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HOMEOMORPHIC SETS OF REMOTE POINTS 

R. GRANT WOODS 

Let X be a completely regular Hausdorff space, and let j3X denote the 
Stone-Cech compactification of X. A point p G PX is called a remote point 
of PX if p does no t belong to the /3X-closure of any discrete subspace of X. 
Remote points were first defined and studied by Fine and Gillman, who 
proved t h a t if the cont inuum hypothesis is assumed then the set of remote points 
of ]8R((8Q) is dense in/3R — R(/3Q — 0 ) (R denotes the space of reals, 0 the space 
of rat ionals) . Assuming the cont inuum hypothesis, P lank has proved t h a t if X 
is a locally compact, non-compact, separable metric space wi thout isolated 
points, then (3X has a set of remote points t ha t is dense in pX — X. Robinson 
has extended this result by dropping the assumption t ha t X is separable. 
Le t bX denote the smallest cardinal m with the proper ty t h a t X has a dense 
subset of cardinali ty m. In this note it is proved t ha t if X and F are locally 
compact , non-compact metric spaces wi thout isolated points, and if 8X = bY, 
then the set of remote points of pX is homeomorphic to the set of remote 
points of P Y. 

1. P r e l i m i n a r i e s . Throughout this paper we shall use the notat ion and 
terminology of Gillman and Jerison [4]. In particular, the cardinali ty of a 
set 5 will be denoted by | 5 | , and the set of positive integers will be denoted 
by N. In this section we record some known results t ha t we shall need later. 

1.1. T H E O R E M . Let X be a locally compact, non-compact metric space. Then 
either: 

(i) bX = Ko and X is a-compact, or: 
(ii) bX > Ko and X is the free union of precisely bX locally compact, a-compact, 

non-compact metric spaces. 

Proof. A. H. Stone has proved t h a t every metric space is paracompact (see, 
for example, [1, Theorem 9.5.3]. I t is well-known (see, for example, [1, 
Theorem 11.7.3] t h a t every locally compact paracompact space is the free 
union of a collection of locally compact cr-compact spaces. Suppose t h a t there 
are m spaces in this collection. If m ^ Ko, then X is cr-compact, and the 
fact t h a t a compact metric space is separable implies t h a t bX — Ko- Suppose 
t h a t m > Ko. Then m ^ bX as any dense subset of X mus t include a t least 
one point from each member of the collection. Conversely, as each locally 
compact (7-compact metric space is separable, X contains a dense set of 
cardinali ty m • Ko = w. T h u s bX rg m and so bX = m. 
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Recall that a closed subset of a space X is called regular closed if it is the 
closure of some open subset of X. 

1.2. THEOREM [12, § 20C]. The family R(X) of all regular closed subsets of 
X is a complete Boolean algebra under the following operations: 

(i) A ^ B if and only if A C B 
(ii) VaAa = dx[\JaAa] 

(iii) AaAa = dx[intxr\aAa] 
(iv) A' — c\x(X — A) (A' denotes the complement of A). 

The following result is a well-known theorem of Marshall Stone (see, for 
example, [12, 8.2]. 

1.3. THEOREM. Let U be a Boolean algebra, and let S(U) be the set of all 
ultrafilters on U. For each x G Uput \(x) — {a Ç S(U): x Ç a}. If a topology r 
is assigned toS(U) by letting (X(x): x G U) be an open base for r, then (S(Z7), r) 
is a compact Hausdorff totally disconnected space and the map x —* X (x) is a 
Boolean algebra isomorphism from U onto the Boolean algebra of open-and-closed 
subsets of S(U). 

The space S(U) is called the Stone space of U. 
Recall that a continuous map / from a space X onto a space Y is said to 

be irreducible if the image under / of each proper closed subset of X is a proper 
closed subset of Y. The following result is Theorem 2.18 of [13]. 

1.4. THEOREM. Let X be a compact Hausdorff space and let % be a subalgebra 
of R (X) that is also a basis for the closed subsets of X. Then the map f:S(&) —» X 
given by 

f(a) = H {A e W: a 6 \(A)} (a € S ( ^ ) ) 

is a well-defined irreducible continuous map from S ( ^ ) onto X (X is as defined 
in 1.3). 

The proof of 1.4 is essentially the same as the proof of Theorem 3.2 of [5]. 
As stated above, a point p Ç (IX is a remote point of ($X if p is not in the 

/3X-closure of any discrete subspace of X. In [3] Fine and Gillman, assuming 
the continuum hypothesis, demonstrated the existence of a set of remote 
points of |8R that is dense in (3R — R (R denotes the real line). Let T(fiX) 
denote the set of remote points of (3X. The following result comprises a portion 
of Theorems 5.3 and 5.4 of [9]. 

1.5. THEOREM. Let X be a metric space without isolated points. Then 

T(fiX) = H {(fiX — X) — cl/3X̂ 4-' A is closed and nowhere dense in X}. 

If in addition X is locally compact, a-compact, and non-compact, and if the 
continuum hypothesis is assumed {i.e. Ki = 2*°), then T(/3X) has cardinality 
2*1 and is dense in PX — X. 
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Robinson [10] extended Plank's results to show that if the continuum 
hypothesis is assumed, and if X is a locally compact non-compact metric 
space without isolated points, then T(/3X) is dense in f3X — X. We shall not 
use this result, but it does give us the assurance that T(/3X) is non-empty 
when 8X > Xo. 

1.6. LEMMA. Let f be an irreducible mapping from Y onto X. If S is dense 
in X, then f~[S] is dense in Y. 

Proof. If /*~[S] were not dense in F, then clYf*~[S] would be a proper closed 
subset of F. As fis irreducible, /[clr/*~[5]] would be a proper closed subset of X 
containing the dense set 5, which is impossible. 

2. The Main Results. In this section we prove the theorem quoted in the 
last sentence of the first paragraph of this paper. We proceed as follows: 
if X is a locally compact, non-compact metric space without isolated points, 
we let Y be the free union of 5X copies of the Cantor set and construct an 
irreducible mapping / from F onto X. The Stone extension of / , namely, /0, 
takes /3Y onto fiX and we show tha t /0 maps the remote points of /3F homeo-
morphically onto the remote points of /3X. 

2.1. LEMMA. Let K be a compact metric space without isolated points. Then 
there exists an irreducible map f from the Cantor set C onto K with the following 
property: If D is a discrete sub space of C, then there exists a discrete sub space F 
of K such thatf[D] C dKF. 

Proof. As K is a compact metric space it has a countable basis Sf of closed 
subsets. As K is a regular Hausdorfï space, the family \clK(mtKB): B 6 2)\ = 
Si* is also a countable basis for the closed subsets of K. Let se be the sub-
algebra of R(K) generated by 9* (see [12, 1.3 and §4]. Then | j / | = Xo 
since \S\ = Ko. Hence S(s/ ) is a compact Hausdorfï space with a countable 
basis, so S {s/ ) is a compact totally disconnected metric space. Since K has 
no isolated points, se has no atoms (see [12, §9] and so S(s/ ) has no 
isolated points. But any compact totally disconnected metric space without 
isolated points is homeomorphic to the Cantor set C (see [6, 2.97]); hence 
S(s/ ) and C are homeomorphic. Hence the irreducible m a p / defined in 1.4 
takes C onto K. 

Let D be a discrete subspace of C. Since C has a countable basis, |D| S Ko-
Put D = {dn)n(iN. In the notation of 1.3, for each n G N there exists 
A(n) £s/ such that \(A(n)) C\ D = \dn). By replacing each \(A(n)) 
by A(.4 in)) — \Jj<n X(-4 (J)) if necessary, we may assume that i 9e j implies 
X(A(i)) r\ \(A(j)) = 0 - Put H = K - \JA^bàKA {bàKA denotes the 
topological boundary of A in K). By the Baire category theorem H is dense 
in K, and so, by 1.6, f*~[H] is dense in C. It is now easy to see that for each 
n € N we can find a subset E(n) of \(A(n)) r\f*~[H] such that E(n) is a 
discrete subspace of C and dn 6 c\cE(n). Put E = \JneNE(n). Then E is 
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a discrete subspace of C and D C c l c £. Since £ is discrete it is countable; put 
£ = (xn)neN. As above, there exists {B(n): n 6 N} C j / s u c h thatxw G \(B(n)) 
and i ^ 7 implies \(B(i)) r\\(B(j)) = 0, which in turn implies 

intKB(i)r\mtKB(j) = 0. 

It follows from the definition of / that f(xn) G B(n) C\ H C int^-B^), so 
/ [£ ] is a discrete subspace of X. Evidently/[.D] C/ [c l c E] = cl^/[E], so / [£ ] 
is the set F whose existence was claimed. 

2.2. LEMMA. Let X be a locally compact, a-compact non-compact Hausdorff 
space without isolated points. Then there exists a sequence {K(n): n £ N} of 
compact regular closed subsets of X with the following properties: 

(i) X = \Jn^NK{n). 
(ii) Each K(n) has no isolated points. 

(hi) K(n) r\ K(m) ^ 0 implies \m — n\ ^ 1. 
(iv) For each n G N, bdxK(n) = K(n) H [K(n - 1) UK(n + 1)]. 

Proof. I t is known (see [1, Theorem 11.7.2]) that any locally compact, 
(r-compact Hausdorff space X can be written in the form X = {JntN V(n) where 
for each n G N, Vin) is open in X, c\xV(n) is compact, and 

c\xV(n) Ç F(« + 1). 

Since X is non-compact, we may assume this last inclusion to be proper. 
Without loss of generality we may assume that each V(n) is regular open 
(i.e. the interior of some closed set), for if we let U(n) = mtxc\xV(n), then 
the family } U(n): n G N] has the same properties as those listed above for 
the family { V(n): n Ç N}. Define V(0) to be the empty set, and put K(n) = 
clxV(n) — Vin — 1) for each n 6 N. Obviously each K(n) is compact, and 
a straightforward argument shows that K(n) — clx[V(n) — clxV(n — 1)]. 
Hence each K(n) is regular closed, and intxK(n) = V(n) — clxV(n — 1), 
since this latter set is the intersection of two regular open sets and hence is 
regular open. Assertion (i) is obviously true. If p were an isolated point of 
K(n), then there would exist W, open in X, such that W f\ mtxK(n) = {p} ; 
this contradicts the assumption that X has no isolated points. Hence (ii) is 
true. To prove (iii), without loss of generality, suppose that m ^ n — 2. Then 
K{m) C c\xV{m) C Vim + 1) ç V(n - 1), so Kim) C\ K(n) = 0. Finally, 

bdxK(n) = K(n) - mtxK(n) 

= [clxV(n) - Vin - 1)] - [V(n) - dxV{n - 1)] 

= [c\xV(n) - V(n)] U [dxV(n - 1) - Vin - 1)] 

= [K(n) r\ Kin + 1)] W [X(^) H Kin - 1)] 

and (iv) is verified. 

The following result appears as Lemma 2.1 of [13]. 
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2.3. LEMMA. Let X be a locally compact, a-compact, non-compact Hausdorff 
space and let {A(n): n G N} be a countable family of closed subsets of X. For 
each n G N, define k(n) G N as follows: 

k(n) = min {j G N: A (n) H V(j) ^ 0} 

(V(j) is as defined at the beginning of the proof of 2.2). If \\mn_>œ k(n) = oo, 
then UWÉJV A(n) is closed in X. 

2.4. LEMMA. Let X be a locally compact, non-compact metric space without 
isolated points, and let Y be the free union of 5X copies of the Cantor set. Then 
there exists an irreducible perfect map from Y onto X. 

Proof. First assume that X is c-compact; then 3X = Ko. Write 

X = UntNK(n), 

where the collection {K(n): n G N} has the properties described in 2.2. For 
each n G N, we can, by 2.1 and 2.2 (ii), find a copy C(n) of the Cantor set 
and an irreducible map/ f t from C(n) onto K(n). Let Y be the free union of 
these Ko copies of the Cantor set, and define / : Y —* X by requiring that 
/ Ice») = fn- Evidently/ is a well-defined map from Y onto X, and as each/w is 
continuous and each C(n) is open in Y, f is continuous. Let A be closed in Y. 
Then 

f[A]=f [U»€* (A n C(n))] = U» € * / [A Pi C(*)], 

and f [A r\ C(n)] is a compact subset of X contained in X — V(n — 1). 
Thus by 2.3, / [̂ 4] is closed in X and / is a closed mapping. If p G X, by 
2.2 (iii) there exists n G N such that n ^ k ^ n + 1 implies p (I K(k). Thus 
f*~(p) Q C(n) {J C(n + 1), and hence f*~{p) is compact. Consequently / is 
a perfect mapping. To prove that / is irreducible, note that if A is a proper 
closed subset of Y, then there exists n G N such that i H C(w) is a proper 
closed subset of C(n). As fn is irreducible, fn[A C\ C(n)] is a proper closed 
subset of K(n). Thus there exists W open in X such that 

Wr\K(n) = K(n) - f [A C\ C(n)] ^ 0. 

Hence WC\ [V(n) - c\xV(n - 1)] ^ 0. If k ^ n, then 

K(k) C\ [V(n) - dxV(n - 1)] = 0; 

thus X - f [A] 3 Wr\ [V(n) - dxV(n - 1)] ^ 0 a n d / is irreducible. 

Now suppose that X is not o--compact. By 1.1, X is the free union of bX 
locally compact, cr-compact non-compact spaces-say X = \Ja&X(a), where 
|S | = SX and each X(a) is locally compact, cr-compact, and non-compact. 
For each a G 2, let Y(a) be the free union of Ko copies of the Cantor set. The 
preceding argument shows that there exists an irreducible perfect map / a from 
7(a) onto X(a). Let Y = 0«es Y (a) and de f ine / : F -> X by / | r ( t t ) = fa. 
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Then F is a free union of bX copies of the Cantor set, and / is an irreducible 
perfect map because each fa is. 

2.5. LEMMA. Let X be a locally compact, non-compact metric space without 
isolated points, let Y be the free union of dX copies of the Cantor set, and let 
f : Y —» X be the irreducible perfect map constructed in 2.4. If fp: 13 Y —> j3X is 
the Stone extension off (see [4, 6.5]), thenf[T((3Y)] = T(/3X). 

Proof. Suppose that p G pY and P(p) g T(/3X). By 1.5 there exists a 
closed subset A of X such that intxA = 0 and Pip) G c l ^ . As X — A is 
dense in X and / is irreducible, by 1.6, f^[X — A] = Y — f*~[A] is dense 
in F. Thus intr/*-[i4] = 0 . Evidently p£ (P)*~[dfixA]. I t follows that 
P G chrf*~[A]; to prove this we adapt the argument used by Isiwata in 
Lemma 1.2 of [7]. Suppose that p G dpYf^[A], Then there exists g G C(/3F) 
such that g(p) = 0 and g[dfiTf*-[A]] = {1}. Put Af = F H ««"[-J, £]; this is 
a zero-set of F. Obviously i n / f [ i ] = 0, so / [If] Pi A = 0. Since / is a 
closed map, / [ikf] is closed in X. As X is metric, it follows that 

cW/MHcWi =0 
(see [4, 6.5 IV]). Now g(p) = 0, so p G cl^ilf. Thus 

/ 'GO G / ' [ c l ^ M ] = dpxPlM] = c l ^ / [ M ] . 

Hence /'(#>) $ cl^x^» which contradicts the hypothesis. We conclude that 
p G dpYf*~[A]. Since F, being a free union of compact metric spaces, is itself 
a metric space, it follows from 1.5 and the fact that mtYf^~[A] = 0 that 
p G T087) . Thus £ G TifiY) implies/ '(£) G T(/3X) and/ '[T(/3F)] C T(£X) . 

Conversely, suppose that p G T(J3Y). First let us assume that X is o--
compact, and write X = \JneNK(n) as in 2.2. Write F = \JneN C(n), where 
each C{n) is a copy of the Cantor set. There exists a discrete subspace D of F 
such that £ G cl/jyZ>. Put Bin) = D C\ C(n). I t follows from 2.1 and 2.4 
that for each n G N, there exists a discrete subset E(n) of X(w) such that 
/ [D(n)] C clx(n)£(w). Using 2.2 (iii) and 2.2 (iv), we see that 

VntN[E(n)r\mtxK(n)] 

is a discrete subspace .F of X. Now 2.2 (iv), 2.3, and the Baire category 
theorem imply that G = Un€iv [i£(») H X(w + 1)] is a closed nowhere dense 
subset of X. I t follows from 2.2 (iv) that KJn^NEin) Q F U G. Hence 

/ [D] C U»€* clx(„)E(tf) C clx[Un€iv^(^)] QGU dxF. 

Thus 

/ ' ( P ) G P[dfiYD] = d/*/ [D] ç d ^ G U c l ^ e /5X - T(£X). 

This, combined with our previous result, shows that P[T (fi F)] = T(/3X). 
If X is not c-compact, then it is the free union of dX locally compact, 

cr-compact subspaces. It follows from the preceding paragraph that if D is a 
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discrete subspace of F, then / [D] is contained in a free union of discrete 
subspaces of X, together with a free union of closed nowhere dense subspaces 
of X. This free union of discrete (closed nowhere dense) subspaces of X will 
be discrete (closed nowhere dense), and our result follows. 

2.6. THEOREM. Let X and Y be two locally compact, non-compact metric spaces 
without isolated points. If bX = 8Y then T((3X) and T(j3Y) are homeomorphic. 

Proof. I t clearly will suffice to show that, for any locally compact non-
compact metric space X without isolated points, T(fiX) and T(J3Y) are 
homeomorphic, where Y is the free union of 8X copies of the Cantor set. 
Consider the m a p ^ : pY -> pX constructed in 2.4. Since, by 2.5,/*[T(0F)] = 
T(fiX), all we need to show is that the restriction of P to T(fiY) is one-to-one 
and closed. If A is closed in pY, by 2.5, J»[A C\ T(/3F)] = f[A] n T(pX), 
which is closed inT(fiX) as/ '3 is a closed map. HenceP\TWY) is closed. To show 
that P is one-to-one on T (P Y), suppose that p £ pX and that q and 5 are 
distinct points of PY such that / '3(s) = fp(q) = p. As F is a free union of 
compact spaces with bases of open-and-closed sets, it follows from 16.17 of [4] 
that P F has a basis of open-and-closed sets. Hence we can find an open-and-
closed subset A of pY such that q £ A and s e pY - A. Put B = A C\ F. 
Then q Ç c\$YB and 5 G cl^ r(F — B). Hence 

p e f*[dPTB] rv'[cW(r - B)] = cw/ [B] n cW/ [ F - 5] 
= ckx[f[B]r\f[Y-B]]; 

the last equality follows since / is a closed map and X is metric. Again let 
us momentarily assume that X is c-compact, and employ the notation used 
in the proof of 2.5. By 2.4, 2.1, and 1.4,/ takes complementary open-and-closed 
subsets of C(n) onto complementary regular closed sets of K(n). This implies 
that for each n 6 N,f [B C\ C(n)] C\ f [C(n) — B] is a closed nowhere dense 
subset of K(n). It follows from 2.2 that / [B] H / [ F - B] is contained in 

VntN ([K(n) n K(n + 1)] U [/ [B H C(n)] C\f[C(n) - B]]), 

which by 2.3 and the Baire category theorem is a closed nowhere dense subset 
of X. Thus p $ T(fiX), and consequently /^ITGSF) is a one-to-one, closed, 
continuous map from T(/3F) onto T(fiX). Hence T(/3F) and T(/3X) are 
homeomorphic. 

If X is not cr-compact, we can in the usual way write X as a free union of 
locally compact, cr-compact spaces and employ the results of the preceding 
paragraph to obtain the desired result. 

2.7. COROLLARY. Assume the continuum hypothesis. If X and Y are two 
locally compact, non-compact metric spaces without isolated points, and if 
ôX = 5Y, then R(pX - X) and R(/3F — F) are homeomorphic. 

Proof. According to Robinson's results quoted at the end of 1, and using 
2.6, we see that fiX — X and /3F — F contain homeomorphic dense subsets. 
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The corollary now follows from the fact that if S is a dense subspace of the 
(completely regular Hausdorff) space T, then the map A —» A Pi 5 is a 
Boolean algebra isomorphism from K(T) onto R(5). 

The next corollary appears as Theorem 4.3 of [13]. 

2.8. COROLLARY. Assume the continuum hypothesis. If X is a locally compact, 
separable, non-compact metric space without isolated points, then T(fiX) is 
homeomorphic to a dense subset of (3N — N (N is the countable discrete space). 

Proof. By 2.6, T(j3X) and T(fiY) are homeomorphic, where Y is the free 
union of Xo copies of the Cantor set. By 1.5, T(fiY) is dense in /3Y — Y. 
But, by 14.27 of [4], /3Y - F is a compact F-space, and, by 3.1 of [2], the 
zero-sets of fiY — Y are regular closed. Evidently @Y — Y is totally dis
connected (see [4, 16.11 and 16.17]) and has 2*° open-and-closed subsets. 
According to a theorem due to Rudin [11] and Parovicenko [8], on the 
assumption of the continuum hypothesis this implies that (3Y — F is homeo
morphic to j8N — N. 

We conclude with a question. Is it possible to characterize T(J3X) (where X 
is as in 2.8) "internally" as a subset of /3N — N, i.e., in terms of the topology 
of 0N — N and without reference to other spaces? 
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