LINEAR MAPPINGS BETWEEN TOPOLOGICAL VECTOR SPACES

B. D. CRAVEN

(Received 3 July 1970; revised 3 February 1971)

Communicated by E. Strzelecki

1. Introduction

If A and B are locally convex topological vector spaces, and B has certain additional structure, then the space L(A,B) of all continuous linear mappings of A into B is characterized, within isomorphism, as the inductive limit of a family of spaces, whose elements are functions, or measures. The isomorphism is topological if L(A,B) is given a particular topology, defined in terms of the seminorms which define the topologies of A and B. The additional structure on B enables L(A,B) to be constructed, using the duals of the normed spaces obtained by giving A the topology of each of its seminorms separately.

The representation theorems lead to explicit representations of L(A,B), in terms of functions, or measures, depending on two variables, if A and B are certain function spaces. Simple proofs are obtained for some known cases—when A or B is C(P), the space of continuous complex functions on a compact Hausdorff space P (Dunford and Schwartz [4] give a representation which includes this case), and when $A = L^{P}(P)$ (1 (for which Cac [2] has given arepresentation)—but by different methods from these authors. But in addition,explicit representations, which appear to be new, are obtained for certain pairsof spaces which are not Banach spaces; when A or B are spaces of Schwartzdistributions or test functions [7], having compact support. For example, acontinuous linear mapping from Schwartz test functions into <math>C(P) may be identified with a suitable indexed family of Schwartz distributions.

2. Calibrations and structured spaces

If A and B are convex spaces (locally convex Hausdorff topological vector spaces), let L(A,B) denote the space of all continuous linear mappings from A into B. Denote by C(W) the space of all bounded continuous complex functions on the Hausdorff space W, with the uniform norm. The topology of a convex

space A can be specified by a (non-unique) calibration, namely a set of seminorms $\{\|\cdot\|_{\lambda}: \lambda \in \Lambda\}$; similarly let $\{\|\cdot\|_{\gamma}: \gamma \in \Gamma\}$ be a calibration for B.

The topology of A is unchanged by adjoining to the given calibration for A the maximum of each finite subset of the seminorms. The resulting calibration will be called *saturated*; it has the property (Bourbaki [1], page 97) that Λ is a directed set with pre-ordering \geq , where for nets $\{x_{\alpha}\}$ in A,

(1)
$$||x_{\alpha}||_{\mu} \to 0 \text{ and } \mu \geq \lambda \Rightarrow ||x_{\alpha}||_{\lambda} \to 0,$$

or equivalently

(2) $\mu \ge \lambda \Leftrightarrow \exists k = k(\lambda,\mu) \colon \|x\|_{\lambda} \le k \|x\|_{\mu} \quad (\forall x \in A).$

REMARKS. If $\mu \ge \lambda$ and $\lambda \ge \mu$, then the seminorms $\|\cdot\|_{\mu}$ and $\|\cdot\|_{\lambda}$ are (topologically) equivalent.

Let A be a convex space whose calibration is saturated. Denote by A_{λ} the factor space A/σ , where σ is the equivalence relation $x \sigma y$ iff $||x - y||_{\lambda} = 0$, and A_{λ} has the topology given by the corresponding quotient seminorm $|| \cdot ||_{\lambda}$. Denote by A_{λ}^{\sim} the completion of A, and by A_{λ}^{\sim} the dual of A_{λ}^{\sim} .

DEFINITION. A convex space B will be called *structured* if its elements are bounded functions from a set W into a Banach space H, and if the topology of B is specified by seminorms $\|\cdot\|_{\gamma}$ ($\gamma \in \Gamma$) of the form

(3)
$$|| y ||_{\gamma} = \sup_{w \in W} |(K_{\gamma}y)(w)| \quad (y \in B, \gamma \in \Gamma)$$

where $K_{\gamma}: B \to B$ is a linear mapping (not necessarily continuous), $|\cdot|$ denotes the norm in H, and the set $\{K_{\gamma}: \gamma \in \Gamma\}$ includes the identity mapping, say for $\gamma = 0$.

EXAMPLES. Let D(I) denote the space of infinitely differentiable complex functions x, having support in the interval I in Euclidean *n*-space, with topology given by either of the equivalent sets of seminorms:

(4)
$$\|x\|_{\lambda} = \sup_{t \in I} |x^{(\lambda)}(t)|$$

(5)
$$\|x\|'_{\lambda} = \max_{j \leq \lambda} \|x\|_{j}.$$

Here $\lambda \in \Lambda_s$, the set of *n*-tuples $\lambda = (\lambda_1, \lambda_2, \dots, \lambda_n)$ of non-negative integers, ordered by $\lambda \leq \lambda'$ iff $\lambda_j \leq \lambda'_j$ for all *j*, and $x^{(\lambda)}$ denotes the partial derivative of *x* of order $(\lambda_1, \dots, \lambda_n)$. Let E(I) denote the space of the restrictions to *I* of infinitely differentiable complex functions on *n*-space, with topology given by (4) or (5). Then D(I) and E(I) are structured, in terms of the calibration (4); the equivalent calibration (5) is saturated.

Any Banach space B is structured, since each $y \in B$ may be represented, by its natural mapping into the second dual space B'', as a complex function

on the unit sphere in B' (or, using Choquet's theorem, as a function on the set of extreme points of the unit ball in B'; then (3) is immediate, with K as the identity mapping, and W the domain of the functions.

3. Natural topology for L(A, B)

Let $T \in L(A, B)$, where A and B are convex spaces, and the calibration of A is saturated. Since T is continuous, for each $\gamma \in \Gamma$ there are λ_i , δ' , r such that

$$\|x\|_{\lambda_i} < \delta' \qquad (i = 1, 2, \cdots, r(\gamma)) \Rightarrow \|Tx\|_{\lambda} < 1.$$

Since Λ is a directed set, there is $\lambda \in \Lambda$ with $\lambda \geq \lambda_i$ $(i = 1, 2, \dots, r)$. Then, by (1), there is δ such that

(6)
$$\|x\|_{\lambda} < \delta \Rightarrow \|Tx\|_{\gamma} < 1.$$

The values of $\lambda = \lambda(\gamma, T)$ determine, for each $T \in L(A, B)$, a (non-unique) function $\Delta: \Gamma \to \Lambda$, which will be called an *index function* for T. The set $S(\Gamma, \Lambda)$ of all functions from Γ into Λ is partially ordered by

(7)
$$\Delta_{\beta} \geq \Delta_{\alpha} \Leftrightarrow \Delta_{\beta}(\gamma) \geq \Delta_{\alpha}(\gamma) \quad (all \ \gamma \in \Gamma);$$

denote also $\Delta_{\beta} > \Delta_{\alpha} \Leftrightarrow \Delta_{\beta} \ge \Delta_{\alpha}$ and $\Delta_{\beta} \neq \Delta_{\alpha}$. From (1), if Δ is an index function for T, then so also is any $\Delta' \ge \Delta$. If, in particular, A is countably semi-normed, then there exists a minimal (in terms of \geq) index function for T; denote it by Δ_{min}^T .

Denote by $M(\Delta)$ the subspace of L(A,B) consisting of those $T \in L(A,B)$ for which there is an index function $\leq \Delta \in S(\Gamma, \Lambda)$. Now

(8)
$$\Delta_{\alpha} \leq \Delta_{\beta} \Rightarrow M(\Delta_{\alpha}) \subset M(\Delta_{\beta});$$

denote by $i_{\alpha\beta}$ this embedding of $M(\Delta_{\alpha})$ in $M(\Delta_{\beta})$.

Since $T \in L(A, B)$, each of the seminorms

(9)
$$||T||_{\gamma,\mu} = \sup \{||Tx||_{\gamma} : ||x||_{\mu} \le 1\}$$
 $(\gamma \in \Gamma)$

is finite, if $\mu = \Delta(\gamma)$ for some index function Δ of T. Topologise $M(\Delta)$ by the seminorms $||T||_{\gamma,\Delta(\gamma)}$ ($\gamma \in \Gamma$). If Δ_{α} and Δ_{β} are index functions of T, with $\Delta_{\alpha} \leq \Delta_{\beta}$, let $\lambda = \Delta_{\alpha}(\gamma)$ and $\mu = \Delta_{\beta}(\gamma)$, for given $\gamma \in \Gamma$; since $\mu \geq \lambda$,

$$\|x\|_{\lambda} \leq k \|x\|_{\mu}$$

with k given by (2); hence

$$\{x: ||x||_{\mu} \leq 1\} \subset \{x: ||x||_{\lambda} \leq k\};\$$

therefore

(10)
$$||T||_{\gamma \mu} \leq k^{-1} ||T||_{\gamma,\lambda} \quad (\mu \geq \lambda).$$

Consequently, $i_{\alpha\beta}$ is continuous.

Since also

(11)
$$\Delta_{\alpha} \leq \Delta_{\beta} \leq \Delta_{\delta} \Rightarrow i_{\alpha\delta} = i_{\beta\delta} \circ i_{\alpha\beta},$$

the family $\{M(\Delta_{\alpha}); i_{\alpha\beta}\}$ of spaces and mappings is an inductive spectrum over $S(\Gamma, \Lambda)$ (Dugundji [3], page 420). The inductive limit space of this spectrum is the quotient space $\sum_{\alpha} M(\Delta_{\alpha})/\equiv$, where \sum_{α} denotes free union over $S(\Gamma, \Lambda)$ and \equiv denotes the equivalence relation

$$T_{\alpha} \in M(\Delta_{\alpha}) \equiv T_{\beta} \in M(\Delta_{\beta})$$

iff there exists $\delta \ge \alpha, \beta$ such that

$$i_{\alpha\delta}T_{\alpha}=i_{\beta\delta}T_{\beta}.$$

It will be convenient to call the topology of this inductive limit space the *natural topology* for L(A,B). This topology is locally convex (Robertson and Robertson [6], page 79, Prop. 4), and, for given topologies for A and B, it is clearly independent of the particular choice of calibrations for B, or for A so that (1) and (2) hold. If A and B are normed spaces, the natural topology is the operator norm topology.

The natural topology is a topology of uniform convergence; it could, of course, be expressed in terms of neighbourhoods instead of seminorms, but this does not offer any obvious simplification.

4. Representation theorems

Let A be a convex space whose calibration is saturated; let B be a convex space whose elements are functions whose domain is a set W. A subspace M of L(A, B) is represented by a vector space Q, whose elements are functions (or measures, or distributions) g whose domain is $X \times W$ (where X is a given set) if there is a bijection ϕ of M onto Q/ρ , where o is as equivalence relation on Q, and a bilinear form $F[\cdot, \cdot]$ such that

(12)
$$(Tx)(w) = F[x, g(\cdot, w)],$$

where $x \in A$, $T \in M$, $w \in W$, and g denotes a representative of the equivalence class $[g] = \phi(T) \in Q/\rho$. The equivalence relation ρ will not be mentioned if it is the identity. The representation is *topological* if also M and Q are topological vector spaces, and ϕ maps the topology of M onto that of Q/ρ .

As an example of (12), consider A as a space of real-valued functions on a measure space Y, and T defined by

$$(Tx)(w) = \int_{Y} x(y)g_{T}(y,w)d\mu(y) = F[x,g_{T}(\cdot,w)].$$

If each subspace $M(\Delta_{\alpha})$ of L(A, B) is topologically represented by a topolog-

ical vector space $Q(\Delta_{\alpha})$ then, since the representation is a topological isomorphism, there is a bijection ϕ^* of the inductive limit space, M^* say, of the $M(\Delta_{\alpha})$ onto the inductive limit space, Q^* say, of the $Q(\Delta_{\alpha})$; and ϕ^* maps the topology of M^* onto that of Q^* , since E^* does not change the values of the seminorms $||T||_{\gamma,\mu}$. The space Q^* will then be called an *inductive representation* of M^* , or of L(A,B).

THEOREM 1. Let B be a structured space, of functions which map W into a Banach space H; let B have calibration $\{ \| \cdot \|_{\gamma} : \gamma \in \Gamma \}$. Let A be any convex space, whose calibration $\{ \| \cdot \|_{\lambda} : \lambda \in \Lambda \}$ is saturated. For each $\lambda \in \Lambda$, let V_{λ} be a Banach space of functions (or complex measures, or distributions) defined on a set X, and σ_{λ} an equivalence relation on V_{λ} , such that a congruence (an isometric isometry) between $L(A_{\lambda}^{\sim}, H)$ and $V_{\lambda}/\sigma_{\lambda}$ is established by

(13)
$$f(x) = F_{\lambda}[x, f^*],$$

where $x \in A_{\lambda}^{\sim}$, $f \in L(A_{\lambda}^{\sim}, H)$, $f^* \in V_{\lambda}$, and F_{λ} is a bilinear form, which may depend on λ .

Then L(A, B) is inductively represented by the inductive limit of a family of spaces $U^*(\Delta)$, where $\Delta \in S(\Gamma, \Lambda)$, and $U^*(\Delta)$ is a subspace of

 $(V_{\Delta(0)}/\sigma_{\Delta(0)}) \times W.$

If $T \in L(A, B)$, and Δ is an index function for T, then

(14) $(Tx)(w) = F_{\Delta(0)}[x,g(\cdot,w)];$

(15) $T_{\gamma,\Delta(\gamma)} = \sup_{w \in W} \left\| K_{\gamma,\Delta}^* g(\cdot, w) \right\|;$

where $x \in A$, $w \in W$, $g(\cdot, w) \in V_{\Delta(0)}$, and

 $K^*_{\gamma,\Delta}: V_{\Delta(0)} \to V_{\Delta(\gamma)}$

is a linear mapping determined by K_{γ} . The representation is topological if L(A,B) has its natural topology and $U^*(\Delta)$ is topologised by the seminorms $\|T\|_{\gamma,\Delta(\gamma)}$ ($\gamma \in \Gamma$).

REMARKS. If H = C, the complex field, then each f in the Banach space A_{λ}^{\sim} may be represented as a complex function on the unit sphere of A_{λ}^{\sim} (or on the set of extreme points of the unit ball in A_{λ}^{\sim} ", using Choquet's theorem.) In this sense, (13) is trivial. In various particular cases (see later theorems) V_{λ} can be given explicitly as a space of complex functions or measures.

Not all $\Delta \in S(\Gamma, \Lambda)$ need contribute to the inductive limit.

If the V_{λ} are function spaces then, for each Δ , the subspace $M(\Delta)$ of L(A, B) is isomorphic to a space of functions $W \rightarrow V_{\Delta(0)}$, for which the seminorms (15) are of the form (3); hence each subspace $M(\Delta)$ is also a structured space.

If A is countably normed, and, for each T, $\Delta_{\min}^{T}(\gamma)$ is independent of γ , then L(A,B) is inductively represented by the inductive limit of a sequence of spaces U_{λ}^{*} ($\lambda = 0, 1, \cdots$), where U_{λ}^{*} is a subspace of $(V_{\lambda}/\sigma_{\lambda}) \times W$. In particular, if A is a normed space, then L(A,B) is represented by a subspace U of $(V_{0}/\sigma_{0}) \times W$, with the topology defined by the seminorms

(16)
$$||T||_{\gamma} = \sup_{w \in W} ||K^*_{\gamma,\Delta}g(\cdot,w)|| \quad (\gamma \in \Gamma, g(\cdot,w) \in V_0).$$

If A is a convex space with the Mackey topology (so in particular if A is barrelled), then the space of all linear mappings of A into B which are continuous in the given topology of A and the weak topology of B coincides with L(A,B), so is also represented by Theorem 1. For if T is continuous from A with strong topology to B with weak topology, then T is continuous from A with weak topology to B with weak topology ([6], page 39, Prop. 13); so if A has its Mackey topology, T is continuous from A with strong topology to B with strong topology; the converse is immediate.

PROOF OF THEOREM 1. Let Δ be an index function for $T \in L(A,B)$; let $\gamma \in \Gamma$; let $\lambda = \Delta(\gamma)$. For fixed γ , define the linear mapping $f_w: A \to H$ by $f_w = (K_{\gamma}T_{\gamma})(w)$. Since

(17)

$$\sup_{w \in W} |f_w(x-y)| = \sup_{w \in W} |(K_v T(x-y))(w)|$$

$$= ||T(x-y)||_v$$

$$\leq ||T||_{v,\lambda} ||x-y||_{\lambda},$$

 f_w defines a unique element (also written f_w) of $L(A_{\lambda}, H)$. Since

(18)
$$\sup_{w \in W ||x||_{\lambda} \leq 1} \sup_{\|x\|_{\lambda} \leq 1} \left\| f_{w}(x) \right\| = \sup_{\|x\|_{\lambda} \leq 1} \left\| Tx \right\|_{\gamma} = \left\| T \right\|_{\gamma,\lambda} < \infty \quad \text{since } \lambda = \Delta(\gamma),$$

the mappings f_w ($w \in W$) are equicontinuous on A_{λ} .

By continuity, f_w can be extended, without increase of norm, to a continuous mapping $f_w^*: A_\lambda^{\sim} \to H$. By (13),

(19)
$$f_{w}^{*}(x) = F_{\lambda}[x, g_{\gamma,\lambda}(\cdot, w)];$$

where $x \in A_{\lambda}^{\sim}$, and $g_{\gamma,\lambda}(\cdot, w)$ is written for the function (or complex measure or distribution) f^* corresponding to $w \in W$. Thus, for $x \in A \subset A_{\lambda}^{\sim}$, and Δ any index function for T,

(20)
$$(K_{\gamma}Tx)(w) = F_{\Delta(\gamma)}[x, g_{\gamma, \Delta(\gamma)}(\cdot, w)]$$

From (18), with $\lambda = \Delta(\gamma)$,

(21)
$$||T||_{\gamma,\lambda} = \sup_{w \in W} ||f_w|| = \sup_{w \in W} ||g_{\gamma,\lambda}(\cdot, w)|| \quad (\gamma \in \Gamma),$$

where $||g_{\gamma,\lambda}(\cdot, w)||$ denotes the norm in V_{λ} , since the mapping $f \to f^*$ in (13) is an isometry.

Equation (20) defines a linear mapping ψ_{γ} of $K_{\gamma}T$ onto $[g_{\gamma,\Delta(\gamma)}(\cdot,\cdot)]$, the equivalence class in

$$(V_{\Delta(\gamma)}/\sigma_{\Delta(\gamma)}) \times W$$

of which $g_{\gamma,\Delta(\gamma)}(\cdot,\cdot)$ is a representative. Since $F_{\Delta(\gamma)}$ is a bilinear form, and the mapping $f \to [f^*]$ defined by (13) is a bijection, ψ_{γ} has zero kernel, so ψ_{γ}^{-1} exists. Denote by σ^* the canonical mapping of $V_{\Delta(0)}$ into

 $V_{\Delta(0)}/\sigma_{\Delta(0)};$

denote by e_{γ} any linear embedding of $V_{\Delta(\gamma)}/\sigma_{\Delta(\gamma)}$ into $V_{\Delta(\gamma)}$. Define

$$K_{\gamma,\Delta}^*: V_{\Delta(0)} \to V_{\Delta(\gamma)}$$

by

(22) $K_{\gamma,\Delta}^* = e_{\gamma} \circ \psi_{\gamma} \circ K_{\gamma} \ \psi_0^{-1} \circ \sigma^*.$

Then $K_{\gamma,\Delta}^*$ maps $g_{0,\Delta(0)}(\cdot,\cdot)$ onto $g_{\gamma,\Delta(\gamma)}(\cdot,\cdot)$. This, with (20), proves (14), writing g for $g_{0,\Delta(0)}$.

Denote by $Z(\Delta_{\alpha})$ the subspace of $V_{\Delta_{\alpha}(0)} \times W$ consisting of those functions $g_{0,\Delta_{\alpha}(0)}(\cdot, \cdot)$ for which all the seminorms (21) are finite, with the convex topology determined by these seminorms. Since these seminorms are finite for each $T \in L(A, B)$ for which Δ_{α} is an index function, there is, by (20), a linear injection

$$j_{\alpha\beta}: M(\Delta_{\alpha}) \to Z(\Delta_{\beta})$$

for each Δ_{α} and $\Delta_{\beta} \geq \Delta_{\alpha}$ in $S(\Gamma, \Lambda)$. Let $U(\Delta_{\alpha}) = j_{\alpha\alpha}M(\Delta_{\alpha})$, with the relative topology of $Z(\Delta_{\alpha})$; $U(\Delta_{\alpha})$ is, in general, a *proper* subspace of $Z(\Delta_{\alpha})$, since the finiteness of all the seminorms (15) does *not* imply that $Tx \in B$ for all $x \in A$.

Since $j_{\alpha\alpha}$ is a bijection onto $U(\Delta_{\alpha})$, there is a linear injection $\phi_{\alpha\beta} = j_{\alpha\beta} \circ j_{\alpha\alpha}^{-1}$: $U(\Delta_{\alpha}) \rightarrow Z(\Delta_{\beta})$ which, by (11), satisfies $\phi_{\alpha\delta} = \phi_{\beta\delta} \circ \phi_{\alpha\beta}$ whenever $\Delta_{\alpha} \leq \Delta_{\beta} \leq \phi_{\Delta}$. Since $j_{\alpha\alpha}$ does not change the seminorms (15), $j_{\alpha\alpha}$ is continuous. Since $j_{\alpha\beta} = j_{\beta\beta} \circ i_{\alpha\beta}$ and $i_{\alpha\beta}$ is continuous, $j_{\alpha\beta}$ is a continuous mapping onto $U(\Delta_{\beta})$; hence $\phi_{\alpha\beta}: U(\Delta_{\alpha}) \rightarrow U(\Delta_{\beta})$ is continuous. Therefore the family $\{U^*(\Delta_{\alpha}); \phi_{\alpha\beta}\}$, where $U^*(\Delta_{\alpha}) = U(\Delta_{\alpha})/\sigma_{\Delta_{\alpha}(0)}$ is an inductive spectrum over $S(\Gamma, \Lambda)$. From (15) and the definition of natural topology for L(A, B), L(A, B) is inductively represented by the inductive limit of this spectrum.

THEOREM 2. Let the spaces A and B satisfy the hypotheses of Theorem 1; let $\Delta \in S(\Gamma, \Lambda)$; define the mapping $T: A \to B$ by (14), where $g(\cdot, w) \in V_{\Delta(0)}$, $w \in W$. Let g be such that $Tx \in B$ whenever $x \in A$. For each $\gamma \in \Gamma$, assume that

(23)
$$(K_{\gamma}Tx)(w) = F_{\Delta(\gamma)}[x, K_{\gamma,\Delta}^*g(\cdot, w)],$$

where $K_{\gamma,\Delta}^*: V_{\Delta(0)} \to V_{\Delta(\gamma)}$ is a linear mapping satisfying

(24)
$$\sup_{w \in W} \left\| K_{\gamma,\Delta}^* g(\cdot, w) \right\| < \infty.$$

Then $T \in L(A, B)$, and Δ is an index function for T.

PROOF. Since T maps A linearly into B, it suffices to show that T is continuous. From (9) and (3),

5. Representations of particular spaces

Let A and B satisfy the hypotheses of Theorem 1; define T by (14). Suppose that (i) A is such that V_{λ} and F_{λ} are known explicitly, and (ii) the subspace $U^*(\Delta)$ of

 $(V_{\Delta(0)}/\sigma_{\Delta(0)}) \times W$

for which T maps A onto B (rather than onto a superspace of B) can be characterized. Then the representation of L(A,B) can be given explicitly. Theorems 3 to 7 give examples; in them, all functions (unless stated otherwise) are complexvalued, I and J are compact real intervals, P and Q are compact Hausdorff spaces, and V denotes total variation (of a measure). If σ_{λ} is not mentioned, it is the identity.

THEOREM 3. L(C(P), C(Q)) is isometric and isomorphic to a space of finite Radon measures $g(\cdot, w)$ on P, where $w \in Q$, such that $g(\cdot, w)$ is weak*-continuous in $w \in Q$, and $\sup_{w \in Q} Vg(\cdot, w)$ is finite. Then $T \in L(A, B)$ if and only if

(25)
$$(Tx)(w) = \int_{P} x(v) dg(v, w) \quad (x \in C(P), w \in Q)$$

(26)
$$||T|| = \sup_{w \in Q} Vg(\cdot, w)$$

PROOF. In Theorem 1, set A = C(P), B = C(Q); $A' = L(A_{\lambda}, C)$, where $\|\cdot\|_{\lambda}$ is the uniform norm, is congruent to the space V of finite Radon measures on P, and

$$f(x) = F[x, f^*] = \int_P x \, df^*.$$

So (14) and (15) give (25) and (26), with (26) finite; and the requirement that T maps into C(Q) is that g satisfies

Mappings between vector spaces

(27)
$$\lim_{w \to w_0} \int_P x(\cdot) dg(\cdot, w) = \int_P x(\cdot) dg(\cdot, w_0)$$

 $(w, w_0 \in Q)$, i.e. the weak*-continuity of $g(\cdot, w)$ in w. Conversely, if T is defined by (25), and (26) and (27) hold, then $T \in L(A, B)$ by Theorem 2, since by (27), T maps into C(Q).

THEOREM 4. If $1 and <math>\mu$ is a measure on P, then $L(L^{p}_{\mu}(P), C(Q))$ is isomorphic and isometric to a space of functions $g(v \cdot w)$ ($v \in P$, $w \in Q$) defined by the properties:

(28)
$$\sup_{w \in Q} \|g(\cdot, w)\|_{q} < \infty \ (p^{-1} + q^{-1} = 1; \|\cdot\|_{q} \text{ is the } L^{q}_{\mu}(P) \text{-norm})$$

(29) $\int_E g(\cdot, w) d\mu(\cdot)$ is continuous in $w \in Q$, for each measurable subset $E \subset P$.

Then $T \in L(L^p_\mu(P), C(Q))$ iff

(30)
$$(Tx)(w) = \int_{P} x(v) g(v, w) d\mu(v) \quad (x \in L^{p}_{\mu}(P), w \in Q)$$

and ||T|| is given by the left side of the inequality (28).

PROOF. In Theorem 1, set $A = L^p_{\mu}(P)$, B = C(Q); $A' = L(A_{\lambda}, C)$ is congruent to $L^q_{\mu}(P)$, with $F[x, f^*] = \int_P x(v)f^*(v)d\mu(v)(x \in A)$. So L(A, B) is congruent to a subspace of $L^q_{\mu}(P) \times Q$, and (14) and (15) give (30) and (28); and (29) follows on substituting the characteristic function of E for $x(\cdot)$ in (30), and requiring that $Tx \in C(Q)$.

Conversely it suffices, by Theorem 2, to show that (28), (29) and (30) imply $Tx \in C(Q)$ if $L^p_{\mu}(P)$. There is a simple function \bar{x} such that $||x - \bar{x}||_p < \varepsilon/(4k)$, where k is the supremum in (28). Let $h(v, w) = g(v, w) - g(v, w_0)$, where w, $w_0 \in Q$. Since \bar{x} is a simple function, (29) requires that $|\int_P \bar{x}hd\mu| < \varepsilon/2$ if $w \in N(w_0)$, a suitable neighbourhood of w_0 , depending on ε . Then

$$|(Tx)(w) - (Tx)(w_0)| = \left| \int_P (x - \bar{x})hd\mu + \int_P \bar{x}hd\mu \right|$$
$$\leq ||(x - \bar{x})||_P ||h||_q + \left| \int_P \bar{x}hd\mu \right|$$
$$< \varepsilon/(4k) \cdot 2k + \varepsilon/2.$$

So $T \in C(Q)$.

THEOREM 5. If $1 and <math>\mu$ is a measure on P, then $L(L^p_{\mu}(P), E(J))$ is inductively represented by a space of functions $g_r(v, w)$ ($v \in P$; $w \in J$; $r = 0, 1, 2 \cdots$) having the properties:

(31)
$$\sup_{w \in J} \|g_r(\cdot, w)\|_q < \infty \quad (p^{-1} + q^{-1} = 1; \|\cdot\|_q \text{ is the } L^q_{\mu}(P) \text{-norm})$$

(32)
$$[g_r(\cdot, w) - g_r(\cdot, w_0)] / [w - w_0] \to g_{r+1}(\cdot, w_0)$$

in the weak L^p_{μ} topology on P, as $w \to w_0$. $(w, w_0 \in J)$. Then $T \in L(L^p_{\mu}(P), E(J))$ iff (for $x \in L^p_{\mu}(P)$; $w \in J$; $r = 0, 1, 2, \cdots$)

(33)
$$(D^{r}Tx)(w) = \int_{P} x(v) g_{r}(v, w) d\mu(v),$$

where D is the derivative operator.

REMARKS. The seminorms ||T||, (see (16)) equal the expressions on the left of (31), for $r = 0, 1, \cdots$. The Theorem remains true for J replaced by $(-\infty, \infty)$.

PROOF. Let $T \in L(L^p_{\mu}(P), E(J))$. For $r = 0, 1, 2, \cdots$, the map

$$D: E(J) \to E(J)$$

is continuous; since also $E(J) \subset C(J)$,

$$D'(T) \in L(L^p_u(P), C(J)).$$

So (31) and (33) follow from (28) and (30) of Theorem 5. From (33), if $x \in L^p_{\mu}(P)$,

(34)
$$\frac{(D^{r}Tx)(w) - (D^{r}Tx)(w_{0})}{w - w_{0}} = \int_{P} x(v) \left[\frac{g_{r}(v, w) - g_{r}(v, w_{0})}{w - w_{0}} \right] d\mu(v)$$

Since $Tx \in E(J)$, the left side of $(34) \to (D^{r+1}Tx)(w_0)$ as $w \to w_0$; and (32) follows, using (33). From (3) with $K_r = D^r$, (16), and (31), the natural topology for $L(L^p_{\mu}(P), E(J))$ is that given by the sequence of seminorms $||T||_r$ given by the expressions in (31).

Conversely, define T by (33) with r = 0, and assume (31) and (32); by Theorem 2, it is required only to verify that $Tx \in E(J)$ if $x \in L^p_{\mu}(P)$. If (33) holds for some $r \ge 0$, then so does (34); by (32),

the right side of
$$(34) \rightarrow \int_P x(v)g_{r+1}(v,w_0)d\mu(v)$$

as $w \to w_0$ in J; hence so does the left side; so (33) holds for r + 1, and, by induction, for all r; so Tx is infinitely differentiable. Now

[10]

So $Tx \in E(J)$.

REMARKS. Let P be a compact convex subset of Euclidean n-space: let A = E(P) (see (4) and (5)); let $f \in A'$. Then (compare (6)) there is a seminorm $\|\cdot\|_{\lambda}$ of A such that f is continuous in $\|\cdot\|_{\lambda}$. So f extends by continuity to a continuous linear functional on A_{λ}^{\sim} . To each $x \in A$, attach (uniquely) the set of functions $\{x^{(q)}: q \leq \lambda\}$; this defines an injection j of A_{λ} into the direct sum S_{λ} of finitely many (s,say) copies of C(P). Norm S by

$$\max_{q \leq \lambda} \sup_{t \in P} \left| x^{(q)}(t) \right|.$$

Then $f^{\sim}(y) = f(j^{-1}y)$ $(y \in jA_{\lambda}^{\sim})$ determines a functional f^{\sim} on jA_{λ}^{\sim} with the same norm, p(f) say, that f has as an element of A_{λ}^{\sim}' . The Hahn-Banach theorem extends f^{\sim} to a continuous linear functional on S_{λ} , with the same norm. Then by the Riesz representation theorem, there is a (complex) measure on P^s , represented by measures f_q^* on P, corresponding to the direct summands of S_{λ} , such that

(35)
$$f(x) = \sum_{q \leq \lambda} \int_P x^{(q)}(v) df_q^*(v)$$

$$(36) p(f) = \sum_{q \le \lambda} V f_q^*.$$

This proof is adapted from the representation [5] for Schwartz distributions with compact support P. If f is such a distribution, then it is well known that

(37)
$$f(x) = \sum_{q \leq \lambda'} \int_{N} x^{(q)}(v) df_{q}^{*}(v) \quad (x \in E(I))$$

where N is an arbitrary neighbourhood of P, and I is an interval of \mathbb{R}^n , containing P; here the measures f_q^* depend, in general, on the choice of N. However, if P is compact convex then Schwartz [7] shows that N may be replaced by P in (37), provided λ' is replaced by λ , where λ/λ' depends on P but not on f.

It follows that, within a topological isomorphism, E(P)' is the space of Schwartz distributions with support in P, and $f \in P(E)'$ iff f has a representation (35), (36), for some $\lambda \in \Lambda_s$. It is convenient to identify f with the vector $\{f_r^* : r \leq \lambda\}$ of measures.

THEOREM 6. Let P be a compact convex subset of Euclidean n-space; let Q be a compact Hausdorff space. Then L(E(P), C(Q)) is topologically represented by a space of elements $g(\cdot, \cdot)$, where for each $w \in Q$,

$$g(\cdot, w) = \{g_r(\cdot, w) \colon r \leq \lambda\}$$

is a Schwartz distribution with support in P. If $T \in L(E(P), C(Q))$ and Δ is the minimal index function for T, then for $\lambda = \Delta(0)$, $w \in Q$,

[11]

(38)
$$(Tx)(w) = \sum_{r \leq \lambda} \int_{P} x^{(r)}(v) dg_{r}(v,w) \quad (x \in E(P));$$

(39)
$$||T||_{0,\Delta(0)} = \sup_{w \in Q} p(g(\cdot,w)),$$

where $p(\cdot)$ is defined in (36);

(40) $(g \cdot , w)$ is weak *-continuous in $w \in Q$ with respect to E(P).

Conversely, if T is defined by (38), and (39) and (40) hold, then $T \in L(E(P), C(Q))$.

REMARK. (40) means that, if $\langle \cdot, \cdot \rangle$ denotes evaluation of a distribution, then for each $x \in E(P)$,

$$\langle g(\cdot, w), x(\cdot) \rangle$$

is continuous in $w \in Q$.

PROOF. Set A = E(P), $\Lambda = \Lambda_s$, and B = C(Q) in Theorem 1: if $x \in E(P)$ and $f \in A_{\lambda}^{\sim}$, then (35) and (36) hold; therefore (38) and (39) follow from Theorem 1; (40) is precisely the condition that T maps into C(Q). The converse is immediate from Theorem 2.

THEOREM 7. Let P and Q satisfy the conditions for P as in Theorem 6. Then L(E(P), E(Q)) is topologically represented by a space of sequences

$$\{g_{\gamma}(\cdot,\cdot): \gamma \in \Lambda_s\},\$$

where for each $w \in Q$, $g_{y}(\cdot, w)$ is a Schwartz distribution with support in P. If

 $T \in L(E(P), E(Q))$

and Δ is the minimal index function for T, then for $\lambda = \Delta(0), x \in E(P), w \in Q$, $\gamma \in \Lambda_s$,

(41)
$$(D^{\gamma}Tx)(w) = \sum_{r \leq \lambda} \int_{P} x^{(r)}(v) dg_{\gamma,r}(v,w) = \langle g_{\gamma}(\cdot,w), x(\cdot) \rangle$$

where

$$g_{\gamma}(\cdot,\cdot) = \{g_{\gamma,r}(\cdot,\cdot): r \leq \lambda\};$$

(42)
$$||T||_{\gamma,\Delta(\gamma)} = \sup_{w \in Q} p(g_{\gamma}(\cdot, w) < \infty;$$

(43) $g_{y}(\cdot, w)$ is weak-*-continuous in $w \in Q$ with respect to E(P);

(44) $g_{\gamma+1}(\cdot,w) = (\partial/\partial w) g_{\gamma}(\cdot,w)$, the derivative taken in the weak-* sense on E(P).

Conversely, if T is defined by (41) with $\gamma = 0$, and the g_{γ} satisfy (42), (43), (44), and $\lambda \in \Lambda_s$, then $T \in L(E(P), E(Q))$.

REMARK. If w has components w_j , then $\partial g/\partial w$ means the vector with components $\partial g/\partial w_j$; and $h(w, w_0)/(w - w_0)$ means the vector with components $h(w, w_0)/(w - w_0)_j$.

PROOF. If $T \in L(E(P), E(Q))$, and $\gamma \in \Lambda_s$, then $D^{\gamma}T \in L(E(P), C(Q))$ (where D is the differentiation operator). Hence Theorem 6 applies, and (38), (39), (40) prove (41) (for each γ), (42), (43): except that λ may depend on γ as well as on T. From (41), for $w, w_0 \in Q$,

(45)
$$\frac{(D^{\gamma}Tx)(w) - (D^{\gamma}Tx)(w_0)}{w - w_0} = \frac{\langle g_{\gamma}(\cdot, w), x(\cdot) \rangle - \langle g_{\gamma}(\cdot, w_0), x(\cdot) \rangle}{w - w_0}$$

Since T maps into E(Q), $(D^{\gamma}Tx)(w_0)$ exists, so the left side of (45) converges to it as $w \to w_0$, hence so does the right side. Let $\{w_n\} \to w_0$ in Q; let (41) hold for given γ and λ ; then

$$\phi_n = (g_{\gamma}(\cdot, w_n) - g_{\gamma}(\cdot, w_0))/(w_n - w_0)$$

is a continuous linear mapping from A_{λ} (where A = E(P)), convergent as $w \to w_0$ to $g_{\gamma+1}$ (\cdot, w_0); by the uniform boundedness principle, $g_{\gamma+1}(\cdot, w_0)$ is also continuous on A_{λ} ; hence λ is independent of γ , and (44) holds. The converse is proved as in Theorem 6.

COROLLARY. The space L(E(Q)', E(P)') of all continuous linear mappings from Schwartz distributions with support in Q to Schwartz distributions with support in P, where P and Q satisfy the hypotheses of Theorem 7, has the following representation. Let

$$U \in L(E(Q)', E(P)')$$

let $x \in E(P)$; let $f \in E(Q)'$; by (37), f may be specified in terms of (complex) measures h_q on Q by

(46)
$$f(y) = \sum_{q \leq \mu} \int_{Q} y^{(q)}(w) dh_{q}(w) \quad (y \in E(Q)).$$

Then

(47)
$$(Uf)(x) = \sum_{r \leq \lambda} \int_P x^{(r)}(v) d_v \left[\int_Q \sum_{q \leq \mu} g_{q,r}(v,w) dh_q(w) \right]$$

where the measures $g_{q,r}(\cdot, w)$ satisfy (42), (43), (44). And conversely, if U is defined by (47) then $U \in L(E(Q)', E(P)')$.

PROOF. Since E(P) and E(Q) are reflexive metrisable convex spaces,

$$U \in L(E(Q)', E(P)')$$

iff U is the adjoint of an element $T \in L(E(P), E(Q))$; and

(Uf)(x) = f(Tx).

Then (47) follows from (41).

Acknowledgement

I am indebted to a referee for various details which have improved the presentation of this paper.

References

- [1] N. Bourbaki, Espaces vectoriels topologiques, Ch. I & II (1st. edn.).
- [2] N. P. Cac, 'Linear Transformations on some functional spaces,' Proc. Lond. Math. Soc. (3) 16 (1966), 705–776.
- [3] J. Dugundji, Topology (Allyn & Bacon, Boston, 1967).
- [4] N. Dunford and J. T. Schwartz, Linear Operators, Part 1. (Interscience, New York, 1958).
- [5] I. M. Gelfand and G. E. Shilov, Generalized Functions, vol. 2 (Dunod, Paris, 1964).
- [6] A. P. Robertson and W. Robertson, *Topological Vector Spaces* (Cambridge University Press, 1964).
- [7] L. Schwartz, Théorie des distributions (Hermann, Paris, new edition 1966).

Department of Mathematics Melbourne University Victoria, 3052 Australia