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1. Introduction

If A and B are locally convex topological vector spaces, and B has certain
additional structure, then the space L(A,B) of all continuous linear mappings
of A into B is characterized, within isomorphism, as the inductive limit of a
family of spaces, whose elements are functions, or measures. The isomorphism
is topological if L(A,B) is given a particular topology, defined in terms of the
seminorms which define the topologies of A and B. The additional structure on
B enables L(A,B) to be constructed, using the duals of the normed spaces ob-
tained by giving A the topology of each of its seminorms separately.

The representation theorems lead to explicit representations of L(A,B), in
terms of functions, or measures, depending on two variables, if A and B are
certain function spaces. Simple proofs are obtained for some known cases—when
A or B is C(P), the space of continuous complex functions on a compact Haus-
dorff space P (Dunford and Schwartz [4] give a representation which includes
this case), and when A = LP(P) (1 < p < oo) (for which Cac [2] has given a
representation)—but by different methods from these authors. But in addition,
explicit representations, which appear to be new, are obtained for certain pairs
of spaces which are not Banach spaces; when A or B are spaces of Schwartz
distributions or test functions [7], having compact support. For example, a
continuous linear mapping from Schwartz test functions into C(P) may be iden-
tified with a suitable indexed family of Schwartz distributions.

2. Calibrations and structured spaces

If A and B are convex spaces (locally convex Hausdorff topological vector
spaces), let L(A,B) denote the space of all continuous linear mappings from A
into B. Denote by C(W) the space of all bounded continuous complex functions
on the Hausdorff space W, with the uniform norm. The topology of a convex
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space A can be specified by a (non-unique) calibration, namely a set of semi-
norms {| • | |A: / leA}; similarly let { • ||y: ye F} be a calibration for B.

The topology of A is unchanged by adjoining to the given calibration for A
the maximum of each finite subset of the seminorms. The resulting calibration
will be called saturated; it has the property (Bourbaki [1], page 97) that A is
a directed set with pre-ordering ^ , where for nets {x j in A,

(1) | |*«|L-*0 and ii ^ X => I x. !*-»<),

or equivalently

(2) n^X o 3k = k(X,/i): \\x\\x g fc || x I , ( V x e X ) .

REMARKS. If fi 2; X and X ^ fi, then the seminorms • ||M and || • \\x are
(topologically) equivalent.

Let A be a convex space whose calibration is saturated. Denote by Ax

the factor space A/a, where a is the equivalence relation xay iff ||x — j | | ; . = 0,
and Ax has the topology given by the corresponding quotient seminorm | • x.
Denote by Ax\hz completion of A, and by Ax ' the dual of Ax.

DEFINITION. A convex space B will be called structured if its elements are
bounded functions from a set W into a Banach space H, and if the topology
of B is specified by seminorms |[ • \\y (yeF) of the form

(3) |M|, = sup \(Kyy)(w)\ (yeB,yer)
weW

where Ky: B -*• B is a linear mapping (not necessarily continuous), | • | denotes
the norm in H, and the set {Ky: yeT} includes the identity mapping, say for
y = 0.

EXAMPLES. Let D(/) denote the space of infinitely differentiable complex
functions x, having support in the interval / in Euclidean n-space, with topology
given by either of the equivalent sets of seminorms:

(4) I*!, = sup \xw(t)\
r e /

(5) \\x\\'x = max \\x\\j.

Here XeAs, the set of n-tuples X = (X1,X2,---,Xn) of non-negative integers,
ordered by X 5S X' iff X} ^ X'} for all j , and xw denotes the partial derivative
of x of order (Xu---,Xn). Let £( / ) denote the space of the restrictions to / of in-
finitely differentiable complex functions on n-space, with topology given by (4)
or (5). Then D(I) and E(I) are structured, in terms of the calibration (4); the
equivalent calibration (5) is saturated.

Any Banach space B is structured, since each yeB may be represented,
by its natural mapping into the second dual space B", as a complex function
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on the unit sphere in B' (or, using Choquet's theorem, as a function on the
set of extreme points of the unit ball in £'); then (3) is immediate, with K as
the identity mapping, and W the domain of the functions.

3. Natural topology for L(A, B)

Let TeL(A,B), where A and B are convex spaces, and the calibration of A
is saturated. Since Tis continuous, for each y e F there are kit 5', r such that

Since A is a directed set, there is ke A with k ^ kt (i = l , 2 , - - - , r ) . Then , by (1),

there is S such that

(6) || x I* < <5 => | T x | v < l .

The values of k = k(y,T) determine, for each TeL(A,B), a (non-unique)
function A: r -»• A, which will be called an index function for T. The set S(F,A)
of all functions from F into A is partially ordered by

(7) A, £ \ o Af(y) £; A«(y) (all yeT);

denote also A ^ A . o A , , ^ Aa and Â  ^ Aa. From (1), if A is an index function
for T, then so also is any A' S: A. If, in particular, A iscountablysemi-normed,
then there exists a minimal (in terms of 2:) index function for T; denote it by
Kin-

Denote by M(A) the subspace of L(A,B) consisting of those TeL(A,B)
for which there is an index function <|AeS(r,A). Now

(8) Ax^ Ap => M(A«)<=M(A,);

denote by i^ this embedding of M(AJ in M(A^).
Since TeL(A,B), each of the seminorms

(9) | r | | ^ = s u p { | | T x | | y : | | x | ^ l } (yeF)

is finite, if n = A(y) for some index function A of T. Topologise M(A) by the
seminorms | T | y A(y)(y eF). If Aa and Â  are index functions of T, with Ax ^Ap,
let k = Aa(y) and \i = A^y), for given yeF; since n~2i k,

v II <T

with k given by (2); hence

{x:
therefore

Consequently, ixfi is continuous.
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Since also

(11) \ ^ Â  g As => iai = ips o iaf,

the family {M(Aa); ia/,} of spaces and mappings is an inductive spectrum over
S(F,A) (Dugundji [3], page 420). The inductive limit space of this spectrum is
the quotient space £aM(Aa)/= , where Za denotes free union over S(F,A)
and = denotes the equivalence relation

iff there exists d ^ a,/? such that

It will be convenient to call the topology of this1 inductive limit space the
natural topology for L(A,B). This topology is locally convex (Robertson and
Robertson [6], page 79, Prop. 4), and, for given topologies for A and B, it is
clearly independent of the particular choice of calibrations for B, or for A so
that (1) and (2) hold. If A and B are normed spaces, the natural topology is the
operator norm topology.

The natural topology is a topology of uniform convergence; it could, of
course, be expressed in terms of neighbourhoods instead of seminorms, but
this does not offer any obvious simplification.

4. Representation theorems

Let A be a convex space whose calibration is saturated; let B be a convex
space whose elements are functions whose domain is a set W. A subspace M
of L(A,B) is represented by a vector space Q, whose elements are functions (or
measures, or distributions) g whose domain is X x W (where X is a given set)
if there is a bijection cj> of M onto Q/p, where o is as equivalence relation on Q,
and a bilinear form F[ •, • ] such that

(12) (TxXw) = F[x,g(-,w)],

where xeA, TeM, weW, and g denotes a representative of the equivalence
class [g] = (f>(T)eQlp. The equivalence relation p will not be mentioned if it
is the identity. The representation is topological if also M and Q are topological
vector spaces, and <j> maps the topology of M onto that of Q/p.

As an example of (12), consider A as a space of real-valued functions on a
measure space Y, and T defined by

(7V)(w) = ^x(y)gT(y,w)dlx(<y) = F[x,gT( • ,w)].

If each subspace M(Aa) of L(A,B) is topologically represented by atopolog-
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ical vector space Q(Aa) then, since the representation is a topological isomorphism,
there is a bijection <f>* of the inductive limit space, M* say, of the M(AX) onto
the inductive limit space, Q* say, of the Q(AJ; and (f>* maps the topology of
M* onto that of Q*, since E* does not change the values of the seminorms
I TJjv/J. The space Q* will then be called an inductive representation of M*,
or of L(A,B).

THEOREM 1. Let B be a structured space, of functions which map W into
a Banach space H; let B have calibration {|| • ||y: yeT}. Let A be any convex
space, whose calibration {| • j)A: Ae A} is saturated. For each XeA, let Vx be
a Banach space of functions (or complex measures, or distributions) defined
on a set X, and ax an equivalence relation on Vx, such that a congruence (an
isometric isometry) between L(AX,H) and Vxjax is established by

(13) / « = FA[x,/*],

where xeAx~,feL(Ax~,H),f*e Vx,and Fx is a bilinear form, which may depend
on X.

Then L(A,B) is inductively represented by the inductive limit of a family
of spaces U*(A), where AeS(T, A), and U*(A) is a subspace of

(*A(0)/ffA(0)) X W.

If TeL(A,B), and A is an index function for T, then

(14) (Tx)(w) = FM0)lx,g(-,w)l,

(15) ry>A(7) = sup | | K * A g ( - , w ) | ;
weW

where xeA, w e W, g( • , w) e V&w, and

is a linear mapping determined by Ky. The representation is topological if
L(A,B) has its natural topology and U*(A) is topologised by the seminorms

||r|U,)(yeD.
REMARKS. If H = C, the complex field, then each / in the Banach space

Ax ' may be represented as a complex function on the unit sphere of Ax " (or on the
set of extreme points of the unit ball in A\~", using Choquet's theorem.) In this
sense, (13) is trivial. In various particular cases (see later theorems) Vx can be
given explicitly as a space of complex functions or measures.

Not all AeS(F,A) need contribute to the inductive limit.
If the Vx are function spaces then, for each A, the subspace M(A) of L(A,B)

is isomorphic to a space of functions W -* FA(0), for which the seminorms (15)
are of the form (3); hence each subspace M(A) is also a structured space.
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If A is countably normed, and, for each T, A^in(y) is independent of y,
then L(A,B) is inductively represented by the inductive limit of a sequence of
spaces U* (X = 0,1, •••), where V* is a subspace of (VJax) x W. In particular,
if A is a normed space, then L(A,B) is represented by a subspace U of
(^o/ffo) x W> w i t n the topology defined by the seminorms

(16) II TIL = sup \\K*&g(-,w)\\ (yer, g(-,w)eV0).
weW

If A is a convex space with the Mackey topology (so in particular if A is
barrelled), then the space of all linear mappings of A into B which are continuous
in the given topology of A and the weak topology of B coincides with L(A,B),
so is also represented by Theorem 1. For if T is continuous from A with strong
topology to B with weak topology, then Tis continuous from A with weak topol-
ogy to B with weak topology ([6], page 39, Prop. 13); so if A has its Mackey
topology, Tis continuous from A with strong topology to B with strong topology;
the converse is immediate.

PROOF OF THEOREM 1. Let A be an index function for TeL(A,B); let yeF;
let X = A(y). For fixed y, define the linear mapping fw: A -> Hbyfw = (KyT.)(w).
Since

(17) sup \fw(x-y)\ = sup \(KyT(x-y))(w)\

= \\nx-y)\\y

fw defines a unique element (also written fw) of L{AX,H). Since

(18) sup sup | / w (x) | = sup 1 7*||y = 1 T | | y , ,< co since X = A(y),

the mappings fw (w e W) are equicontinuous on Ax.
By continuity, fw can be extended, without increase of norm, to a continuous

mapping f*:A;^H. By (13),

(19) f:(x) = Fx[x,gyA(-,W)l,

where xeA^, and gyX( • , w) is written for the function (or complex measure or
distribution)/* corresponding to w e W. Thus, for xe Ac A^, and A any index
function for T,

(20) (K7Tx)(w) = FA(y)[x, gyMy)( • , w)].

From (18), with X = A(y),

(21) \\T\\y_x = s u p I / w I = s u p \\gy,x(-,w)\\ ( y e T ) ,
w e W vsW
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where | gy A( • , w) denotes the no rm in Vx, since the mapping / - > / * in (13)

is an isometry.

Equation (20) defines a linear mapping \j/y of KyT on to [gy^wC ' > ' ) ] >

the equivalence class in

(VAMlaAM) x W

of which gyyMy)( • , • ) is a representative. Since FA(y) is a bilinear form, and the
mapping / - > [/*] defined by (13) is a bijection, ^y has zero kernel, so i/f"1

exists. Denote by a* the canonical mapping of FA(0) into

denote by ey any linear embedding of VAWlaA(y) into VA(y). Define

by

Then K*A maps go,A(O)( • , •) onto gyMy)( •, • ) . This, with (20), proves (14),
writing g for g0 A ( 0 ) .

Denote by Z(AJ the subspace of VA^0) x W consisting of those functions
go,Aa(o)(" >") fof which all the seminorms (21) are finite, with the convex topology
determined by these seminorms. Since these seminorms are finite for each
TeL(A,B) for which Aa is an index function, there is, by (20), a linear injection

j x P : M(AX) ^ Z(Ap)

for each Ax and A^ ^ Aa in S(F,A). Let l/(AJ = jxxM(Ax), with the relative
topology of Z(AJ; U(AX) is, in general, a proper subspace of Z(Aa), since the
finiteness of all the seminorms (15) does not imply that TxeB for all xeA.

Since j x x is a bijection onto U(AX), there is a linear injection <j>xp = jxp oj~x :
l/(Aa)->Z(Ap) which, by (11), satisfies <f>ai = (j)fi o ^ whenever Aa ^ A^ ̂  (pA. Since

j x x does not change the seminorms (15), j x x is continuous. Since j ^ — jpf o ixp and
ixpis continuous, j a / 3 is a continuous mapping onto U(Af); hence $a/r: t/(Aa)-> [/(Aj,)
is continuous. Therefore the family {U*(AX);4>X^}, where t/*(Aa)=t/(Aa)/crAet(0)

is an inductive spectrum over S(F,A). From (15) and the definition of natural
topology for L(A,B), L(A,B) is inductively represented by the inductive limit
of this spectrum.

THEOREM 2. Let the spaces A and B satisfy the hypotheses of Theorem 1;
let AeS(F,A); define the mapping T:A-*B by (14), where g( • ,w)e VAm,
weW. Let g be such that TxeB whenever xeA. For each yeF, assume that

(23) (KyTx)(w) = FA(y)[x,K*Ag( •, w)],

where K*A: KA(0) -» VA(y) is a linear mapping satisfying
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(24) sup | K * A g ( - , w ) | | < o o .
weW

Then TeL(A,B), and A is an index function for T.

PROOF. Since T maps A linearly into B, it suffices to show that Tis contin-
uous. From (9) and (3),

|T||y>A(y) = sup sup \(KyTx)(w)\

= sup sup I FMy)[x, X*Ag( •, w)] |, by (23)

= sup [|K*Ag(-,w)| by (13)
weW

< oo by (24).

5. Representations of particular spaces

Let A and £ satisfy the hypotheses of Theorem 1; define Tby (14). Suppose
that (i) A is such that Vx and F, are known explicitly, and (ii) the subspace l/*(A)
of

( ^ / ( 0 ) ) X W

for which Tmaps A onto B (rather than onto a superspace of B) can be charac-
terized. Then the representation of L(A,B) can be given explicitly. Theorems 3
to 7 give examples; in them, all functions (unless stated otherwise) are complex-
valued, I and J are compact real intervals, P and Q are compact Hausdorff spaces,
and V denotes total variation (of a measure). If ax is not mentioned, it is the
identity.

THEOREM 3. L(C(P),C(Q)) is isometric and isomorphic to a space of finite
Radon measures g( • ,w) on P, where weQ, such that g(- ,w) is weak*-con-
tinuous in weQ, and supweQFg(- ,w) is finite. Then TeL(A,B) if and only if

(25) (Tx)(w) = f x(v)dg(v,w) (xeC(P),weQ)
Jp

(26) | r | = sup Vg(-,w)
weQ

PROOF. In Theorem 1, set A = C{P), B = C(Q); A' = L(AX, C),where

|| • ||A is the uniform norm, is congruent to the space V of finite Radon measures
on P, and

/(x) = F[x,/*] = \xdf*.
Jp

So (14) and (15) give (25) and (26), with (26) finite; and the requirement that T
maps into C(Q) is that g satisfies
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(27) lim (x(-)dg(-,w) = ! x(-)dg(-,w0)
w-»wo JP JP

(w, w0 e Q), i.e. the weak*-continuity of g( •, w) in w. Conversely, if Tis denned
by (25), and (26) and (27) hold, then TeL(A,B) by Theorem 2, since by (27),
T maps into C(Q).

THEOREM 4. / / 1 < p < oo and (i is a measure on P, then L(IFll(P),C(Q))
is isomorphic and isometric to a space of functions g(v- w) (veP, we Q) defined
by the properties:

(28) sup I g( • ,w)||, < oo (p-1 + q'1 = 1; || • ||, is the L'(P)-norm)
weQ

(29) I g( • , w) dfi( •) is continuous in w e Q, for each measurable subset E <= P .
JE

Then TeLdZWXiQ)) iff

(30) (Tx)(w) =

and I T || is given by the left side of the inequality (28).

PROOF. In Theorem 1, set A = IS/P), B = C(Q); A' = L(A^, C) is congruent
to Ll(P), with F[x,/*] = |Px(t;)/*(t;)J/i(i;)(xe^). So L(^,B) is congruent to
a subspace of L*(P) x Q, and (14) and (15) give (30) and (28); and (29) follows
on substituting the characteristic function of E for x( • ) in (30), and requiring
that TxeC(Q).

Conversely it suffices, by Theorem 2, to show that (28), (29) and (30) imply
TxeC(Q) if L^(P). There is a simple function* such that ||x —x\\p < ej(4k),
where k is the supremum in (28). Let h(v, w) = g(v, w) — g(v, w0), where w, vv0 e Q.
Since x is a simple function, (29) requires that |JPjc/!rf/i| < e/2 if weN(w0), a
suitable neighbourhood of w0, depending on E . Then

f (x -x)hdn + ( xhdfi
Jp JP

| (Tx)(w) -

< e/(4fc)-2fe + «/2.

So TeC(Q).

THEOREM 5. If 1 < p < oo and fi is a measure on P, then L(L%(P),E(J))
is inductively represented by a space of functions gr{v, w) (v e P; w e J; r = 0,1,2 • • •)
having the properties:
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(31) sup fl gr( • ,w)||, < oo (p'1 + q'1 = 1; I • I, is the L'(P)-norm)
we/

(32) [gr( • , w) - gr( • , wo)]/[w - w0] -> gr+ j( • , w0)

in the weak L^ topology on P, as w->w0. l(w,woeJ). Then Te UJf^F),
E(J)) iff (for xeLfrP); weJ;r = 0 , 1 , 2 , - )

(33) (D'Tx)(w) = f x(»)gr(»,w)dK«),
Jp

where D is the derivative operator.

REMARKS. The seminorms | T ||r (see (16)) equal the expressions on the left
of (31), for r = 0,l,---. The Theorem remains true for J replaced by (—00,00).

PROOF. Let reL(LP,/P),£(/))• For r = 0 , 1 , 2 , - , the map

is continuous; since also E(J)cC(J),

D\T)zL{LpJiP),C(J)).

So (31) and (33) follow from (28) and (30) of Theorem 5. From (33), i

(34) (Pr*)(vv)(^)(vO = I m rgrfaw)-grfaw0)1
w-w0 Jp I w-w0 J

Since TxeE(J), the left side of (34)->(Dr+lTx)(w0) as w-*w0; and (32) fol-
lows, using (33). From (3) with Kr = Dr, (16), and (31), the natural topology
for L(L^(P),E(J)) is that given by the sequence of seminorms | T[|r given by
the expressions in (31).

Conversely, define T by (33) with r = 0, and assume (31) and (32); by
Theorem 2, it is required only to verify that Tx e E(J) if x e L%P). If (33) holds
for some r ^ 0, then so does (34); by (32),

x(v)gr+1(v,\
Jp

the right side of ( 3 4 ) ^ x(v)gr+1(v,Wo)dfi(v)
Jp

as w -* w0 in J; hence so does the left side; so (33) holds for r + 1, and. by
induction, for all r; so Tx is infinitely differentiate. Now

|| T||r = sup sup \(DrTx)(w)\
veJ [|*||,£1

sup sup II x I • I gr( • ,w)[| by (33)
weJ | | J t | | rg l

sup | g f ( - , w )
w e J

< 00 by (31).
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So Tx e£(J) .

REMARKS. Let P be a compact convex subset of Euclidean n-space: let
A = E(P) (see (4) and (5)); MfeA'. Then (compare (6)) there is a seminorm
| • |A of A such tha t / i s continuous in | • \x. So/extends by continuity to a
continuous linear functional on Ax. To each xeA, attach (uniquely) the set of
functions {x{q): q r=L X}; this defines an injection j of Ax into the direct sum Sx

of finitely many (s.say) copies of C(P). Norm S by

max sup |x(4)(f)|-
q&X. r e P

Then/~(y) —f(j~1y) (yejA^)determines a functional / ~ on jAx with the same
norm, p(f) say, that/has as an element ofA^'. The Hahn-Banach theorem extends
/ ~ to a continuous linear functional on Sx, with the same norm. Then by the
Riesz representation theorem, there is a (complex) measure on Ps, represented
by measures / ,* on P, corresponding to the direct summands of Sx, such that

(35) /(*)= Z [x^\v)df*{v)
?SA JP

(36) p(f)= ^Vf*.

This proof is adapted from the representation [5] for Schwartz distributions
with compact support P. Iff is such a distribution, then it is well known that

(*)= 2 f
qik' JN

(37) /(*)= 2 f x ' '^^^) (xeE(I))
qik' JN

where N is an arbitrary neighbourhood of P, and / is an interval of R", con-
taining P; here the measures/,* depend, in general, on the choice of AT. However,
if P is compact convex then Schwartz [7] shows that N may be replaced by P
in (37), provided X' is replaced by X, where XjX' depends on P but not o n / .

It follows that, within a topological isomorphism, E(P)' is the space of
Schwartz distributions with support in P, and / e P(F)' iff/ has a representation
(35), (36), for some X e A5. It is convenient to identify/with the vector {f* : r g l }
of measures.

THEOREM 6. Let P be a compact convex subset of Euclidean n-space; let Q
be a compact Hausdorff space. Then L(E(P),C(Q)) is topologically represented
by a space of elements g(-,-)> where for each weQ,

is a Schwartz distribution with support in P. If TeL(E(P),C(Q)) and A is the
minimal index function for T, then for X = A(0), weQ,
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(38) (Tx)(w) = I f x(r\v)dgr(v,w) (xeE(P));
rS* Jp

(39) I r||0>A(0) = sup p(g(-,w)),
weQ

where p( •) is defined in (36);

(40) (g" ,w) is weak *-continuous in weQ with respect to E(P).

Conversely, if Tis defined by (38), and (39) and (40) hold, thenTeL(E(P),C(Q)).

REMARK. (40) means that, if < •, • > denotes evaluation of a distribution, then
for each xe.E(P),

<g(-,w),x(-)>

is continuous in weQ.

PROOF. Set A = E(P), A = As, and B = C(Q) in Theorem 1: if xeE(P)

and/e Af, then (35)and (36) hold; therefore (38) and (39) follow from Theorem
1; (40) is precisely the condition that Tmaps into C(Q). The converse is immediate
from Theorem 2.

THEOREM 7. Let P and Q satisfy the conditions for P as in Theorem 6.
Then L(E(P),E(Q)) is topologically represented by a space of sequences

{gy(- ,•): yeAs},

where for each weQ, gy( •, w) is a Schwartz distribution with support in P. If

TeL(E(P),E(Q))

and A is the minimal index function for T, then for X = A(0), xeE(P), weQ,
?eA5,

(41) (DyTx)(w)= Z f x(r\v)dgyir(v,w) = <gy( • , w ) , x ( - ) >
T&i. JP

where

(42) || T \\yMy) = sup p(gy( •, w) < co;
we Q

(43) gy(",w) is weak-*-continuous in weQ with respect to E(P);

(44) gv+i(" ,w) = {djdw)gy{- ,w), the derivative taken in the weak-*
sense on E(P).

Conversely, if Tis defined by (41) with 7 = 0, and the gy satisfy (42), (43), (44),
and AeAs, then TeL(E(P),E(Q)).
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REMARK. If w has components wJf then dg/dw msans the vector with com-
ponents dgjdWj-, and h(w,wo)j(w — w0) means the vector with components
Hw> wo)/(w - wo)j.

PROOF. If TeL{E(P),E[Q)), and ye.\s, then DyTeL(E(P),C(Q)) (where D
is the differentiation operator). Hence Theorem 6 applies, and (38), (39), (40)
prove (41) (for each y), (42), (43): except that X may depend on y as well as on T.
From (41), for w,woeQ,

(D"Tx)(w)-(D-/Tx)(w0) <gy(-,w),x(-)>-<g,(-,Wo),*(-)>(4D) -
W - Wn W — Wn

Since T maps into E(Q), (DyTx)(w0) exists, so the left side of (45) converges
to it as w -*• w0, hence so does the right side. Let {wn} -> w0 in Q; let (41)
hold for given y and X; then

0* = (gy( • ,wB) - gy( • ,wo))/(H-n - w0)

is a continuous linear mapping from Ak (where A = E(P)), convergent as w -*• w0
t o gy+i ( ' J W O ) ; by the uniform boundedness principle, gy + 1(- ,w0) is also
continuous on Ax; hence X is independent of y, and (44) holds. The converse
is proved as in Theorem 6.

COROLLARY. The space L(E(Q)',E(P)') of all continuous linear mappings
from Schwartz distributions with support in Q to Schwartz distributions with
support in P, where P and Q satisfy the hypotheses of Theorem 7, has the fol-
lowing representation. Let

UsL{E(Qy,E(P)');

let xeE(P); letfeE(Q)'; by (37), / may be specified in terms of (complex)
measures hq on Q by

(46) f(y) = I [ y™(w)dhq(w) (yeE(Q)).

Then

(47) ([//)(*) = X f x<r\v)dv \ f E gqAv,w)dhq(w)]

where the measures gqr(' »w) satisfy (42), (43), (44). ,4n<i conversely, if U is
defined by (47) then UeL(E(Q)',E(P)').

PROOF. Since E(P) and E(Q) are reflexive metrisable convex spaces,

UeL(E(Q)',E(Py)

iff U is the adjoint of an element TeL(E(P),E(Q)); and
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(Uf)(x)=f(Tx).

Then (47) follows from (41).
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