2 +

(

1 − µ(1 − |z|2)2

ν(1 − |z|2)2

)

|u1|2
)

=
8C2

µ‖ f ‖2
µ,2

µ(1 − |z|2)2

( µ(1 − |z|2)2

ν(1 − |z|2)2
|u|2 +

(

1 − µ(1 − |z|2)2

ν(1 − |z|2)2

) |〈u, z〉|2
|z|2

)

=
16C2

µ‖ f ‖2
µ,2

n + 1
Fµz (u)2.
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It is proved that

(4.2)
|∇ f (z)u|

F
µ
z (u)

≤ Cµ√
n + 1

‖ f ‖µ,2

holds for 1/2 ≤ |z| < 1 and 0 6= u ∈ C
n. Combining (4.2) with (3.2) gives

(4.3) |∇ f (z)u| ≤ Cµ‖ f ‖µ,2|u|

for |z| = 1/2 and 0 6= u ∈ C
n. Since |∇ f (z)u| is subharmonic for a fixed u, (4.3)

holds for |z| ≤ 1/2. It follows from (4.3) and (3.3) that (4.2) holds for |z| ≤ 1/2 and

0 6= u ∈ C
n also. This shows that

(4.4) ‖ f ‖µ,3 ≤
Cµ√
n + 1

· ‖ f ‖µ,2.

The theorem is proved.

The equivalence of the norms for µ(t) = tα with α > 1/2 was indicated in [14].

5 Examples of µ-Bloch functions

The following lemma is due to Z. Hu [3]. For the convenience of our readers, we

include the proof.

Lemma 5.1 Let γ(ρ), 0 ≤ ρ < 1, be an non-decreasing and positive continuous

function with the property that γ(ρ) → ∞ as ρ→ 1 and there exist positive numbers δ
and ρ0, ρ0 < 1, such that γ(ρ)(1 − ρ)δ is decreasing for ρ0 ≤ ρ < 1. Then, there exists

a function Γ(ω), holomorphic in the unit disk D and represented by a gap series with

positive coefficients, such that γ(ρ)/M ≤ Γ(ρ) ≤ Mγ(ρ) with M > 0 for 0 ≤ ρ < 1.

Proof Let ρk be the smallest ρ such that

(∗)
γ(ρk+1)

γ(ρk)
= 8δ for k = 0, 1, 2, . . . .

Let nk = [A/ log(1/ρk)] for k = 0, 1, 2, . . . , where A = log(4 · 8δ). Then there exists

a positive integer K such that for k ≥ K , we have

1 − ρk

1 − ρk+1

≥
( γ(ρk+1)

γ(ρk)

) 1/δ

= 8,

since γ(ρ)(1 − ρ)δ is decreasing for ρ0 ≤ ρ < 1, and

(∗∗) e−A
= ρ

A/ log(1/ρk)
k ≤ ρnk

k < ρ
A/ log(1/ρk)−1
k < 2e−A

=
8−δ

2
,
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nk+1

nk
≥ A/ log(1/ρk+1) − 1

A/ log(1/ρk)
>

A/(2(1 − ρk+1)) − 1

A/(1 − ρk)
(∗ ∗ ∗)

=
(1/2 − (1 − ρk+1)/A)(1 − ρk)

1 − ρk+1

≥ 8(1/2 − (1 − ρk+1)/A) > 2.

We define

Γ(ω) =

∞
∑

k=K

γ(ρk)ωnk .

Let ρK ≤ ρm−1 ≤ ρ < ρm. By (∗), (∗∗), and (∗ ∗ ∗),

Γ(ρ) < Γ(ρm) =

∞
∑

k=K

γ(ρk)ρnk
m =

m−1
∑

k=K

γ(ρk)ρnk
m +

∞
∑

k=m

γ(ρk)ρnk
m

<

m−1
∑

k=K

γ(ρk) +

∞
∑

k=m

γ(ρk)(ρnm
m )nk/nm

< γ(ρm)

m−1
∑

k=K

8−(m−k)δ + γ(ρm)

∞
∑

k=m

8(k−m)δ
( 8−δ

2

) 2k−m

< γ(ρm)

m−1
∑

k=K

8−(m−k)δ + γ(ρm)

∞
∑

k=m

8(k−m)δ
( 8−δ

2

) k−m+1

< γ(ρm)
( 8−δ

1 − 8−δ
+ 8−δ

)

<
2 · 8−δ

1 − 8−δ
· γ(ρm).

On the other hand, by (∗∗),

Γ(ρ) ≥ Γ(ρm−1) > γ(ρm−1)ρ
nm−1

m−1 ≥ e−Aγ(ρm−1) =
8−δ

4
· γ(ρm−1).

Thus, since γ is non-decreasing, we have

8−2δ

4
=

8−δ

4
· γ(ρm−1)

γ(ρm)
≤ Γ(ρ)

γ(ρ)
≤ 2 · 8−δ

1 − 8−δ
· γ(ρm)

γ(ρm−1)
=

2

1 − 8−δ
.

The above estimate has been proved for ρ ≥ ρK . For 0 ≤ ρ ≤ ρK , the ratio Γ(ρ)/γ(ρ)

is bounded above and has a positive lower bound, since both Γ(ρ) and γ(ρ) are posi-

tive and continuous. This shows that Γ(ω) is the function required and the lemma is

proved.

By using the above lemma, we may construct useful examples of µ-Bloch func-

tions.
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Example 1 For µ ∈ M, let Γµ(ω) be the function constructed for γ(ρ) = 1/µ(1 −
ρ) in the above lemma. Let

Gµ(ω) =

∫ ω

0

Γµ(w)dw for ω ∈ D.

For z0 ∈ ∂Bn, define g(z) = gµ,z0
(z) = Gµ(〈z, z0〉) for z ∈ Bn. Then, for z ∈ Bn,

(5.1) ∇g(z) = Γµ(〈z, z0〉)z0

and

µ(1− |z|2)|∇g(z)| = µ(1− |z|2)|Γµ(〈z, z0〉)| ≤ µ(1− |z|2)Γµ(|z|) ≤ Cµµ(1 − |z|2)

µ(1 − |z|) .

It follows from (††) that

(5.2)
µ(1 − r2)

µ(1 − r)
≤ µ(1 − r2)

µ
(

(1 − r2)/2
) ≤ Cµ for 0 ≤ r < 1.

Thus,

(5.3) ‖g‖µ,1 = sup
z∈Bn

µ(1 − |z|2)|∇g(z)| ≤ Cµ.

This means that g ∈ Bµ.

On the other hand, taking z = rz0 with 0 ≤ r < 1, we have ∇g(z)ζ = 0 and

µ(1 − |z|2)|∇g(z)| = µ(1 − |z|2)|∇g(z)z0|

= µ(1 − r2)Γµ(r) ≥ 1

Cµ
· µ(1 − r2)

µ(1 − r)
≥ 1

Cµ
.

This shows that on the line z = rz0 with 0 ≤ r < 1, all tangential derivatives of g

are equal to 0, and the radial derivative attains 1/µ(1 − |z|2) up to a constant factor

depending on µ only.

Example 2 For µ ∈ M, let Γµ(ω) be the function formulated in Example 1,

Λµ(ω) =
Γ(ω)

(1 − ω)1/2

and

Lµ(ω) = 1 +

∫ ω

0

Λµ(z)dz for ω ∈ D.

Then, for 0 ≤ r < 1, since 1/(Cµµ(1 − ρ)) ≤ Γ(ρ) ≤ Cµ/µ(1 − ρ) by Lemma 5.1,

we have

(5.4) Lµ(r) ≤ 1 + Cµ

∫ r

0

dρ

(1 − ρ)1/2µ(1 − ρ)
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and

(5.5) Lµ(r) ≥ 1

Cµ

(

1 +

∫ r

0

dρ

(1 − ρ)1/2µ(1 − ρ)

)

=
1

Cµ

(

1 +

∫ 1

1−r

dt

t1/2µ(t)

)

.

For z0, ζ ∈ ∂Bn with ζ ⊥ z0, define l(z) = lµ,z0 ,ζ = 〈z, ζ〉Lµ(〈z, z0〉) for z ∈ Bn.

Then, for z ∈ Bn,

(5.6) ∇l(z) = Lµ(〈z, z0〉)ζ + 〈z, ζ〉Λµ(〈z, z0〉)z0

and

(5.7) µ(1 − |z|2)|∇l(z)| ≤ µ(1 − |z|2)Lµ(|z|) + µ(1 − |z|2)|〈z, ζ〉|Λµ(|〈z, z0〉|).

Since Λµ(ρ) ≤ Cµ/((1 − ρ)1/2µ(1 − ρ)), by (5.2), we have

(5.8) µ(1 − |z|2)|〈z, ζ〉|Λµ(|〈z, z0〉|) ≤
Cµ|〈z, ζ〉|

(1 − |〈z, z0〉|)1/2

µ(1 − |z|2)

µ(1 − |〈z, z0〉|)

≤ Cµ(1 − |〈z, z0〉|2)1/2

(1 − |〈z, z0〉|)1/2

µ(1 − |z|2)

µ(1 − |z|) ≤ Cµ

√
2µ(1 − |z|2)

µ(1 − |z|) ≤ C ′
µ,

where the inequality |〈z, ζ〉|2 + |〈z, z0〉|2 ≤ |z|2 < 1 is used, and by (5.4) and (5.2),

µ(1 − |z|2)Lµ(|z|) ≤ µ(1) + Cµµ(1 − |z|2)

∫ |z|

0

dr

(1 − r)1/2µ(1 − r)
(5.9)

≤ µ(1) +
Cµµ(1 − |z|2)

µ(1 − |z|)

∫ 1

0

dr

(1 − r)1/2
≤ C ′

µ.

It follows from (5.2), (5.7), (5.8), and (5.9) that

(5.10) ‖l‖µ,1 = sup
z∈Bn

µ(1 − |z|2)|∇l(z)| ≤ Cµ

and l ∈ Bµ.

On the other hand, taking z = rz0 with r ≥ 0, we have ∇l(z)z0 = 0 and by (5.5),

∇l(z)ζ = Lµ(r) > Lµ(r2) ≥ 1

Cµ

(

1 +

∫ 1

1−r2

dt

t1/2µ(t)

)

.

This shows that on the line z = rz0 with r ≥ 0, the radial derivative of l is equal to 0

and the tangential derivative along ζ attains the upper bound (2.1) in Theorem 2.1

up to a constant factor depending only on µ. So (2.1) is sharp.
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6 Bounded Composition Operators Between µ-Bloch Spaces

Theorem 6.1 Let µ1, µ2 ∈ M, and let φ be a holomorphic mapping of Bn into itself.

Then the following conditions are equivalent:

(i) Cφ : Bµ1 −→ Bµ2 is bounded;

(ii) sup{µ2(1 − |z|2)F
µ1

φ(z)(φ
′(z)z) : z ∈ Bn} = M1 <∞;

(iii)

sup
{ F

µ1

φ(z)(φ
′(z)u)

F
µ2
z (u)

: z ∈ Bn, 0 6= u ∈ C
n
}

= M2 <∞.

Proof It is immediate that (iii) implies (ii). In fact, for 0 6= z ∈ Bn, we have Fµ2
z (z) =

|z|/µ2(1 − |z|2) and, by (iii),

M2 ≥
F
µ1

φ(z)(φ
′(z)z)

F
µ2
z (z)

> µ2(1 − |z|2)F
µ1

φ(z)(φ
′(z)z).

Now assume that (ii) holds. Let f ∈ Bµ1 and z ∈ Bn. If φ′(z)z = 0,

µ2(1 − |z|2)|∇( f ◦ φ)(z)z| = µ2(1 − |z|2)|∇ f (φ(z))φ′(z)z| = 0.

If φ′(z)z 6= 0, then

µ2(1 − |z|2)|∇( f ◦ φ)(z)z|

= µ2(1 − |z|2)F
µ1

φ(z)(φ
′(z)z) · |∇ f (φ(z))φ′(z)z|

F
µ1

φ(z)(φ
′(z)z)

≤ M1‖ f ‖µ1,3.

It is proved that ‖Cφ( f )‖µ2,2 ≤ M1‖ f ‖µ1,3. Consequently, by (4.1) and (4.4),

‖Cφ( f )‖µ2,1 ≤
Cµ1

Cµ2
M1√

n + 1
· ‖ f ‖µ1,1 ≤

Cµ1
Cµ2

M1√
n + 1

· ‖ f ‖Bµ1 .

On the other hand,

| f (φ(0))| ≤ | f (0)| +

∫ φ(0)

0

|∇ f (ζ)||dζ|

≤ | f (0)| + ‖ f ‖µ1,1

∫ |φ(0)|

0

dr

µ1(1 − r2)
= Cµ1,φ‖ f ‖Bµ1 .

Thus,

‖Cφ( f )‖Bµ2 = | f (φ(0))| +
Cµ1

Cµ2
M1√

n + 1
· ‖ f ‖µ1,1 ≤ Cµ2

Cµ1,φ(1 + M1)‖ f ‖Bµ1 .

This shows that Cφ : Bµ1 −→ Bµ2 is bounded. It is proved that (ii) implies (i).
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Finally, assume that Cφ : Bµ1 −→ Bµ2 is bounded. For z ′ ∈ Bn and 0 6= u ∈ C
n

with φ(z ′) 6= 0 and φ′(z ′)u 6= 0, let w ′
= φ(z ′), z0 = w ′/|w ′|, v ′

= φ′(z ′)u =

v1z0 + v2ζ = eiθ1 |v1|z0 + eiθ2 |v2|ζ with ζ ⊥ w ′ and |ζ| = 1. Define

f (z) = fz ′,u(z) = e−iθ1 gµ1 ,z0
(z) + e−iθ2 lµ1 ,z0,ζ(z) for z ∈ Bn,

where gµ1,z0
and lµ1,z0,ζ(z) are the functions defined in Examples 1 and 2. Then,

(6.1) f (0) = 0 and ‖ f ‖µ1,1 ≤ Cµ1

by (5.3) and (5.10). On the other hand, it follows from (5.1) and (5.6) that

∇ f (w ′) = e−iθ1Γµ1
(|w ′|)z0 + e−iθ2 Lµ1

(|w ′|)ζ
and

∇ f (w ′)v ′
= |v1|Γµ1

(|w ′|) + |v2|Lµ1
(|w ′|).

We have

Γ(|w ′|) ≥ 1

Cµ1
µ1(1 − |w ′|) , Lµ1

(|w ′|) ≥ 1

Cµ1
νµ1

(1 − |w ′|2)
.

The last inequality follows from (5.2). Thus,

|∇ f (w ′)v ′| ≥ 1

Cµ1

( |v1|
µ1(1 − |w ′|) +

|v2|
νµ1

(1 − |w ′|2)

)

≥ 1

Cµ1

( |v1|2
µ1(1 − |w ′|2)2

+
|v2|2

νµ1
(1 − |w ′|2)2

) 1/2

=

√
2

Cµ1

√
n + 1

F
µ1

w ′(v ′).

This shows that

(6.2)
|∇ f (w ′)v ′|

F
µ1

w ′(v ′)
≥ 1

Cµ1

√
n + 1

.

Since Cφ is bounded, by (6.1) and (6.2), we have

Cµ1
‖Cφ‖ ≥ ‖Cφ‖ · ‖ f ‖µ1,1 = ‖Cφ‖ · ‖ f ‖Bµ1 ≥ ‖Cφ( f )‖Bµ2

≥ ‖Cφ( f )‖µ2,1 ≥
√

n + 1

Cµ2

‖Cφ( f )‖µ2,3 ≥
√

n + 1

Cµ2

|∇ f (φ(z ′))φ′(z ′)u|
Fµ2

z ′ (u)

=

√
n + 1

Cµ2

|∇ f (φ(z ′))φ′(z ′)u|
F
µ1

φ(z ′)(φ
′(z ′)u)

F
µ1

φ(z ′)(φ
′(z ′)u)

F
µ2

z ′ (u)

=

√
n + 1

Cµ2

|∇ f (w ′)v ′|
Fµ1

w ′(v ′)

F
µ1

φ(z ′)(φ
′(z ′)u)

Fµ2

z ′ (u)
≥ 1

Cµ2
Cµ1

F
µ1

φ(z ′)(φ
′(z ′)u)

Fµ2

z ′ (u)
.

Thus,
F
µ1

φ(z ′)(φ
′(z ′)u)

F
µ2

z ′ (u)
≤ Cµ2

Cµ1
‖Cφ‖,

when φ(z ′) 6= 0 and φ′(z ′)u 6= 0. The same inequality also holds if φ(z ′) = 0

and φ′(z ′)u = 0 by continuity. This shows that (i) implies (iii). The theorem is

proved.
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Lemma 6.2 Cφ : Bµ −→ Bµ is bounded for any φ ∈ Aut(Bn) and µ ∈ M.

Proof Let φ ∈ Aut(Bn) and µ ∈ M. Assume that φ = ψ ◦ φa, where ψ is a mapping

defined by a unitary matrix and φa is a mapping in Aut(Bn) which exchanges a with

the origin. A well-known identity asserts that

1 − |φ(z)|2 = 1 − |φa(z)|2 =
(1 − |a|2)(1 − |z|2)

|1 − 〈z, a〉|2 .

Thus,

(6.3)
1 − |φ(z)|2

1 − |z|2 ≥ 1 − |a|2
2

for z ∈ Bn.

Let z ∈ Bn. If |φ(z)| ≤ |z|, by (3.2), we have

µ(1 − |z|2)F
µ
φ(z)(φ

′(z)z) ≤ 3
√

n + 1µ(1 − |z|2)|φ′(z)z|√
2µ(1 − |φ(z)|2)

≤ Cn|φ′(z)|,

where |φ′(z)| is the operator norm of φ′(z), which is defined by

|φ′(z)| = sup{|φ′(z)u| : u ∈ ∂Bn}.

In the case |φ(z)| ≥ |z|, because of (6.3) and (††),

µ(1 − |z|2)F
µ
φ(z)(φ

′(z)z) ≤ Cnµ(1 − |z|2)|φ′(z)|
µ(1 − |φ(z)|2)

≤ Cnµ(1 − |z|2)|φ′(z)|
µ((1 − |a|2)(1 − |z|2)/2)

≤ CnCa,µ|φ′(z)|.

Now φ is holomorphic on the closed ball B
n

and so |φ′(z)| is bounded on Bn.

This shows that the condition (ii) in Theorem 6.1 is satisfied. By Theorem 6.1,

Cφ : Bµ −→ Bµ is bounded and the lemma is proved.

Lemma 6.3 Let µ ∈ M with the property that µ(t)/t is increasing for small t or there

is a δ ≥ 0 such that mt1+δ ≤ µ(t) ≤ Mt1+δ for 0 < t ≤ 1, and let φ be a holomorphic

mapping of Bn into itself such that φ(0) = 0. Then Cφ : Bµ −→ Bµ is bounded.

Proof Assume that µ(t)/t is increasing for 0 < t ≤ t0 < 1. Then µ satisfies the

assumption in Lemma 2.3. By the Schwarz–Pick lemma, |φ(z)| ≤ |z| and 1 − |z|2 ≤
1 − |φ(z)|2 since φ(0) = 0. For z ∈ Bn and 0 6= u ∈ C

n, applying Lemma 3.1 and

(1.3), we have

F
µ
φ(z)(φ

′(z)u)

Fµz (u)
≤ Cµ ·

µ(1 − |z|2)

(1 − |z|2)

1 − |φ(z)|2
µ(1 − |φ(z)|2)

.

https://doi.org/10.4153/CJM-2009-003-1 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2009-003-1


66 H. Chen and P. Gauthier

If 1 − |φ(z)|2 ≤ t0, since µ(t)/t is increasing for 0 < t ≤ t0, we have

µ(1 − |z|2)

1 − |z|2 ≤ µ(1 − |φ(z)|2)

1 − |φ(z)|2 .

If 1 − |φ(z)|2 ≥ t0, then

1 − |φ(z)|2
µ(1 − |φ(z)|2)

≤ max{t/µ(t) : t0 ≤ t ≤ 1}.

If 1 − |z|2 ≤ t0, since µ(t)/t is increasing for 0 < t ≤ t0, we have

µ(1 − |z|2)

(1 − |z|2)
≤ µ(t0)

t0
.

If 1 − |z|2 ≥ t0, then

µ(1 − |z|2)

(1 − |z|2)
≤ max{µ(t)/t : t0 ≤ t ≤ 1}.

Combining the above estimates we conclude that the condition (iii) in Theorem 6.1

is satisfied and Cφ : Bµ −→ Bµ is bounded.

If there is a δ ≥ 0 such that mt1+δ ≤ µ(t) ≤ Mt1+δ) for 0 < t ≤ 1, then µ satisfies

the assumption in Lemma 2.3 also and, for z ∈ Bn and 0 6= u ∈ C
n,

F
µ
φ(z)(φ

′(z)u)

F
µ
z (u)

≤ CµM

m
· (1 − |z|2)δ

(1 − |φ(z)|2)δ
≤ CµM

m
.

The condition (iii) is satisfied and Cφ is bounded. The lemma is proved.

As a consequence of the above two lemmas, we have the following theorem.

Theorem 6.4 Let µ ∈ M with the property that µ(t)/t is increasing for small t or

there is a δ ≥ 0 such that mt1+δ ≤ µ(t) ≤ Mt1+δ for 0 < t ≤ 1, and let φ be a

holomorphic mapping of Bn into itself. Then Cφ is a bounded operator of Bµ into itself.

Further, if µ1 ∈ M and µ1(t) ≥ mµ(t) for small t with m > 0, then Cφ : Bµ1 −→ Bµ

is bounded.

Proof Let φ = ψ ◦ σ, where ψ ∈ Aut(Bn) and σ(0) = 0. Then Cφ = Cσ ◦ Cψ .

By the above lemmas, Cσ and Cψ are both bounded operators of Bµ into itself and,

consequently, Cφ is.

If µ1(t) ≥ mµ(t) for 0 < t ≤ t0 = 1 − r2
0 , then, for f ∈ H(Bn), we have

sup
|z|≥r0

µ(1 − |z|2)|∇ f (z)| ≤ 1

m
sup
|z|≥r0

µ1(1 − |z|2)|∇ f (z)| ≤ 1

m
‖ f ‖µ1,1.
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On the other hand,

sup
|z|≤r0

µ(1 − |z|2)|∇ f (z)| ≤ µ(1) max
|z|=r0

|∇ f (z)|

≤ µ(1)

µ1(t0)
max
|z|=r0

µ1(1 − |z|2)|∇ f (z)| ≤ µ(1)

µ1(t0)
‖ f ‖µ1,1.

It is proved that ‖ f ‖µ,1 ≤ max{1/m, µ(1)/µ1(t0)}‖ f ‖µ1,1. So, if we let i be the

identity mapping of Bn, then Ci is a bounded operator Bµ1 into Bµ. It follows that

Cφ = Cφ ◦ Ci is a bounded operator of Bµ1 into Bµ, since we have proved that Cφ is

a bounded operator of Bµ into itself. The theorem is proved.

7 Compact Composition Operators Between µ-Bloch Spaces

Lemma 7.1 For µ ∈ M with Iµ = ∞, 0 6= w ∈ Bn and 0 6= v ∈ C
n, there exists a

function fµ,w,v such that

(i) fµ,w,v(0) = 0 and ‖ fµ,w,v‖µ,1 ≤ Cµ;

(ii) |∇ fµ,w,v(w)v|/Fµw(v) ≥ 1/Cµ,n.

Further, for a fixed µ, fµ,w,v(z) → 0 as w → ∂Bn locally uniformly in Bn. Precisely

speaking, for ǫ > 0, 0 < r < 1, there exists an r ′µ,ǫ,r such that | fµ,w,v(z)| < ǫ for

|w| > r ′, |z| ≤ r and 0 6= v ∈ C
n.

Proof Let µ ∈ M, 0 6= w ∈ Bn and 0 6= v ∈ C
n be fixed, let v = v1w/|w| + v2ζ with

ζ ⊥ w and |ζ| = 1, and let v1 = |v1|eiθ1 and v2 = |v2|eiθ2 . We define

f (z) = fµ,w,v(z) = e−iθ1 (1 − |w|2)1/2Lµ(〈z,w〉)/|w|

+
e−iθ2〈z, ζ〉Lµ(〈z,w〉)2

Lµ(|w|2)
− e−iθ1 (1 − |w|2)1/2

|w| ,

where L(ω) = Lµ(ω) is the function defined in Example 2. Then, f (0) = 0 and

∇ f (z) = e−iθ1 (1 − |w|2)1/2
Λ(〈z,w〉)w/|w|

+
e−iθ2 L(〈z,w〉)2ζ

L(|w|2)
+

2e−iθ2〈z, ζ〉L(〈z,w〉)Λ(〈z,w〉)w

L(|w|2)
.

It is obvious that

|Λ(〈z,w〉)| ≤ Λ(|〈z,w〉|) ≤ Λ(|z||w|) ≤ Λ(|w|),
|L(〈z,w〉)| ≤ L(|w|), |L(〈z,w〉)| ≤ L(|z|).
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Thus, since Λ(ρ) ≤ Cµ/((1 − ρ)1/2µ(1 − ρ)) for 0 ≤ ρ < 1, we have

|∇ f (z)| ≤ (1 − |w|2)1/2
Λ(|z||w|) +

L(|z|)L(|w|)
L(|w|2)

+
2|〈z, ζ〉|L(|w|)Λ(|〈z,w〉|)

L(|w|2)

≤ Cµ(1 − |w|2)1/2

(1 − |z||w|)1/2µ(1 − |z||w|) +
L(|z|)L(|w|)

L(|w|2)

+
2Cµ|〈z, ζ〉|L(|w|)

(1 − |〈z,w〉|)1/2µ(1 − |〈z,w〉|)L(|w|2)

and

(7.1) µ(1 − |z|2)|∇ fµ,w,v(z)| ≤ Cµµ(1 − |z|2)

µ(1 − |z|) · (1 − |w|2)1/2

(1 − |w|)1/2

+ µ(1 − |z|2)L(|z|) · L(|w|)
L(|w|2)

+
2Cµµ(1 − |z|2)

µ(1 − |z|) · |〈z, ζ〉|
(1 − |〈z,w〉|)1/2

· L(|w|)
L(|w|2)

.

If |w| ≥ 1/2, since

∫ |w|

1/2

dρ

(1 − ρ)1/2µ(1 − ρ)
≤

∫ |w|2

1/4

dρ

(1 −√
ρ)1/2µ(1 −√

ρ)

≤
√

2

∫ |w|2

1/4

dρ

(1 − ρ)1/2µ
(

(1 − ρ)/2
)

≤
√

2Cµ

∫ |w|2

1/4

dρ

(1 − ρ)1/2µ((1 − ρ)
,

where the property (††) is used, we have, by (5.4) and (5.5),

(7.2) L(|w|) ≤ C ′
µ

(

1 +

∫ |w|2

0

dρ

(1 − ρ)1/2µ((1 − ρ)

)

≤ C ′
µL(|w|2).

The above estimate is evidently true for |w| ≤ 1/2.

It is obvious that

(7.3)
(1 − |w|2)1/2

(1 − |w|)1/2
≤

√
2

and, by (5.2),

(7.4)
µ(1 − |z|2)

µ(1 − |z|) ≤ Cµ for z ∈ Bn.

For z ∈ Bn, let u = 〈z,w/|w|〉w/|w| + 〈z, ζ〉ζ. Then, (z − u) ⊥ u and

1 > |z|2 ≥ |u|2 = |〈z,w/|w|〉|2 + |〈z, ζ〉|2 > |〈z,w〉|2 + |〈z, ζ〉|2.
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Consequently,

(7.5)
|〈z, ζ〉|

(1 − |〈z,w〉|)1/2
<

√
2|〈z, ζ〉|

(1 − |〈z,w〉|2)1/2
<

√
2.

Now, replacing (5.9), (7.2)–(7.5), in (7.1), we obtain

µ(1 − |z|2)|∇ f (z)| ≤ Cµ for z ∈ Bn.

This shows that ‖ f ‖µ,1 ≤ Cµ, and (i) is proved.

On the other hand, since Λ(ρ) ≥ 1/
(

Cµ(1 − ρ)1/2µ(1 − ρ)
)

for 0 ≤ ρ < 1 and

L(r) ≥ 1/(Cµν(1 − r)) by (5.5), we have

|∇ f (w)v| = |v1|(1 − |w|2)1/2
Λ(|w|2) + |v2|L(|w|2)

≥ 1

Cµ

( |v1|
µ(1 − |w|2)

+
|v2|

νµ(1 − |w|2)

)

≥ 1

Cµ

( |v1|2
µ(1 − |w|2)2

+
|v2|2

νµ(1 − |w|2)2

) 1/2

=
1

Cµ,n
· Fµw(v).

This shows (ii).

Let 0 < r < 1 be given. For |z| ≤ r, we have

| fµ,w,v(z)| ≤ (1 − |w|2)1/2Lµ(r)

|w| +
Lµ(r)2

Lµ(|w|2)
+

(1 − |w|2)1/2

µ(1)|w| .

The right side of the above tends to 0 as |w| → 1 since Lµ(|w|) → ∞ as |w| → 1 for

Iµ = ∞. The second part of the lemma is proved.

Lemma 7.2 For µ ∈ M with Iµ < ∞ and 0 6= w ∈ Bn, there exists a function fµ,w
such that

(i) fµ,w(0) = 0 and ‖ fµ,w,v‖µ ≤ Cµ;

(ii) µ(1 − |w|2)|∇ fµ,w(w)v|/|〈v,w〉| ≥ 1/Cµ.

Further, for a fixed µ, fµ,w(z) → 0 as w → ∂Bn locally uniformly in Bn.

Proof For µ ∈ M with Iµ <∞ and 0 6= w ∈ Bn, let

f (z) = fµ,w(z) = (1 − |w|2)1/2Lµ(〈z,w〉)/|w| − (1 − |w|2)1/2

|w| .

Then, as in the proof of Lemma 7.1, we have fµ,w(0) = 0, ‖ fµ,w‖µ,1 ≤ Cµ and, for

0 6= v = v1w/|w| + v2ζ with ζ ⊥ w and |ζ| = 1,

|∇ f (w)v| = |v1|(1 − |w|2)1/2
Λ(|w|2) ≥ 1

Cµ

|v1|
µ(1 − |w|2)

=
1

Cµ

|〈v,w〉|
µ(1 − |w|2)

.

The second part of the lemma is obvious.
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Lemma 7.3 Let f ∈ H(Bn) and µ ∈ M with Iµ < ∞. If |∇ f (z)| ≤ m for |z| ≤ r0,

1/2 ≤ r0 < 1, then for r0 ≤ |z| < 1 and ζ ⊥ z with |ζ| = 1, we have

|∇ f (z)ζ| ≤ m + Cµ,r0
‖ f ‖µ,1,

where Cµ,r0
→ 0 as r0 → 1.

Proof It is sufficient to prove the lemma for z = (ρ, 0, . . . , 0) with ρ ≥ r0 and

ζ = (0, 1, 0, . . . , 0). As in the proof of Theorem 2.1,

ρ
∂ f

∂z2
(ρ, 0, . . . , 0) − r0

∂ f

∂z2
(r0, 0, . . . , 0) =

∫ ρ

r0

∂R f

∂z2
(z1, 0, . . . , 0)dz1,

|∇ f (z)ζ| =

∣

∣

∣

∂ f

∂z2
(ρ, 0, . . . , 0)

∣

∣

∣

≤
∣

∣

∣

∂ f

∂z2
(r0, 0, . . . , 0)

∣

∣

∣
+ Cµ‖ f ‖µ,2

∫ ρ

r0

dr

(1 − r2)1/2µ(1 − r2)

≤ m + Cµ‖ f ‖µ,1
∫ 1−r2

0

0

dt

t1/2µ(t)
.

Theorem 7.4 Let µ1, µ2 ∈ M, and let φ be a holomorphic mapping of Bn into itself

and Cφ : Bµ1 −→ Bµ2 be bounded. If Iµ1
= ∞, then the following conditions are

equivalent:

(i) Cφ : Bµ1 −→ Bµ2 is compact;

(ii) µ2(1 − |z|2)F
µ1

φ(z)(φ
′(z)z) −→ 0 as φ(z) → ∂Bn;

(iii)
F
µ1
φ(z)

(φ ′(z)u)

F
µ2
z (u)

−→ 0 as φ(z) → ∂Bn.

If Iµ1
<∞, then the following conditions and (i) are equivalent:

(ii ′)
µ2(1 − |z|2)|〈φ′(z)z, φ(z)〉|

µ1(1 − |φ(z)|2)
−→ 0 as φ(z) → ∂Bn;

(iii ′)
|〈φ′(z)u, φ(z)〉|

F
µ2
z (u)µ1(1 − |φ(z)|2)

−→ 0 as φ(z) → ∂Bn.

Proof As in the proof of Theorem 6.1, it is obvious that (iii) implies (ii) and (iii ′)

implies (ii ′). Since Cφ is bounded, by Theorem 6.1,

(7.6) sup{µ2(1 − |z|2)F
µ1

φ(z)(φ
′(z)z) : z ∈ Bn} = M <∞.

First assume that Iµ = ∞. Let (ii) hold. Let fk ∈ Bµ1 and ‖ fk‖Bµ1 = 1, for k =

1, 2, . . . . Applying Montel’s theorem, by choosing a subsequence, we may assume

that fk converges to a function f locally uniformly in Bn. It is easy to see that ‖ f ‖Bµ1 ≤
1. Let gk = fk − f . Then, gk → 0 locally uniformly in Bn and

(7.7) ‖gk‖Bµ1 ≤ 2 for k = 1, 2, . . . .
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Let ǫ > 0 be given. By the assumption (ii), there exists an r0 < 1 such that

(7.8) µ2(1 − |z|2)F
µ1

φ(z)(φ
′(z)z) < ǫ if |φ(z)| > r0.

Since gk(w) → 0 uniformly for |w| ≤ r0, by (3.3), there exists a K such that

(7.9)
|∇gk(w)v|
F
µ1
w (v, v)1/2

≤ 3
√

2µ(1)√
n + 1

|∇gk(w)| < ǫ

for k > K , |w| ≤ r0 and 0 6= v ∈ C
n.

Let k > K and z ∈ Bn. To estimate µ2(1 − |z|2)|RCφ(gk)(z)|, we distinguish three

cases.

(a) If φ′(z)z = 0, µ2(1 − |z|2)|RCφ(gk)(z)| = µ2(1 − |z|2)|∇gk(φ(z))φ′(z)z| = 0.

(b) If φ′(z)z 6= 0 and |φ(z)| ≤ r0, then, by (7.6) and (7.9),

µ2(1 − |z|2)|RCφ(gk)(z)| = µ2(1 − |z|2)F
µ1

φ(z)(φ
′(z)z)

|∇gk(φ(z))φ′(z)z|
F
µ1

φ(z)(φ
′(z)z)

< Mǫ.

(c) If φ′(z)z 6= 0 and |φ(z)| > r0, it follows from (7.7) and (7.8) that

µ2(1 − |z|2)|RCφ(gk)(z)| ≤ ǫ‖gk‖µ1,3 < Cµ1
ǫ.

We conclude that ‖Cφ(gk)‖µ2,2 < ǫmax{M,Cµ1
} for k > K . This shows that

‖Cφ(gk)‖µ2,2 → 0

and, consequently, ‖Cφ(gk)‖Bµ2 → 0 as k → ∞, since

‖Cφ(gk)‖µ2,1 ≤ Cµ2
‖Cφ(gk)‖µ2,2

and gk(φ(0)) → 0 as k → ∞. Thus, fk ◦ φ → f ◦ φ according to the Bµ2 norm. The

compactness of Cφ is proved. This shows that (ii) implies (i).

Now, assume that (i) holds. Suppose on the contrary that (iii) doesn’t hold. Then,

there exist δ > 0, sequences zk and uk 6= 0, such that

(7.10)
F
µ1

φ(zk)(φ
′(zk)uk)

F
µ2
zk (uk)

> δ, for k = 1, 2, . . . ,

where wk = φ(zk) → ∂Bn as k → ∞. For k = 1, 2, . . . , let vk = φ′(zk)uk and

fk = fµ1,wk,vk
be functions defined in Lemma 7.1. Then, fk and, consequently, Cφ( fk)

converge to 0 locally uniformly in Bn. Since Cφ is compact and fk is a bounded se-

quence in Bµ1 by (i) in Lemma 7.1, by choosing a subsequence, we may assume that

there is a function g ∈ Bµ2 such that ‖Cφ( fk) − g‖Bµ2 → 0. g must be equal to 0

identically for Cφ( fk) converges to 0 locally uniformly in Bn. Thus, ‖Cφ( fk)‖Bµ2 → 0.

In particular,

(7.11)
|∇Cφ( fk)(zk)uk|

F
µ2
zk (uk)

=
|∇ fk(φ(zk))φ′(zk)uk|

F
µ2
zk (uk)

→ 0.
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However, by (ii) in Lemma 7.1,

(7.12)
|∇ fk(φ(zk))φ′(zk)uk|

F
µ1

φ(zk)(φ
′(zk)uk)

≥ 1

Cn,µ1

, for k = 1, 2, . . . .

Combining (7.10) and (7.12), we have

|∇ fk(φ(zk))φ′(zk)uk|
F
µ2
zk (uk)

≥ δ

Cn,µ1

.

This contradicts (7.11). This shows that (i) implies (iii). The theorem is proved for

Iµ = ∞.

Now we consider the case that Iµ < ∞. Assume that (ii ′) holds. As above, for a

bounded sequence in Bµ1 , we have subsequence fk ∈ Bµ1 and an f ∈ Bµ1 such that

gk = fk − f → 0 locally uniformly in the unit disk, ‖ fk‖Bµ1 ≤ 1 and (7.7) holds. Let

ǫ > 0 be given. By Lemma 7.3 and the assumption (ii ′), there exists an r0 ≥ 1/2 such

that Cµ1 ,r0
< ǫ, where Cµ1 ,r0

is the number in Lemma 7.3, and

(7.13)
µ2(1 − |z|2)|〈φ′(z)z, φ(z)〉|

µ1(1 − |φ(z)|2)
< ǫ if |φ(z)| > r0.

Since gk(w) → 0 uniformly on |w| ≤ r0, by (3.3), there exists a K such that

(7.14) |∇gk(w)| < ǫ for k > K, |w| ≤ r0,

and

|∇gk(w)v|
F
µ1
w (v)

< ǫ for k > K, |w| ≤ r0, 0 6= v ∈ C
n.

Let k > K and z ∈ Bn. By the same reasoning as in the case Iµ = ∞, we have

µ2(1 − |z|2)|RCφ(gk)(z)z| < Mǫ

if φ′(z)z = 0 or φ′(z)z 6= 0 and |φ(z)| ≤ r0. In the case φ′(z)z 6= 0 and |φ(z)| >
r0, let φ′(z)z = u1φ(z)/|φ(z)| + u2ζ with ζ ⊥ φ(z) and |ζ| = 1. Then u1 =

〈φ′(z)z, φ(z)/|φ(z)|〉, u2 = 〈φ′(z)z, ζ〉, and we have

|RCφ(gk)(z)z| = |∇gk(φ(z))φ′(z)z|
= |∇gk(φ(z))(〈φ′(z)z, φ(z)/|φ(z)|〉φ(z)/|φ(z)| + 〈φ′(z)z, ζ〉ζ)|
≤ 4|〈φ′(z)z, φ(z)〉||∇gk(φ(z))φ(z)| + |〈φ′(z)z, ζ〉||∇gk(φ(z))ζ|

and

(7.15) µ2(1 − |z|2)|RCφ(gk)(z)z| ≤ µ2(1 − |z|2)|〈φ′(z)z, ζ〉||∇gk(φ(z))ζ|

+ 4µ1(1 − |φ(z)|2)|∇gk(φ(z))φ(z)| · µ2(1 − |z|2)|〈φ′(z)z, φ(z)〉|
µ1(1 − |φ(z)|2)

.
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Estimating the right side of (7.15), we have, by (3.3) and (7.6),

µ2(1 − |z|2)|〈φ′(z)z, ζ〉| ≤ µ2(1 − |z|2)|φ′(z)z|(7.16)

≤ µ1(1)µ2(1 − |z|2)F
µ1

φ(z)(φ
′(z)z) ≤ µ1(1)M,

and, by Lemma 7.3 and (7.14),

(7.17) |∇gk(φ(z))ζ| < ǫ + Cµ1 ,r0
‖gk‖µ1,1 ≤ ǫ + ǫ‖gk‖Bµ1 < 3ǫ,

and, by (7.7) and the definition of Fµz ,

µ1(1 − |φ(z)|2)|∇gk(φ(z))φ(z)| =

√

n + 1

2

|φ(z)||∇gk(φ(z))φ(z)|
F
µ1

φ(z)(φ(z))

≤
√

n + 1

2
‖gk‖µ1,3 ≤ Cµ1

‖gk‖µ1,1

≤ C ′
µ1
‖gk‖Bµ1 ≤ 2C ′

µ1
.

(7.18)

Thus, substituting in (7.15) by (7.16), (7.17), (7.18) and (7.13), we obtain

µ2(1 − |z|2)|RCφ(gk)(z)z| ≤ (3µ1(1)M + 8C ′
µ1

)ǫ.

Thus, ‖Cφ(gk)‖µ2,2 → 0 as k → ∞. As above, this shows that fk◦φ→ f ◦φ according

to the Bµ2 norm, and Cφ : Bµ1 −→ Bµ2 is compact. We have proved that (ii ′) implies

(i).

Now, assume that Cφ : Bµ1 −→ Bµ2 is compact. To prove (iii ′), suppose on the

contrary that there exist δ > 0, sequences zk and uk 6= 0, such that φ(zk) → ∂Bn and

(7.19)
|〈φ′(zk)uk, φ(zk)〉|

F
µ2
zk (uk)µ1(1 − |φ(zk)|2)

> δ, for k = 1, 2, . . . .

For k = 1, 2, . . . , let wk = φ(zk) and fk = fµ1,wk
be the functions defined in Lemma

7.2. Then, as above, by choosing a subsequence, we may assume that ‖Cφ( fk)‖Bµ2 →
0 as k → ∞. In particular,

(7.20)
|∇Cφ( fk)(zk)uk|

F
µ2
zk (uk)

=
|∇ fk(wk)φ′(zk)uk|

F
µ2
zk (uk)

→ 0.

However, by (ii) in Lemma 7.2,

(7.21) µ1(1 − |wk|2)
|∇ fk(wk)φ′(zk)uk|
|〈φ′(zk)uk,wk〉|

>
1

Cµ1

for k = 1, 2, . . . .

(7.19) and (7.21) contradict (7.20). This shows that (i) implies (iii ′).
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If v = v1w/|w| + v2ζ with ζ ⊥ w and |ζ| = 1, then

Fµw(v) =

√

n + 1

2

( |v1|2
µ(1 − |w|2)2

+
|v2|2

νµ(1 − |w|2)2

) 1/2

=

√

n + 1

2

( |〈v,w/|w|〉|2
µ(1 − |w|2)2

+
|〈v, ζ〉|2

νµ(1 − |w|2)2

) 1/2

≥
√

n + 1

2

|〈v,w〉|
µ(1 − |w|2)

.

This shows that the conditions (ii ′) and (iii ′) are weaker than (ii) and (iii) respec-

tively.

If µ1 and µ2 satisfy the condition in Lemma 2.3 (then Iµ1
= Iµ2

= ∞), then

condition (iii) in Theorems 6.1 and condition (iii) in Theorem 7.4 become

sup
{ µ(1 − |z|2)(1 − |φ(z)|2)Hφ(z)(φ

′(z)u, φ′(z)u)

µ(1 − |φ(z)|2)(1 − |z|2)Hz(u, u)
: z ∈ Bn 0 6= u ∈ C

n
}

<∞

and

µ(1 − |z|2)(1 − |φ(z)|2)Hφ(z)(φ
′(z)u, φ′(z)u)

µ(1 − |φ(z)|2)(1 − |z|2)Hz(u, u)
→ 0 as φ(z) → ∂Bn,

respectively. These are the necessary and sufficient conditions established by Zhang

and Xiao in [12].
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