LINEAR MAPPINGS BETWEEN TOPOLOGICAL VECTOR SPACES

B. D. CRAVEN

(Received 3 July 1970; revised 3 February 1971)
Communicated by E. Strzelecki

1. Introduction

If A and B are locally convex topological vector spaces, and B has certain additional structure, then the space $L(A, B)$ of all continuous linear mappings of A into B is characterized, within isomorphism, as the inductive limit of a family of spaces, whose elements are functions, or measures. The isomorphism is topological if $L(A, B)$ is given a particular topology, defined in terms of the seminorms which define the topologies of A and B. The additional structure on B enables $L(A, B)$ to be constructed, using the duals of the normed spaces obtained by giving A the topology of each of its seminorms separately.

The representation theorems lead to explicit representations of $L(A, B)$, in terms of functions, or measures, depending on two variables, if A and B are certain function spaces. Simple proofs are obtained for some known cases - when A or B is $C(P)$, the space of continuous complex functions on a compact Hausdorff space P (Dunford and Schwartz [4] give a representation which includes this case), and when $A=L^{p}(P)(1<p<\infty)$ (for which Cac [2] has given a representation) - but by different methods from these authors. But in addition, explicit representations, which appear to be new, are obtained for certain pairs of spaces which are not Banach spaces; when A or B are spaces of Schwartz distributions or test functions [7], having compact support. For example, a continuous linear mapping from Schwartz test functions into $C(P)$ may be identified with a suitable indexed family of Schwartz distributions.

2. Calibrations and structured spaces

If A and B are convex spaces (locally convex Hausdorff topological vector spaces), let $L(A, B)$ denote the space of all continuous linear mappings from A into B. Denote by $C(W)$ the space of all bounded continuous complex functions on the Hausdorff space W, with the uniform norm. The topology of a convex
space A can be specified by a (non-unique) calibration, namely a set of seminorms $\left\{\|\cdot\|_{\lambda}: \lambda \in \Lambda\right\}$; similarly let $\left\{\|\cdot\|_{\gamma}: \gamma \in \Gamma\right\}$ be a calibration for B.

The topology of A is unchanged by adjoining to the given calibration for A the maximum of each finite subset of the seminorms. The resulting calibration will be called saturated; it has the property (Bourbaki [1], page 97) that Λ is a directed set with pre-ordering \geqq, where for nets $\left\{x_{\alpha}\right\}$ in A,

$$
\begin{equation*}
\left\|x_{\alpha}\right\|_{\mu} \rightarrow 0 \text { and } \mu \geqq \lambda \Rightarrow\left\|x_{\alpha}\right\|_{\lambda} \rightarrow 0 \tag{1}
\end{equation*}
$$

or equivalently

$$
\begin{equation*}
\mu \geqq \lambda \Leftrightarrow \exists k=k(\lambda, \mu):\|x\|_{\lambda} \leqq k\|x\|_{\mu} \quad(\forall x \in A) \tag{2}
\end{equation*}
$$

Remarks. If $\mu \geqq \lambda$ and $\lambda \geqq \mu$, then the seminorms $\|\cdot\|_{\mu}$ and $\|\cdot\|_{\lambda}$ are (topologically) equivalent.

Let A be a convex space whose calibration is saturated. Denote by A_{λ} the factor space A / σ, where σ is the equivalence relation $x \sigma y$ iff $\|x-y\|_{\lambda}=0$, and A_{λ} has the topology given by the corresponding quotient seminorm $\|\cdot\|_{\lambda}$. Denote by A_{λ}^{\sim} the completion of A, and by A_{λ}^{\sim} the dual of A_{λ}^{\sim}.

Definition. A convex space B will be called structured if its elements are bounded functions from a set W into a Banach space H, and if the topology of B is specified by seminorms $\|\cdot\|_{\gamma}(\gamma \in \Gamma)$ of the form

$$
\begin{equation*}
\|y\|_{\gamma}=\sup _{w \in W}\left|\left(K_{\gamma} y\right)(w)\right| \quad(y \in B, \gamma \in \Gamma) \tag{3}
\end{equation*}
$$

where $K_{\gamma}: B \rightarrow B$ is a linear mapping (not necessarily continuous), $|\cdot|$ denotes the norm in H, and the set $\left\{K_{\gamma}: \gamma \in \Gamma\right\}$ includes the identity mapping, say for $\gamma=0$.

Examples. Let $\boldsymbol{D}(I)$ denote the space of infinitely differentiable complex functions x, having support in the interval I in Euclidean n-space, with topology given by either of the equivalent sets of seminorms:

$$
\begin{align*}
\|x\|_{\lambda} & =\sup _{t \in I}\left|x^{(\lambda)}(t)\right| \tag{4}\\
\|x\|_{\lambda}^{\prime} & =\max _{j \leqq \lambda}\|x\|_{j} . \tag{5}
\end{align*}
$$

Here $\lambda \in \Lambda_{s}$, the set of n-tuples $\lambda=\left(\lambda_{1}, \lambda_{2}, \cdots, \lambda_{n}\right)$ of non-negative integers, ordered by $\lambda \leqq \lambda^{\prime}$ iff $\lambda_{j} \leqq \lambda_{j}^{\prime}$ for all j, and $x^{(\lambda)}$ denotes the partial derivative of x of order $\left(\lambda_{1}, \cdots, \lambda_{n}\right)$. Let $E(I)$ denote the space of the restrictions to I of infinitely differentiable complex functions on n-space, with topology given by (4) or (5). Then $\boldsymbol{D}(I)$ and $E(I)$ are structured, in terms of the calibration (4); the equivalent calibration (5) is saturated.

Any Banach space B is structured, since each $y \in B$ may be represented, by its natural mapping into the second dual space $B^{\prime \prime}$, as a complex function
on the unit sphere in B^{\prime} (or, using Choquet's theorem, as a function on the set of extreme points of the unit ball in B^{\prime}); then (3) is immediate, with K as the identity mapping, and W the domain of the functions.

3. Natural topology for $L(A, B)$

Let $T \in L(A, B)$, where A and B are convex spaces, and the calibration of A is saturated. Since T is continuous, for each $\gamma \in \Gamma$ there are $\lambda_{i}, \delta^{\prime}, r$ such that

$$
\|x\|_{\lambda_{i}}<\delta^{\prime} \quad(i=1,2, \cdots, r(\gamma)) \Rightarrow\|T x\|_{\lambda}<1
$$

Since Λ is a directed set, there is $\lambda \in \Lambda$ with $\lambda \geqq \lambda_{i}(i=1,2, \cdots, r)$. Then, by (1), there is δ such that

$$
\begin{equation*}
\|x\|_{\lambda}<\delta \Rightarrow\|T x\|_{\gamma}<1 \tag{6}
\end{equation*}
$$

The values of $\lambda=\lambda(\gamma, T)$ determine, for each $T \in L(A, B)$, a (non-unique) function $\Delta: \Gamma \rightarrow \Lambda$, which will be called an index function for T. The set $S(\Gamma, \Lambda)$ of all functions from Γ into Λ is partially ordered by

$$
\begin{equation*}
\Delta_{\beta} \geqq \Delta_{\alpha} \Leftrightarrow \Delta_{\beta}(\gamma) \geqq \Delta_{\alpha}(\gamma) \quad(\text { all } \gamma \in \Gamma) ; \tag{7}
\end{equation*}
$$

denote also $\Delta_{\beta}>\Delta_{\alpha} \Leftrightarrow \Delta_{\beta} \geqq \Delta_{\alpha}$ and $\Delta_{\beta} \neq \Delta_{\alpha}$. From (1), if Δ is an index function for T, then so also is any $\Delta^{\prime} \geqq \Delta$. If, in particular, A is countably semi-normed, then there exists a minimal (in terms of \geqq) index function for T; denote it by $\Delta_{\text {min }}^{T}$.

Denote by $M(\Delta)$ the subspace of $L(A, B)$ consisting of those $T \in L(A, B)$ for which there is an index function $\leqq \Delta \in S(\Gamma, \Lambda)$. Now

$$
\begin{equation*}
\Delta_{\alpha} \leqq \Delta_{\beta} \Rightarrow M\left(\Delta_{\alpha}\right) \subset M\left(\Delta_{\beta}\right) \tag{8}
\end{equation*}
$$

denote by $i_{\alpha \beta}$ this embedding of $M\left(\Delta_{\alpha}\right)$ in $M\left(\Delta_{\beta}\right)$.
Since $T \in L(A, B)$, each of the seminorms

$$
\begin{equation*}
\|T\|_{\gamma, \mu}=\sup \left\{\|T x\|_{\gamma}:\|x\|_{\mu} \leqq 1\right\} \quad(\gamma \in \Gamma) \tag{9}
\end{equation*}
$$

is finite, if $\mu=\Delta(\gamma)$ for some index function Δ of T. Topologise $M(\Delta)$ by the seminorms $\|T\|_{\gamma, \Delta(\gamma)}(\gamma \in \Gamma)$. If Δ_{α} and Δ_{β} are index functions of T, with $\Delta_{\alpha} \leqq \Delta_{\beta}$, let $\lambda=\Delta_{\alpha}(\gamma)$ and $\mu=\Delta_{\beta}(\gamma)$, for given $\gamma \in \Gamma$; since $\mu \geqq \lambda$,

$$
\|x\|_{\lambda} \leqq k\|x\|_{\mu}
$$

with k given by (2); hence

$$
\left\{x:\|x\|_{\mu} \leqq 1\right\} \subset\left\{x:\|x\|_{\lambda} \leqq k\right\}
$$

therefore

$$
\begin{equation*}
\|T\|_{\gamma \mu} \leqq k^{-1}\|T\|_{\gamma, \lambda} \quad(\mu \geqq \lambda) \tag{10}
\end{equation*}
$$

Consequently, $i_{\alpha \beta}$ is continuous.

Since also

$$
\begin{equation*}
\Delta_{\alpha} \leqq \Delta_{\beta} \leqq \Delta_{\delta} \Rightarrow i_{\alpha \delta}=i_{\beta \delta} \circ i_{\alpha \beta} \tag{11}
\end{equation*}
$$

the family $\left\{M\left(\Delta_{\alpha}\right) ; i_{\alpha \beta}\right\}$ of spaces and mappings is an inductive spectrum over $S(\Gamma, \Lambda)$ (Dugundji [3], page 420). The inductive limit space of this spectrum is the quotient space $\Sigma_{\alpha} M\left(\Delta_{\alpha}\right) / \equiv$, where Σ_{α} denotes free union over $S(\Gamma, \Lambda)$ and \equiv denotes the equivalence relation

$$
T_{\alpha} \in M\left(\Delta_{\alpha}\right) \equiv T_{\beta} \in M\left(\Delta_{\beta}\right)
$$

iff there exists $\delta \geqq \alpha, \beta$ such that

$$
i_{\alpha \delta} T_{\alpha}=i_{\beta \delta} T_{\beta}
$$

It will be convenient to call the topology of this inductive limit space the natural topology for $L(A, B)$. This topology is locally convex (Robertson and Robertson [6], page 79, Prop. 4), and, for given topologies for A and B, it is clearly independent of the particular choice of calibrations for B, or for A so that (1) and (2) hold. If A and B are normed spaces, the natural topology is the operator norm topology.

The natural topology is a topology of uniform convergence; it could, of course, be expressed in terms of neighbourhoods instead of seminorms, but this does not offer any obvious simplification.

4. Representation theorems

Let A be a convex space whose calibration is saturated; let B be a convex space whose elements are functions whose domain is a set W. A subspace M of $L(A, B)$ is represented by a vector space Q, whose elements are functions (or measures, or distributions) g whose domain is $X \times W$ (where X is a given set) if there is a bijection ϕ of M onto Q / ρ, where ρ is as equivalence relation on Q, and a bilinear form $F[\cdot, \cdot]$ such that

$$
\begin{equation*}
(T x)(w)=F[x, g(\cdot, w)] \tag{12}
\end{equation*}
$$

where $x \in A, T \in M, w \in W$, and g denotes a representative of the equivalence class $[g]=\phi(T) \in Q / \rho$. The equivalence relation ρ will not be mentioned if it is the identity. The representation is topological if also M and Q are topological vector spaces, and ϕ maps the topology of M onto that of Q / ρ.

As an example of (12), consider A as a space of real-valued functions on a measure space Y, and T defined by

$$
(T x)(w)=\int_{Y} x(y) g_{T}(y, w) d \mu(y)=F\left[x, g_{T}(\cdot, w)\right]
$$

If each subspace $M\left(\Delta_{\alpha}\right)$ of $\boldsymbol{L}(A, B)$ is topologically represented by a topolog-
ical vector space $Q\left(\Delta_{\alpha}\right)$ then, since the representation is a topological isomorphism, there is a bijection ϕ^{*} of the inductive limit space, M^{*} say, of the $M\left(\Delta_{\alpha}\right)$ onto the inductive limit space, Q^{*} say, of the $Q\left(\Delta_{\alpha}\right)$; and ϕ^{*} maps the topology of M^{*} onto that of Q^{*}, since E^{*} does not change the values of the seminorms $\|T\|_{\gamma, \mu}$. The space Q^{*} will then be called an inductive representation of M^{*}, or of $L(A, B)$.

Theorem 1. Let B be a structured space, of functions which map W into a Banach space H; let B have calibration $\left\{\|\cdot\|_{\gamma}: \gamma \in \Gamma\right\}$. Let A be any convex space, whose calibration $\left\{\|\cdot\|_{\lambda}: \lambda \in \Lambda\right\}$ is saturated. For each $\lambda \in \Lambda$, let V_{λ} be a Banach space of functions (or complex measures, or distributions) defined on a set X, and σ_{λ} an equivalence relation on V_{λ}, such that a congruence (an isometric isometry) between $L\left(A_{\lambda}^{\sim}, H\right)$ and $V_{\lambda} / \sigma_{\lambda}$ is established by

$$
\begin{equation*}
f(x)=F_{\lambda}\left[x, f^{*}\right], \tag{13}
\end{equation*}
$$

where $x \in A_{\lambda}^{\sim}, f \in L\left(A_{\lambda}^{\sim}, H\right), f^{*} \in V_{\lambda}$, and F_{λ} is a bilinear form, which may depend on λ.

Then $L(A, B)$ is inductively represented by the inductive limit of a family of spaces $U^{*}(\Delta)$, where $\Delta \in S(\Gamma, \Lambda)$, and $U^{*}(\Delta)$ is a subspace of

$$
\left(V_{\Delta(0)} / \sigma_{\Delta(0)}\right) \times W
$$

If $T \in L(A, B)$, and Δ is an index function for T, then

$$
\begin{align*}
(T x)(w) & =F_{\Delta(0)}[x, g(\cdot, w)] \tag{14}\\
T_{\gamma, \Delta(\gamma)} & =\sup _{w \in W}\left\|K_{\gamma, \Delta}^{*} g(\cdot, w)\right\| ; \tag{15}
\end{align*}
$$

where $x \in A, w \in W, g(\cdot, w) \in V_{\Delta(0)}$, and

$$
K_{\gamma, \Delta}^{*}: V_{\Delta(0)} \rightarrow V_{\Delta(\gamma)}
$$

is a linear mapping determined by K_{γ}. The representation is topological if $L(A, B)$ has its natural topology and $U^{*}(\Delta)$ is topologised by the seminorms $\|T\|_{\gamma, \Delta(\gamma)}(\gamma \in \Gamma)$.

Remarks. If $H=C$, the complex field, then each f in the Banach space $A_{\lambda}^{\sim \prime}$ may be represented as a complex function on the unit sphere of $A_{\lambda}^{\sim \prime \prime}$ (or on the set of extreme points of the unit ball in $A_{\lambda}^{\sim "}$, using Choquet's theorem.) In this sense, (13) is trivial. In various particular cases (see later theorems) V_{λ} can be given explicitly as a space of complex functions or measures.

Not all $\Delta \in S(\Gamma, \Lambda)$ need contribute to the inductive limit.
If the V_{λ} are function spaces then, for each Δ, the subspace $M(\Delta)$ of $L(A, B)$ is isomorphic to a space of functions $W \rightarrow V_{\Delta(0)}$, for which the seminorms (15) are of the form (3); hence each subspace $M(\Delta)$ is also a structured space.

If A is countably normed, and, for each $T, \Delta_{\min }^{T}(\gamma)$ is independent of γ, then $L(A, B)$ is inductively represented by the inductive limit of a sequence of spaces $U_{\lambda}^{*}(\lambda=0,1, \cdots)$, where U_{λ}^{*} is a subspace of $\left(V_{\lambda} / \sigma_{\lambda}\right) \times W$. In particular, if A is a normed space, then $L(A, B)$ is represented by a subspace U of $\left(V_{0} / \sigma_{0}\right) \times W$, with the topology defined by the seminorms

$$
\begin{equation*}
\|T\|_{\gamma}=\sup _{w \in W}\left\|K_{\gamma, \Delta}^{*} g(\cdot, w)\right\| \quad\left(\gamma \in \Gamma, g(\cdot, w) \in V_{0}\right) . \tag{16}
\end{equation*}
$$

If A is a convex space with the Mackey topology (so in particular if A is barrelled), then the space of all linear mappings of A into B which are continuous in the given topology of A and the weak topology of B coincides with $L(A, B)$, so is also represented by Theorem 1. For if T is continuous from A with strong topology to B with weak topology, then T is continuous from A with weak topology to B with weak topology ([6], page 39, Prop. 13); so if A has its Mackey topology, T is continuous from A with strong topology to B with strong topology; the converse is immediate.

Proof of Theorem 1. Let Δ be an index function for $T \in \boldsymbol{L}(A, B) ;$ let $\gamma \in \Gamma$; let $\lambda=\Delta(\gamma)$. For fixed γ, define the linear mapping $f_{w}: A \rightarrow H$ by $f_{w}=\left(K_{\gamma} T.\right)(w)$. Since

$$
\begin{align*}
\sup _{w \in W}\left|f_{w}(x-y)\right| & =\sup _{w \in W}\left|\left(K_{\gamma} T(x-y)\right)(w)\right| \tag{17}\\
& =\|T(x-y)\|_{\gamma} \\
& \leqq\|T\|_{\gamma, \lambda}\|x-y\|_{\lambda},
\end{align*}
$$

f_{w} defines a unique element (also written f_{w}) of $L\left(A_{\lambda}, H\right)$. Since

$$
\begin{equation*}
\sup _{w \in W\|x\| \lambda \leq 1} \sup _{w}\left|f_{w}(x)\right|=\sup _{\|x\|_{\lambda} \leqq 1}\|T x\|_{\gamma}=\|T\|_{\gamma, \lambda}<\infty \quad \text { since } \lambda=\Delta(\gamma), \tag{18}
\end{equation*}
$$

the mappings $f_{w}(w \in W)$ are equicontinuous on A_{λ}.
By continuity, f_{w} can be extended, without increase of norm, to a continuous mapping $f_{w}^{*}: A_{\lambda}^{\tilde{\lambda}} \rightarrow H$. By (13),

$$
\begin{equation*}
f_{w}^{*}(x)=F_{\lambda}\left[x, g_{\gamma, \lambda}(\cdot, w)\right] ; \tag{19}
\end{equation*}
$$

where $x \in A_{\lambda}^{\sim}$, and $g_{\gamma, \lambda}(\cdot, w)$ is written for the function (or complex measure or distribution) f^{*} corresponding to $w \in W$. Thus, for $x \in A \subset A_{\lambda}^{\sim}$, and Δ any index function for T,

$$
\begin{equation*}
\left(K_{\gamma} T x\right)(w)=F_{\Delta(\gamma)}\left[x, g_{\gamma, \Delta(\gamma)}(\cdot, w)\right] . \tag{20}
\end{equation*}
$$

From (18), with $\lambda=\Delta(\gamma)$,

$$
\begin{equation*}
\|T\|_{\gamma, \lambda}=\sup _{w \in W}\left\|f_{w}\right\|=\sup _{w \in W}\left\|g_{\gamma, \lambda}(\cdot, w)\right\| \quad(\gamma \in \Gamma) \tag{21}
\end{equation*}
$$

where $\left\|g_{\gamma, \lambda}(\cdot, w)\right\|$ denotes the norm in V_{λ}, since the mapping $f \rightarrow f^{*}$ in (13) is an isometry.

Equation (20) defines a linear mapping ψ_{γ} of $K_{\gamma} T$ onto $\left[g_{\gamma, \Delta(\gamma)}(\cdot, \cdot)\right]$, the equivalence class in

$$
\left(V_{\Delta(\gamma)} / \sigma_{\Delta(\gamma)}\right) \times W
$$

of which $g_{\gamma, \Delta(\gamma)}(\cdot, \cdot)$ is a representative. Since $F_{\Delta(\gamma)}$ is a bilinear form, and the mapping $f \rightarrow\left[f^{*}\right]$ defined by (13) is a bijection, ψ_{γ} has zero kernel, so ψ_{γ}^{-1} exists. Denote by σ^{*} the canonical mapping of $V_{\Delta(0)}$ into

$$
V_{\Delta(0)} / \sigma_{\Delta(0)} ;
$$

denote by e_{γ} any linear embedding of $V_{\Delta(\gamma)} / \sigma_{\Delta(\gamma)}$ into $V_{\Delta(\gamma)}$. Define

$$
K_{\gamma, \Delta}^{*}: V_{\Delta(0)} \rightarrow V_{\Delta(\gamma)}
$$

by

$$
\begin{equation*}
K_{\gamma, \Delta}^{*}=e_{\gamma} \circ \psi_{\gamma} \circ K_{\gamma} \psi_{0}^{-1} \circ \sigma^{*} \tag{22}
\end{equation*}
$$

Then $K_{\gamma, \Delta}^{*}$ maps $g_{0, \Delta(0)}(\cdot, \cdot)$ onto $g_{\gamma, \Delta(\gamma)}(\cdot, \cdot)$. This, with (20), proves (14), writing g for $g_{0, \Delta(0)}$.

Denote by $Z\left(\Delta_{\alpha}\right)$ the subspace of $V_{\Delta_{\alpha}(0)} \times W$ consisting of those functions $g_{0, \Delta_{x}(0)}(\cdot, \cdot)$ for which all the seminorms (21) are finite, with the convex topology determined by these seminorms. Since these seminorms are finite for each $T \in L(A, B)$ for which Δ_{α} is an index function, there is, by (20), a linear injection

$$
j_{\alpha \beta}: M\left(\Delta_{\alpha}\right) \rightarrow Z\left(\Delta_{\beta}\right)
$$

for each Δ_{α} and $\Delta_{\beta} \geqq \Delta_{\alpha}$ in $S(\Gamma, \Lambda)$. Let $U\left(\Delta_{\alpha}\right)=j_{\alpha \alpha} M\left(\Delta_{\alpha}\right)$, with the relative topology of $Z\left(\Delta_{\alpha}\right) ; U\left(\Delta_{\alpha}\right)$ is, in general, a proper subspace of $Z\left(\Delta_{\alpha}\right)$, since the finiteness of all the seminorms (15) does not imply that $T x \in B$ for all $x \in A$.

Since $j_{\alpha \alpha}$ is a bijection onto $U\left(\Delta_{\alpha}\right)$, there is a linear injection $\phi_{\alpha \beta}=j_{\alpha \beta} \circ j_{\alpha \alpha}^{-1}$: $U\left(\Delta_{\alpha}\right) \rightarrow Z\left(\Delta_{\beta}\right)$ which, by (11), satisfies $\phi_{\alpha \delta}=\phi_{\beta \delta} \circ \phi_{\alpha \beta}$ whenever $\Delta_{\alpha} \leqq \Delta_{\beta} \leqq \phi_{\Delta}$. Since $j_{\alpha \alpha}$ does not change the seminorms (15), $j_{\alpha \alpha}$ is continuous. Since $j_{\alpha \beta}=j_{\beta \beta} \circ i_{\alpha \beta}$ and $i_{\alpha \beta}$ is continuous, $j_{\alpha \beta}$ is a continuous mapping onto $U\left(\Delta_{\beta}\right)$; hence $\phi_{\alpha \beta}: U\left(\Delta_{\alpha}\right) \rightarrow U\left(\Delta_{\beta}\right)$ is continuous. Therefore the family $\left\{U^{*}\left(\Delta_{\alpha}\right) ; \phi_{\alpha \beta}\right\}$, where $U^{*}\left(\Delta_{\alpha}\right)=U\left(\Delta_{\alpha}\right) / \sigma_{\Delta_{\alpha}(0)}$ is an inductive spectrum over $S(\Gamma, \Lambda)$. From (15) and the definition of natural topology for $L(A, B), L(A, B)$ is inductively represented by the inductive limit of this spectrum.

Theorem 2. Let the spaces A and B satisfy the hypotheses of Theorem 1; let $\Delta \in S(\Gamma, \Lambda)$; define the mapping $T: A \rightarrow B$ by (14), where $g(\cdot, w) \in V_{\Delta(0)}$, $w \in W$. Let g be such that $T x \in B$ whenever $x \in A$. For each $\gamma \in \Gamma$, assume that

$$
\begin{equation*}
\left(K_{\gamma} T x\right)(w)=F_{\Delta(\gamma)}\left[x, K_{\gamma, \Delta}^{*} g(\cdot, w)\right], \tag{23}
\end{equation*}
$$

where $K_{\gamma, \Delta}^{*}: V_{\Delta(0)} \rightarrow V_{\Delta(\gamma)}$ is a linear mapping satisfying

$$
\begin{equation*}
\sup _{w \in W}\left\|K_{\gamma, \Delta}^{*} g(\cdot, w)\right\|<\infty . \tag{24}
\end{equation*}
$$

Then $T \in L(A, B)$, and Δ is an index function for T.
Proof. Since T maps A linearly into B, it suffices to show that T is continuous. From (9) and (3),

$$
\begin{array}{rlr}
\|T\|_{\gamma, \Delta(\gamma)}= & \sup _{\|x\|_{\Delta(\gamma) \leqq 1}} \sup _{w \in W}\left|\left(K_{\gamma} T x\right)(w)\right| \\
= & \sup _{w \in W} \sup _{\|x\| \Delta(\gamma \leqq 1}\left|F_{\Delta(\gamma)}\left[x, K_{\gamma, \Delta}^{*} g(\cdot, w)\right]\right|, \text { by (23) } \\
= & \sup _{w \in W}\left\|K_{\gamma . \Delta}^{*} g(\cdot, w)\right\| & \text { by (13) } \\
& <\infty & \text { by (24). } \tag{24}
\end{array}
$$

5. Representations of particular spaces

Let A and B satisfy the hypotheses of Theorem 1 ; define T by (14). Suppose that (i) A is such that V_{λ} and F_{λ} are known explicitly, and (ii) the subspace $U^{*}(\Delta)$ of

$$
\left(V_{\Delta(0)} / \sigma_{\Delta(0)}\right) \times W
$$

for which T maps A onto B (rather than onto a superspace of B) can be characterized. Then the representation of $L(A, B)$ can be given explicitly. Theorems 3 to 7 give examples; in them, all functions (unless stated otherwise) are complexvalued, I and J are compact real intervals, P and Q are compact Hausdorff spaces, and V denotes total variation (of a measure). If σ_{λ} is not mentioned, it is the identity.

Theorem 3. $L(C(P), C(Q))$ is isometric and isomorphic to a space of finite Radon measures $g(\cdot, w)$ on P, where $w \in Q$, such that $g(\cdot, w)$ is weak*-continuous in $w \in Q$, and $\sup _{w e \Omega} \operatorname{Vg}(\cdot, w)$ is finite. Then $T \in L(A, B)$ if and only if

$$
\begin{align*}
(T x)(w) & =\int_{P} x(v) d g(v, w) \quad(x \in C(P), w \in Q) \tag{25}\\
\|T\| & =\sup _{w \in Q} V g(\cdot, w) \tag{26}
\end{align*}
$$

Proof. In Theorem 1, set $A=C(P), B=C(Q) ; A^{\prime}=L\left(A_{\lambda}^{\sim}, C\right)$, where $\|\cdot\|_{\lambda}$ is the uniform norm, is congruent to the space V of finite Radon measures on P, and

$$
f(x)=F\left[x, f^{*}\right]=\int_{P} x d f^{*}
$$

So (14) and (15) give (25) and (26), with (26) finite; and the requirement that T maps into $C(Q)$ is that g satisfies

$$
\begin{equation*}
\lim _{w \rightarrow w_{0}} \int_{P} x(\cdot) d g(\cdot, w)=\int_{P} x(\cdot) d g\left(\cdot, w_{0}\right) \tag{27}
\end{equation*}
$$

($w, w_{0} \in Q$), i.e. the weak*-continuity of $g(\cdot, w)$ in w. Conversely, if T is defined by (25), and (26) and (27) hold, then $T \in L(A, B)$ by Theorem 2, since by (27), T maps into $C(Q)$.

Theorem 4. If $1<p<\infty$ and μ is a measure on P, then $L\left(L_{\mu}^{p}(P), C(Q)\right)$ is isomorphic and isometric to a space of functions $g(v \cdot w)(v \in P, w \in Q)$ defined by the properties:

$$
\begin{equation*}
\sup _{w \in \boldsymbol{Q}}\|g(\cdot, w)\|_{q}<\infty\left(p^{-1}+q^{-1}=1 ;\|\cdot\|_{q} \text { is the } L_{\mu}^{q}(P) \text {-norm }\right) \tag{28}
\end{equation*}
$$

$$
\begin{equation*}
\int_{E} g(\cdot, w) d \mu(\cdot) \text { is continuous in } w \in Q, \text { for each measurable subset } E \subset P \tag{29}
\end{equation*}
$$

Then $T \in L\left(L_{\mu}^{P}(P), C(Q)\right)$ iff

$$
\begin{equation*}
(T x)(w)=\int_{P} x(v) g(v, w) d \mu(v) \quad\left(x \in L_{\mu}^{p}(P), w \in Q\right) \tag{30}
\end{equation*}
$$

and $\|T\|$ is given by the left side of the inequality (28).
Proof. In Theorem 1, set $A=L_{\mu}^{p}(P), B=C(Q) ; A^{\prime}=L\left(A_{\lambda}^{\sim}, C\right)$ is congruent to $L_{\mu}^{q}(P)$, with $F\left[x, f^{*}\right]=\int_{P} x(v) f^{*}(v) d \mu(v)(x \in A)$. So $L(A, B)$ is congruent to a subspace of $L_{\mu}^{q}(P) \times Q$, and (14) and (15) give (30) and (28); and (29) follows on substituting the characteristic function of E for $x(\cdot)$ in (30), and requiring that $T x \in C(Q)$.

Conversely it suffices, by Theorem 2, to show that (28), (29) and (30) imply $T x \in C(Q)$ if $L_{\mu}^{p}(P)$. There is a simple function \bar{x} such that $\|x-\bar{x}\|_{p}<\varepsilon /(4 k)$, where k is the supremum in (28). Let $h(v, w)=g(v, w)-g\left(v, w_{0}\right)$, where $w, w_{0} \in Q$. Since \bar{x} is a simple function, (29) requires that $\left|\int_{p} \bar{x} h d \mu\right|<\varepsilon / 2$ if $w \in N\left(w_{0}\right)$, a suitable neighbourhood of w_{0}, depending on ε. Then

$$
\begin{aligned}
\left|(T x)(w)-(T x)\left(w_{0}\right)\right| & =\left|\int_{P}(x-\bar{x}) h d \mu+\int_{P} \bar{x} h d \mu\right| \\
& \leqq\|(x-\bar{x})\|_{p}\|h\|_{q}+\left|\int_{P} \bar{x} h d \mu\right| \\
& <\varepsilon /(4 k) \cdot 2 k+\varepsilon / 2 .
\end{aligned}
$$

So $T \in C(Q)$.
Theorem 5. If $1<p<\infty$ and μ is a measure on P, then $L\left(L_{\mu}^{p}(P), E(J)\right)$ is inductively represented by a space of functions $g_{r}(v, w)(v \in P ; w \in J ; r=0,1,2 \cdots)$ having the properties:

$$
\begin{gather*}
\sup _{w \in J}\left\|g_{r}(\cdot, w)\right\|_{q}<\infty \quad\left(p^{-1}+q^{-1}=1 ;\|\cdot\|_{q} \text { is the } L_{\mu}^{q}(P) \text {-norm }\right) \tag{31}\\
{\left[g_{r}(\cdot, w)-g_{r}\left(\cdot, w_{0}\right)\right] /\left[w-w_{0}\right] \rightarrow g_{r+1}\left(\cdot, w_{0}\right)} \tag{32}
\end{gather*}
$$

in the weak L_{μ}^{p} topology on P, as $w \rightarrow w_{0} . l\left(w, w_{0} \in J\right)$. Then $T \in \boldsymbol{L}\left(L_{\mu}^{p}(P)\right.$, $E(J))$ iff (for $x \in L_{\mu}^{p}(P) ; w \in J ; r=0,1,2, \cdots$)

$$
\begin{equation*}
\left(D^{r} T x\right)(w)=\int_{P} x(v) g_{r}(v, w) d \mu(v) \tag{33}
\end{equation*}
$$

where D is the derivative operator.
Remarks. The seminorms $\|T\|_{r}$ (see (16)) equal the expressions on the left of (31), for $r=0,1, \cdots$. The Theorem remains true for J replaced by $(-\infty, \infty)$.

Proof. Let $T \in L\left(L_{\mu}^{p}(P), E(J)\right)$. For $r=0,1,2, \cdots$, the map

$$
D: E(J) \rightarrow E(J)
$$

is continuous; since also $E(J) \subset C(J)$,

$$
D^{r}(T) \in L\left(L_{\mu}^{p}(P), C(J)\right)
$$

So (31) and (33) follow from (28) and (30) of Theorem 5. From (33), if $x \in L_{\mu}^{p}(P)$,

$$
\begin{equation*}
\frac{\left(D^{r} T x\right)(w)-\left(D^{r} T x\right)\left(w_{0}\right)}{w-w_{0}}=\int_{P} x(v)\left[\frac{g_{r}(v, w)-g_{r}\left(v, w_{0}\right)}{w-w_{0}}\right] d \mu(v) \tag{34}
\end{equation*}
$$

Since $T x \in E(J)$, the left side of $(34) \rightarrow\left(D^{r+1} T x\right)\left(w_{0}\right)$ as $w \rightarrow w_{0}$; and (32) follows, using (33). From (3) with $K_{r}=D^{r}$, (16), and (31), the natural topology for $L\left(L_{\mu}^{p}(P), E(J)\right)$ is that given by the sequence of seminorms $\|T\|_{r}$ given by the expressions in (31).

Conversely, define T by (33) with $r=0$, and assume (31) and (32); by Theorem 2, it is required only to verify that $T x \in E(J)$ if $x \in L_{\mu}^{p}(P)$. If (33) holds for some $r \geqq 0$, then so does (34); by (32),

$$
\text { the right side of }(34) \rightarrow \int_{P} x(v) g_{r+1}\left(v, w_{0}\right) d \mu(v)
$$

as $w \rightarrow w_{0}$ in J; hence so does the left side; so (33) holds for $r+1$, and, by induction, for all r; so $T x$ is infinitely differentiable. Now

$$
\begin{array}{rlr}
\|T\|_{r}= & \sup _{w \in J} \sup _{\|x\|_{r} \leqq 1}\left|\left(D^{r} T x\right)(w)\right| & \\
& \sup _{w \in J} \sup _{\|x\|_{r} \leqq 1}\|x\| \cdot\left\|g_{r}(\cdot, w)\right\| & \text { by (33) } \\
& \sup _{w \in J} \| g_{r}(\cdot, w) & \\
& <\infty & \text { by (31). }
\end{array}
$$

So $T x \in E(J)$.
Remarks. Let P be a compact convex subset of Euclidean n-space: let $A=E(P)$ (see (4) and (5)); let $f \in A^{\prime}$. Then (compare (6)) there is a seminorm $\|\cdot\|_{\lambda}$ of A such that f is continuous in $\|\cdot\|_{\lambda}$. So f extends by continuity to a continuous linear functional on A_{λ}^{\sim}. To each $x \in A$, attach (uniquely) the set of functions $\left\{x^{(q)}: q \leqq \lambda\right\}$; this defines an injection j of A_{λ} into the direct sum S_{λ} of finitely many (s, say) copies of $C(P)$. Norm S by

$$
\max _{q \leqq \lambda} \sup _{t \in P}\left|x^{(q)}(t)\right| .
$$

Then $f^{\sim}(y)=f\left(j^{-1} y\right)\left(y \in j A_{\lambda}^{\sim}\right)$ determines a functional f^{\sim} on $j A_{\lambda}^{\sim}$ with the same norm, $p(f)$ say, that f has as an element of $A_{\lambda}^{\sim \prime}$. The Hahn-Banach theorem extends f^{\sim} to a continuous linear functional on S_{λ}, with the same norm. Then by the Riesz representation theorem, there is a (complex) measure on P^{s}, represented by measures f_{q}^{*} on P, corresponding to the direct summands of S_{λ}, such that

$$
\begin{align*}
& f(x)=\sum_{q \leq \lambda} \int_{P} x^{(q)}(v) d f_{q}^{*}(v) \tag{35}\\
& p(f)=\sum_{q \leq \lambda} V f_{q}^{*} \tag{36}
\end{align*}
$$

This proof is adapted from the representation [5] for Schwartz distributions with compact support P. If f is such a distribution, then it is well known that

$$
\begin{equation*}
f(x)=\sum_{q \leqq \lambda^{\prime}} \int_{N} x^{(q)}(v) d f_{q}^{*}(v) \quad(x \in E(I)) \tag{37}
\end{equation*}
$$

where N is an arbitrary neighbourhood of P, and I is an interval of \boldsymbol{R}^{n}, containing P; here the measures f_{q}^{*} depend, in general, on the choice of N. However, if P is compact convex then Schwartz [7] shows that N may be replaced by P in (37), provided λ^{\prime} is replaced by λ, where $\lambda / \lambda^{\prime}$ depends on P but not on f.

It follows that, within a topological isomorphism, $E(P)^{\prime}$ is the space of Schwartz distributions with support in P, and $f \in \mathrm{P}(\boldsymbol{E})^{\prime}$ iff f has a representation (35), (36), for some $\lambda \in \Lambda_{s}$. It is convenient to identify f with the vector $\left\{f_{r}^{*}: r \leqq \lambda\right\}$ of measures.

Theorem 6. Let P be a compact convex subset of Euclidean n-space; let Q be a compact Hausdorff space. Then $L(E(P), C(Q))$ is topologically represented by a space of elements $g(\cdot, \cdot)$, where for each $w \in Q$,

$$
g(\cdot, w)=\left\{g_{r}(\cdot, w): r \leqq \lambda\right\}
$$

is a Schwartz distribution with support in P. If $T \in L(E(P), C(Q))$ and Δ is the minimal index function for T, then for $\lambda=\Delta(0), w \in Q$,

$$
\begin{gather*}
(T x)(w)=\sum_{r \leqq \lambda} \int_{P} x^{(r)}(v) d g_{r}(v, w) \quad(x \in E(P)) ; \tag{38}\\
\|T\|_{0, \Delta(0)}=\sup _{w \in Q} p(g(\cdot, w)), \tag{39}
\end{gather*}
$$

where $p(\cdot)$ is defined in (36);
(40) $\quad(g \cdot, w)$ is weak ${ }^{*}$-continuous in $w \in Q$ with respect to $E(P)$.

Conversely, if Tis defined by (38), and (39) and (40) hold, then $T \in L(E(P), C(Q))$.
REmARK. (40) means that, if $\langle\cdot, \cdot\rangle$ denotes evaluation of a distribution, then for each $x \in E(P)$,

$$
\langle g(\cdot, w), x(\cdot)\rangle
$$

is continuous in $w \in Q$.
Proof. Set $A=E(P), \Lambda=\Lambda_{s}$, and $B=C(Q)$ in Theorem 1: if $x \in E(P)$ and $f \in A_{\lambda}^{\sim \prime}$, then (35) and (36) hold; therefore (38) and (39) follow from Theorem 1 ; (40) is precisely the condition that T maps into $C(Q)$. The converse is immediate from Theorem 2.

Theorem 7. Let P and Q satisfy the conditions for P as in Theorem 6. Then $L(E(P), \boldsymbol{E}(Q))$ is topologically represented by a space of sequences

$$
\left\{g_{\gamma}(\cdot, \cdot): \gamma \in \Lambda_{s}\right\},
$$

where for each $w \in Q, g_{\gamma}(\cdot, w)$ is a Schwartz distribution with support in P. If

$$
T \in L(E(P), E(Q))
$$

and Δ is the minimal index function for T, then for $\lambda=\Delta(0), x \in E(P), w \in Q$, $\gamma \in \Lambda_{s}$,

$$
\begin{equation*}
\left(D^{\gamma} T x\right)(w)=\sum_{r \leqq \lambda} \int_{R} x^{(r)}(v) d g_{\gamma, r}(v, w)=\left\langle g_{\gamma}(\cdot, w), x(\cdot)\right\rangle \tag{41}
\end{equation*}
$$

where

$$
g_{\gamma}(\cdot, \cdot \cdot)=\left\{g_{\gamma, r}(\cdot, \cdot): r \leqq \lambda\right\} ;
$$

$$
\begin{equation*}
\|T\|_{\gamma, \Delta(\gamma)}=\sup _{w \in \boldsymbol{Q}} p\left(g_{\gamma}(\cdot, w)<\infty\right. \tag{42}
\end{equation*}
$$

(43) $\quad g_{\gamma}(\cdot, w)$ is weak-*-continuous in $w \in Q$ with respect to $E(P)$;
(44) $\quad g_{\gamma+1}(\cdot, w)=(\partial / \partial w) g_{\gamma}(\cdot, w)$, the derivative taken in the weak-* sense on $E(P)$.

Conversely, if T is defined by (41) with $\gamma=0$, and the g_{γ} satisfy (42), (43), (44), and $\lambda \in \Lambda_{s}$, then $T \in L(E(P), E(Q))$.

Remark. If w has components w_{j}, then $\partial g / \partial w$ means the vector with components $\partial g / \partial w_{j}$; and $h\left(w, w_{0}\right) /\left(w-w_{0}\right)$ means the vector with components $h\left(w, w_{0}\right) /\left(w-w_{0}\right)_{j}$.

Proof. If $T \in \boldsymbol{L}\left(\boldsymbol{E}(P), \boldsymbol{E}(Q)\right.$), and $\gamma \in \Lambda_{s}$, then $D^{\gamma} T \in \boldsymbol{L}(\boldsymbol{E}(P), C(Q)$) (where D is the differentiation operator). Hence Theorem 6 applies, and (38), (39), (40) prove (41) (for each γ), (42), (43): except that λ may depend on γ as well as on T. From (41), for $w, w_{0} \in Q$,

$$
\begin{equation*}
\frac{\left(D^{\gamma} T x\right)(w)-\left(D^{\gamma} T x\right)\left(w_{0}\right)}{w-w_{0}}=\frac{\left\langle g_{\gamma}(\cdot, w), x(\cdot)\right\rangle-\left\langle g_{\gamma}\left(\cdot, w_{0}\right), x(\cdot)\right\rangle}{w-w_{0}} \tag{45}
\end{equation*}
$$

Since T maps into $E(Q),\left(D^{\gamma} T x\right)\left(w_{0}\right)$ exists, so the left side of (45) converges to it as $w \rightarrow w_{0}$, hence so does the right side. Let $\left\{w_{n}\right\} \rightarrow w_{0}$ in Q; let (41) hold for given γ and λ; then

$$
\phi_{n}=\left(g_{\gamma}\left(\cdot, w_{n}\right)-g_{\gamma}\left(\cdot, w_{0}\right)\right) /\left(w_{n}-w_{0}\right)
$$

is a continuous linear mapping from A_{λ} (where $A=E(P)$), convergent as $w \rightarrow w_{0}$ to $g_{\gamma+1}\left(\cdot, w_{0}\right)$; by the uniform boundedness principle, $g_{\gamma+1}\left(\cdot, w_{0}\right)$ is also continuous on A_{λ}; hence λ is independent of γ, and (44) holds. The converse is proved as in Theorem 6.

Corollary. The space $L\left(E(Q)^{\prime}, \boldsymbol{E}(P)^{\prime}\right)$ of all continuous linear mappings from Schwartz distributions with support in Q to Schwartz distributions with support in P, where P and Q satisfy the hypotheses of Theorem 7, has the following representation. Let

$$
U \in \boldsymbol{L}\left(\boldsymbol{E}(Q)^{\prime}, \boldsymbol{E}(P)^{\prime}\right)
$$

let $x \in \boldsymbol{E}(P)$; let $f \in \boldsymbol{E}(Q)^{\prime}$; by (37), f may be specified in terms of (complex) measures h_{q} on Q by

$$
\begin{equation*}
f(y)=\sum_{q \leqq \mu} \int_{Q} y^{(q)}(w) d h_{q}(w) \quad(y \in \boldsymbol{E}(Q)) \tag{46}
\end{equation*}
$$

Then

$$
\begin{equation*}
(U f)(x)=\sum_{r \leqq \lambda} \int_{P} x^{(r)}(v) d_{v}\left[\int_{Q} \sum_{q \leqq \mu} g_{q, r}(v, w) d h_{q}(w)\right] \tag{47}
\end{equation*}
$$

where the measures $g_{q, r}(\cdot, w)$ satisfy (42), (43), (44). And conversely, if U is defined by (47) then $U \in L\left(E(Q)^{\prime}, E(P)^{\prime}\right)$.

Proof. Since $\boldsymbol{E}(P)$ and $E(Q)$ are reflexive metrisable convex spaces,

$$
U \in \boldsymbol{L}\left(\boldsymbol{E}(Q)^{\prime}, \boldsymbol{E}(P)^{\prime}\right)
$$

iff U is the adjoint of an element $T \in L(E(P), E(Q))$; and

$$
(U f)(x)=f(T x)
$$

Then (47) follows from (41).

Acknowledgement

I am indebted to a referee for various details which have improved the presentation of this paper.

References

[1] N. Bourbaki, Espaces vectoriels topologiques, Ch. I \& II (1st. edn.).
[2] N. P. Cac, 'Lincar Transformations on some functional spaces,' Proc. Lond. Math. Soc. (3) 16 (1966), 705-776.
[3] J. Dugundji, Topology (Allyn \& Bacon, Boston, 1967).
[4] N. Dunford and J. T. Schwartz, Linear Operators, Part 1. (Interscience, New York, 1958).
[5] I. M. Gelfand and G. E. Shilov, Generalized Functions, vol. 2 (Dunod, Paris, 1964).
[6] A. P. Robertson and W. Robertson, Topological Vector Spaces (Cambridge University Press, 1964).
[7] L. Schwartz, Théorie des distributions (Hermann, Paris, new edition 1966).

Department of Mathematics
Melbourne University
Victoria, 3052
Australia

