Injectivity of the Connecting Homomorphisms in Inductive Limits of Elliott-Thomsen Algebras

Dedicated to Prof. Chunlan Jiang on the occasion of his 60th birthday

Zhichao Liu

Abstract. Let A be the inductive limit of a sequence

$$
A_{1} \xrightarrow{\phi_{1,2}} A_{2} \xrightarrow{\phi_{2,3}} A_{3} \longrightarrow \cdots
$$

with $A_{n}=\oplus_{i=1}^{n_{i}} A_{[n, i]}$, where all the $A_{[n, i]}$ are Elliott-Thomsen algebras and $\phi_{n, n+1}$ are homomorphisms. In this paper, we will prove that A can be written as another inductive limit

$$
B_{1} \xrightarrow{\psi_{1,2}} B_{2} \xrightarrow{\psi_{2,3}} B_{3} \longrightarrow \cdots
$$

with $B_{n}=\oplus_{i=1}^{n_{i}^{\prime}} B_{[n, i]^{\prime}}$, where all the $B_{[n, i]^{\prime}}$ are Elliott-Thomsen algebras and with the extra condition that all the $\psi_{n, n+1}$ are injective.

1 Introduction

In 1997, Li proved the result that if $A=\underline{\longrightarrow}\left(A_{n}, \phi_{m, n}\right)$ is an inductive limit C^{*}-algebra with $A_{n}=\bigoplus_{i=1}^{n_{i}} M_{[n, i]}\left(C\left(X_{[n, i]}\right)\right)$, where all $X_{[n, i]}$ are graphs, n_{i} and $[n, i]$ are positive integers, then one can write $A=\xrightarrow{\lim }\left(B_{n}, \psi_{m, n}\right)$, where

$$
B_{n}=\bigoplus_{i=1}^{n_{i}^{\prime}} M_{[n, i]^{\prime}}\left(C\left(Y_{[n, i]^{\prime}}\right)\right)
$$

are finite direct sums of matrix algebras over graphs $Y_{[n, i]^{\prime}}$ with the extra property that the homomorphisms $\psi_{m, n}$ are injective [10]. This played an important role in the classification of simple $A H$ algebras with one-dimensional local spectra (see [2,3,1012]). This result was extended to the case of $A H$ algebras [5], in which the space $X_{[n, i]}$ are replaced by connected finite simplicial complexes.

In this article, we consider the C^{*}-algebra A that can be expressed as the inductive limit of a sequence

$$
A_{1} \xrightarrow{\phi_{1,2}} A_{2} \xrightarrow{\phi_{2,3}} A_{3} \longrightarrow \cdots,
$$

where all A_{i} are Elliott-Thomsen algebras and $\phi_{n, n+1}$ are homomorphisms. These algebras were introduced by Elliott in [4] and Thomsen in [6], and are also called one-dimensional non-commutative finite CW complexes. We will prove that A can

[^0]be written as inductive limits of sequences of Elliott-Thomsen algebras with the property that all connecting homomorphisms are injective. The results in this paper will be used in to classify real rank zero inductive limits of one-dimensional non-commutative finite CW complexes.

2 Preliminaries

Definition 2.1 Let F_{1} and F_{2} be two finite dimensional C^{*}-algebras. Suppose that there are two homomorphisms $\varphi_{0}, \varphi_{1}: F_{1} \rightarrow F_{2}$. Consider the C^{*}-algebra
$A=A\left(F_{1}, F_{2}, \varphi_{0}, \varphi_{1}\right)=\left\{(f, a) \in C\left([0,1], F_{2}\right) \oplus F_{1}: f(0)=\varphi_{0}(a), \quad f(1)=\varphi_{1}(a)\right\}$.
These C^{*}-algebras have been introduced into the Elliott program by Elliott and Thomsen in [6]. Denote by \mathcal{C} the class of all unital C^{*}-algebras of the form $A\left(F_{1}, F_{2}, \varphi_{0}, \varphi_{1}\right)$. (This class includes the finite dimensional C^{*}-algebras, the case $F_{2}=0$.) These C^{*}-algebras will be called Elliott-Thomsen algebras. Following [9], let us say that a unital C^{*}-algebra $A \in \mathcal{C}$ is minimal if it is indecomposable, i.e., not the direct sum of two or more C^{*}-algebras in \mathcal{C}.

Proposition 2.2 ([9]) Let $A=A\left(F_{1}, F_{2}, \varphi_{0}, \varphi_{1}\right)$, where $F_{1}=\oplus_{j=1}^{p} M_{k_{j}}(\mathbb{C}), F_{2}=$ $\oplus_{i=1}^{l} M_{l_{i}}(\mathbb{C})$ and $\varphi_{0}, \varphi_{1}: F_{1} \rightarrow F_{2}$ be two homomorphisms. Let $\varphi_{0 *}, \varphi_{1 *}: K_{0}\left(F_{1}\right)=$ $\mathbb{Z}^{p} \rightarrow K_{0}\left(F_{1}\right)=\mathbb{Z}^{l}$ be represented by matrices $\alpha=\left(\alpha_{i j}\right)_{l \times p}$ and $\beta=\left(\beta_{i j}\right)_{l \times p}$, where $\alpha_{i j}, \beta_{i j} \in \mathbb{Z}_{+}$for each pair i, j. Then

$$
K_{0}(A)=\operatorname{Ker}(\alpha-\beta), \quad K_{1}(A)=\mathbb{Z}^{l} / \operatorname{Im}(\alpha-\beta)
$$

2.1 We use the notation $\#(\cdot)$ to denote the cardinal number of a set, the sets under consideration will be sets with multiplicity, and then we shall also count multiplicity when we use the notation \#. We use \cdot or $\bullet \bullet$ to denote any possible positive integer. We shall use $\left\{a^{\sim k}\right\}$ to denote $\{\underbrace{a, \ldots, a}_{k \text { times }}\}$. For example, $\left\{a^{\sim 3}, b^{\sim 2}\right\}=\{a, a, a, b, b\}$.
2.2 Let us use $\theta_{1}, \theta_{2}, \ldots, \theta_{p}$ to denote the spectrum of F_{1} and denote the spectrum of $C\left([0,1], F_{2}\right)$ by (t, i), where $0 \leq t \leq 1$ and $i \in\{1,2, \ldots, l\}$ indicates that it is in i-th block of F_{2}. So

$$
\operatorname{Sp}\left(C\left([0,1], F_{2}\right)\right)=\bigsqcup_{i=1}^{l}\{(t, i), 0 \leq t \leq 1\} .
$$

Using identification of $f(0)=\varphi_{0}(a)$ and $f(1)=\varphi_{1}(a)$ for $(f, a) \in A,(0, i) \in$ $\operatorname{Sp}(C[0,1])$ is identified with

$$
\left(\theta_{1}^{\sim \alpha_{i 1}}, \theta_{2}^{\sim \alpha_{i 2}}, \ldots, \theta_{p}^{\sim \alpha_{i p}}\right) \subset \operatorname{Sp}\left(F_{1}\right)
$$

and $(1, i) \in \operatorname{Sp}\left(C\left([0,1], F_{2}\right)\right)$ is identified with

$$
\left(\theta_{1}^{\sim \beta_{i 1}}, \theta_{2}^{\sim \beta_{i 2}}, \ldots, \theta_{p}^{\sim \beta_{i p}}\right) \subset \operatorname{Sp}\left(F_{1}\right)
$$

as in $\operatorname{Sp}(A)=\operatorname{Sp}\left(F_{1}\right) \cup \coprod_{i=1}^{l}(0,1)_{i}$.
2.3 With $A=A\left(F_{1}, F_{2}, \varphi_{0}, \varphi_{1}\right)$ as above, let $\varphi: A \rightarrow M_{n}(\mathbb{C})$ be a homomorphism; then there exists a unitary u such that

$$
\begin{aligned}
& \varphi(f, a)= \\
& u^{*} \cdot \operatorname{diag}(\underbrace{a\left(\theta_{1}\right), \ldots, a\left(\theta_{1}\right)}_{t_{1}}, \ldots, \underbrace{a\left(\theta_{p}\right), \ldots, a\left(\theta_{p}\right)}_{t_{p}}, f\left(y_{1}\right), \ldots, f\left(y_{\bullet}\right), 0 \bullet \bullet) \cdot u
\end{aligned}
$$

where $y_{1}, y_{2}, \ldots, y_{\bullet} \in \coprod_{i=1}^{l}[0,1]_{i}$. For $y=(0, i)$ (also denoted by 0_{i}), one can replace $f(y)$ by

$$
(\underbrace{a\left(\theta_{1}\right), \ldots, a\left(\theta_{1}\right)}_{\alpha_{i 1}}, \ldots, \underbrace{a\left(\theta_{p}\right), \ldots, a\left(\theta_{p}\right)}_{\alpha_{i p}})
$$

in the above expression, and do the same with $y=(1, i)$. After this procedure, we can assume each y_{k} is strictly in the open interval $(0,1)_{i}$ for some i. We write the spectrum of φ by

$$
\operatorname{Sp} \varphi=\left\{\theta_{1}^{\sim t_{1}}, \theta_{2}^{\sim t_{2}}, \ldots, \theta_{p}^{\sim t_{p}}, y_{1}, y_{2}, \ldots, y_{\bullet}\right\}
$$

where $y_{k} \in \coprod_{i=1}^{l}(0,1)_{i}$.
If $f=f^{*} \in A$, we use $\operatorname{Eig}(\varphi(f))$ to denote the eigenvalue list of $\varphi(f)$, and then

$$
\#(\operatorname{Eig}(\varphi(f)))=n \text { (counting multiplicity) }
$$

2.4 Let $A=A\left(F_{1}, F_{2}, \varphi_{0}, \varphi_{1}\right) \in \mathcal{C}$ be minimal. Write $a \in F_{1}$ as

$$
a=\left(a\left(\theta_{1}\right), a\left(\theta_{2}\right), \ldots, a\left(\theta_{p}\right)\right), \quad f(t) \in C\left([0,1], F_{2}\right)
$$

as

$$
f(t)=(f(t, 1), f(t, 2), \ldots, f(t, l))
$$

where $a\left(\theta_{j}\right) \in M_{k_{j}}(\mathbb{C}), f(t, i) \in C\left([0,1], M_{l_{i}}(\mathbb{C})\right)$.
For any $(f, a) \in A$ and $i \in\{1,2, \ldots, l\}$, define $\pi_{t}: A \rightarrow C\left([0,1], F_{2}\right)$ by $\pi_{t}(f, a)=$ $f(t)$ and $\pi_{t}^{i}: A \rightarrow C\left([0,1], M_{l_{i}}(\mathbb{C})\right)$ by $\pi_{t}^{i}(f, a)=f(t, i)$, where $t \in(0,1)$ and $\pi_{0}^{i}(f, a)=f(0, i)$ (denoted by $\left.\varphi_{0}^{i}(a)\right), \pi_{1}^{i}(f, a)=f(1, i)$ (denoted by $\left.\varphi_{1}^{i}(a)\right)$. There is a canonical map $\pi_{e}: A \rightarrow F_{1}$ defined by $\pi_{e}((f, a))=a$, for all $j=\{1,2, \ldots, p\}$.
2.5 We use the convention that $A=A\left(F_{1}, F_{2}, \varphi_{0}, \varphi_{1}\right), B=B\left(F_{1}^{\prime}, F_{2}^{\prime}, \varphi_{0}^{\prime}, \varphi_{1}^{\prime}\right)$, where

$$
F_{1}=\bigoplus_{j=1}^{p} M_{k_{j}}(\mathbb{C}), \quad F_{2}=\bigoplus_{i=1}^{l} M_{l_{i}}(\mathbb{C}), \quad F_{1}^{\prime}=\underset{j^{\prime}=1}{p^{\prime}} M_{k_{j^{\prime}}^{\prime}}(\mathbb{C}), \quad F_{2}^{\prime}=\bigoplus_{i^{\prime}=1}^{l^{\prime}} M_{l_{i^{\prime}}^{\prime}}(\mathbb{C})
$$

Set $L(A)=\sum_{i=1}^{l} l_{i}, L(B)=\sum_{i^{\prime}=1}^{l^{\prime}} l_{i^{\prime}}^{\prime}$. Denote by $\left\{e_{s s^{\prime}}^{i}\right\}\left(1 \leq i \leq l, 1 \leq s, s^{\prime} \leq l_{i}\right)$ the set of matrix units for $\oplus_{i=1}^{l} M_{l_{i}}(\mathbb{C})$ and by $\left\{f_{s s^{\prime}}^{j}\right\}\left(1 \leq j \leq p, 1 \leq s, s^{\prime} \leq k_{j}\right)$ the set of matrix units for $\oplus_{j=1}^{p} M_{k_{j}}(\mathbb{C})$.
2.6 For each $\eta=\frac{1}{m}$ where $m \in \mathbb{N}_{+}$, let $0=x_{0}<x_{1}<\cdots<x_{m}=1$ be a partition of $[0,1]$ into m subintervals with equal length $\frac{1}{m}$. We will define a finite subset $H(\eta) \subset A_{+}$, consisting of two kinds of elements as described below.
(a) For each subset $X_{j}=\left\{\theta_{j}\right\} \subset \operatorname{Sp}\left(F_{1}\right)=\left\{\theta_{1}, \theta_{2}, \ldots, \theta_{p}\right\}$ and a list of integers $a_{1}, b_{2}, \ldots, a_{l}, b_{l}$ with $0 \leq a_{i}<a_{i}+2 \leq b_{i} \leq m$, denote $W_{j} \triangleq \amalg_{\left\{i \mid \alpha_{i j} \neq 0\right\}}\left[0, a_{i} \eta\right]_{i} \cup$ $\amalg_{\left\{i \mid \beta_{i j} \neq 0\right\}}\left[b_{i} \eta, 1\right]_{i}$. Then we call W_{j} the closed neighborhood of X_{j}; we define element $(f, a) \in A_{+}$corresponding to $X_{j} \cup W_{j}$ as follows:

Let $a=\left(a\left(\theta_{1}\right), a\left(\theta_{2}\right), \ldots, a\left(\theta_{p}\right)\right) \in F_{1}$, where $a\left(\theta_{j}\right)=I_{k_{j}}$ and $a\left(\theta_{s}\right)=0_{k_{s}}$ if $s \neq j$. For each $t \in[0,1]_{i}, i=\{1,2, \ldots, l\}$, define

$$
f(t, i)= \begin{cases}\varphi_{0}^{i}(a) \frac{\eta-\operatorname{dist}\left(t,\left[0, a_{i} \eta\right]_{i}\right)}{\eta} & \text { if } 0 \leq t \leq\left(a_{i}+1\right) \eta \\ 0 & \text { if }\left(a_{i}+1\right) \eta \leq t \leq\left(b_{i}-1\right) \eta \\ \varphi_{1}^{i}(a) \frac{\eta-\operatorname{dist}\left(t,\left[b_{i} \eta, 1\right]_{i}\right)}{\eta} & \text { if }\left(b_{i}-1\right) \eta \leq t \leq 1\end{cases}
$$

All such elements $(f, a)=(f(t, 1), f(t, 2), \ldots, f(t, l)) \in A_{+}$are included in the set $H(\eta)$ and are called test functions of type 1.
(b) For each closed subset $X=\bigcup_{s}\left[x_{r_{s}}, x_{r_{s+1}}\right]_{i} \subset[\eta, 1-\eta]_{i}$ (the finite union of closed intervals $\left[x_{r}, x_{r+1}\right]$ and points), so there are finite subsets for each i. Define (f, a) corresponding to X by $a=0$ and for each $t \in(0,1)_{r}, r \neq i, f(t, r)=0$ and for $t \in(0,1)_{i}$, define

$$
f(t, i)= \begin{cases}1-\frac{\operatorname{dist}(t, X)}{\eta} & \text { if } \operatorname{dist}(t, X)<\eta \\ 0 & \text { if } \operatorname{dist}(t, X) \geq \eta\end{cases}
$$

All such elements are called test functions of type 2.
Note that for any closed subset $Y \subset[\eta, 1-\eta]$, there is a closed subset X consisting of the union of the intervals and points such that $X \supset Y$ and for any $x \in X$, $\operatorname{dist}(x, Y) \leq \eta$.
2.7 Take η as above, define a finite set $\widetilde{H}(\eta)$ as follows:

In the construction of test functions of type 1, we can use $f_{s s^{\prime}}^{j} \in F_{1}$ in place of $a \in F_{1}$, assume that all these elements are in $\widetilde{H}(\eta)$, and for all test functions $h \in H(\eta)$ of type 2 , assume that all these elements $e_{s s^{\prime}}^{i} \cdot h$ are in $\widetilde{H}(\eta)$.

Then there exists a natural surjective map $\kappa: \widetilde{H}(\eta) \rightarrow H(\eta)$. For any subset $G \subset H(\eta)$, define a finite subset $\widetilde{G} \subset \widetilde{H}(\eta)$ by

$$
\widetilde{G}=\{h \mid h \in \widetilde{H}(\eta), \kappa(h) \in G\}
$$

2.8 Suppose A is a C^{*}-algebra, $B \subset A$ is a subalgebra, $F \subset A$ is a finite subset, and let $\varepsilon>0$. If for each $f \in F$, there exists an element $g \in B$ such that $\|f-g\|<\varepsilon$, then we say that F is approximately contained in B to within ε, and denote this by $F \subset_{\varepsilon} B$.

The following is clear by the standard techniques of spectral theory [1].

Lemma 2.3 Let $A=\underset{\longrightarrow}{\lim }\left(A_{n}, \phi_{m, n}\right)$ be an inductive limit of C^{*}-algebras A_{n} with morphisms $\phi_{m, n}: A_{m} \rightarrow \overrightarrow{A_{n}}$. Then A has $R R(A)=0$ if and only if for any finite selfadjoint subset $F \subset A_{m}$ and $\varepsilon>0$, there exists $n \geq m$ such that

$$
\phi_{m, n}(F) \subset_{\varepsilon}\left\{f \in\left(A_{n}\right)_{s a} \mid f \text { has finite spectrum }\right\} .
$$

Lemma 2.4 ([13, Lemma 2.3]) Let $A \in \mathcal{C}$, for any $1>\varepsilon>0$ and $\eta=\frac{1}{m}$ where $m \in \mathbb{N}_{+}$. If $\phi, \psi: A \rightarrow M_{n}(\mathbb{C})$ are unital homomorphisms with the condition that $\operatorname{Eig}(\phi(h))$ and $\operatorname{Eig}(\psi(h))$ can be paired to within ε one by one for all $h \in H(\eta)$, then for each $i \in\{1,2, \ldots, l\}$, then there exists $X_{i} \subset \operatorname{Sp} \phi \cap(0,1)_{i}, X_{i}^{\prime} \subset \operatorname{Sp} \psi \cap(0,1)_{i}$ with $X_{i} \supset$ $\operatorname{Sp} \phi \cap[\eta, 1-\eta]_{i}, X_{i}^{\prime} \supset \operatorname{Sp} \psi \cap[\eta, 1-\eta]_{i}$ such that X_{i} and X_{i}^{\prime} can be paired to within 2η one by one.

3 Main Results

In this section, we will prove the following theorem.
Theorem 3.1 Let $A=\underline{\longrightarrow}\left(A_{n}, \phi_{m, n}\right)$ be an inductive limit of Elliott-Thomsen algebras. Then one can write $A=\xrightarrow[\longrightarrow]{\lim }\left(B_{n}, \psi_{m, n}\right)$, where all the B_{n} are Elliott-Thomsen algebras, and all the homomorphisms $\psi_{m, n}$ are injective.

Lemma 3.2 ([10]) Let $Y \subset[0,1]$ be a closed subset containing uncountably many points. Then there exists a surjective non-decreasing continuous map $\rho: Y \rightarrow[0,1]$.
3.1 Let $A=A\left(F_{1}, F_{2}, \varphi_{0}, \varphi_{1}\right) \in \mathcal{C}$ be minimal. The topology base on

$$
\operatorname{Sp}(A)=\left\{\theta_{1}, \theta_{2}, \ldots, \theta_{p}\right\} \cup 山_{i=1}^{l}(0,1)_{i}
$$

at each point θ_{j} is given by

$$
\left\{\theta_{j}\right\} \cup \underset{\left\{i \mid \alpha_{i j} \neq 0\right\}}{\amalg}(0, \varepsilon)_{i} \cup \underset{\left\{i \mid \beta_{i j} \neq 0\right\}}{\amalg}(1-\varepsilon, 1)_{i} .
$$

In general, this is a non-Hausdorff topology.
For closed subset $Y \subset \operatorname{Sp}(A)$ and $\delta>0$, we will construct a space Z and a continuous surjective map $\rho: Y \rightarrow Z$ such that $Z \cap(0,1)_{i}$ is a union of finitely many intervals for each $i \in\{1,2, \ldots, l\}$, and $\operatorname{dist}(\rho(y), y)<\delta$ for all $y \in Y$. We can find a similar discussion in an old version of [8].

For any closed subset $Y \subset \operatorname{Sp}(A)$, define index sets

$$
\begin{aligned}
J_{Y} & =\left\{j \mid \theta_{j} \in Y\right\}, \\
L_{0, Y} & =\left\{i \mid(0,1)_{i} \cap Y=\varnothing\right\}, \\
L_{1, Y} & =\left\{i \mid(0,1)_{i} \subset Y\right\}, \\
L_{l, Y} & =\left\{i \mid i \notin L_{1, Y} \text { and } \exists s>0 \text { such that }(0, s]_{i} \subset Y\right\}, \\
L_{l l, Y} & =\left\{i \mid i \notin L_{1, Y} \cup L_{l, Y} \text { and } \exists\left\{y_{n}\right\}_{n=1}^{\infty} \subset(0,1)_{i} \cap Y \text { such that } \lim _{n \rightarrow \infty} y_{n}=0_{i}\right\},
\end{aligned}
$$

$$
\begin{aligned}
L_{r, Y} & =\left\{i \mid i \notin L_{1, Y} \text { and } \exists t>0 \text { such that }[1-t, 1)_{i} \subset Y\right\}, \\
L_{r r, Y} & =\left\{i \mid i \notin L_{1, Y} \cup L_{r, Y} \text { and } \exists\left\{y_{n}\right\}_{n=1}^{\infty} \subset(0,1)_{i} \cap Y \text { such that } \lim _{n \rightarrow \infty} y_{n}=1_{i}\right\}, \\
L_{a, Y} & =\left\{i \mid i \notin L_{0, Y} \cup L_{1, Y}\right\} .
\end{aligned}
$$

Then we have

$$
\begin{aligned}
& L_{l, Y} \cup L_{l l, Y} \cup L_{r, Y} \cup L_{r r, Y} \subset L_{a, Y}, \\
& L_{0, Y} \cup L_{1, Y} \cup L_{a, Y}=\{1,2, \ldots, l\} .
\end{aligned}
$$

Consider $Y \subset \operatorname{Sp}(A)$; if $i \in L_{1, Y} \cup L_{l, Y} \cup L_{l l, Y}$, assume that $(0, i) \in Y$ and if $i \in L_{1, Y} \cup L_{r, Y} \cup L_{r r, Y}$, assume that $(1, i) \in Y$. For $\delta>0$, there exists $m \in \mathbb{N}_{+}$such that $\frac{1}{m}<\frac{\delta}{2}$. Denote $Y_{i}=Y \cap[0,1]_{i}, i \in\{1,2, \ldots, l\}$, then we can construct a collection of finitely many points $\widehat{Y}_{i}=\left\{y_{1}, y_{2}, \ldots\right\} \subset Y_{i}$ as below.
(a) If $i \in L_{0, Y}$, let $\widehat{Y}_{i}=\varnothing$.
(b) If $i \in L_{1, Y}$, let $\widehat{Y}_{i}=\left\{(0, i),\left(\frac{1}{m}, i\right), \ldots,(1, i)\right\}$.
(c) For each $i \in L_{a, Y}$, consider the set $Y_{i} \cap\left[\frac{r-1}{m}, \frac{r}{m}\right]_{i}$. If $Y_{i} \cap\left[\frac{r-1}{m}, \frac{r}{m}\right]_{i} \neq \varnothing$, then set

$$
\begin{aligned}
& x_{i}^{r}=\min \left\{x \left\lvert\, x \in Y_{i} \cap\left[\frac{r-1}{m}, \frac{r}{m}\right]_{i}\right.\right\}, \\
& \widetilde{x}_{i}^{r}=\max \left\{x \left\lvert\, x \in Y_{i} \cap\left[\frac{r-1}{m}, \frac{r}{m}\right]_{i}\right.\right\} .
\end{aligned}
$$

Assume that $Y_{i} \cap\left[\frac{r-1}{m}, \frac{r}{m}\right]_{i} \neq \varnothing$ if and only if $r \in\left\{r_{1}, r_{2}, \ldots, r_{\bullet}\right\} \subset\{1,2, \ldots, m\}$. Then we have a finite set

$$
\left\{x_{i}^{r_{1}}, \widetilde{x}_{i}^{r_{1}}, x_{i}^{r_{2}}, \ldots, x_{i}^{r_{\bullet}}, \widetilde{x}_{i}^{\bullet \bullet}\right\}
$$

Some of the points may be the same; we can delete the extra repeating points and denote the result by \widehat{Y}_{i}.

Denote $\widehat{Y}=\coprod_{i=1}^{l} \widehat{Y}_{i}$. Two points $\left(y_{s}, i\right),\left(y_{t}, i^{\prime}\right) \in \widehat{Y}$ are said to be adjacent if $\left(y_{s}, i\right),\left(y_{t}, i^{\prime}\right)$ are in the same interval (the case $\left.i=i^{\prime}\right)$, and inside the open interval $\left(y_{s}, y_{t}\right)_{i}$, there is no other point in \widehat{Y}. Note that if $\left\{\left(y_{s}, i\right),\left(y_{t}, i\right)\right\}$ is an adjacent pair and $\left(y_{s}, y_{t}\right)_{i} \cap Y \neq \varnothing$, then $\operatorname{dist}\left(\left(y_{s}, i\right),\left(y_{t}, i\right)\right)<\delta$, and for any $y \in Y \cap \coprod_{i=1}^{l}[0,1]_{i}$, there exists $y^{\prime} \in \widehat{Y}$ such that $\operatorname{dist}\left(y, y^{\prime}\right)<\delta$.

It is obvious that Y_{i} can be written as the union of $\left[y_{s}, y_{t}\right]_{i} \cap Y_{i}$, where $\left\{\left(y_{s}, i\right)\right.$, $\left.\left(y_{t}, i\right)\right\}$ runs over all adjacent pairs. We will define a space Z and a continuous surjective map $\rho: Y \rightarrow Z$ as follows (see also [10]).

First, $Y \cap \operatorname{Sp}\left(F_{1}\right) \subset Z$ and Z contains a collection of finitely many points $P(Z)=$ $\left\{z_{1}, z_{2}, \ldots\right\}$, each $\left(z_{s}, i\right) \in P(Z)$ corresponding to one and only one $\left(y_{s}, i\right) \in \widehat{Y}$. To define the edges of Z, we consider an adjacent pair $\left\{\left(y_{s}, i\right),\left(y_{t}, i\right)\right\}$. We have the following two cases.

Case 1: If $\left[y_{s}, y_{t}\right]_{i} \cap Y$ has uncountably many points, then we let Z contain $\left[z_{s}, z_{t}\right]_{i}$, the line segment connecting $\left(z_{s}, i\right),\left(z_{t}, i\right)$. By Lemma 3.2, there exists a non-decreasing surjective map $\rho:\left[y_{s}, y_{t}\right]_{i} \cap Y \rightarrow\left[z_{s}, z_{t}\right]_{i}$ such that $\rho\left(\left(y_{s}, i\right)\right)=\left(z_{s}, i\right), \rho\left(\left(y_{t}, i\right)\right)=$ $\left(z_{t}, i\right)$. (Here both $\left[y_{s}, y_{t}\right]_{i}$ and $\left[z_{s}, z_{t}\right]_{i}$ are identified with interval $[0,1]$.)
Case 2: If $\left[y_{s}, y_{t}\right]_{i} \cap Y$ has at most countably many points, then it is defined that there is no edge connecting $\left(z_{s}, i\right)$ and $\left(z_{t}, i\right)$. Since $\left[y_{s}, y_{t}\right]_{i} \cap Y$ is a countable closed subset
of $\left[y_{s}, y_{t}\right]_{i}$, there exists an open interval $\left(y_{s}^{\prime}, y_{t}^{\prime}\right)_{i} \subset\left(y_{s}, y_{t}\right)_{i}$ such that $\left(y_{s}^{\prime}, y_{t}^{\prime}\right)_{i} \cap Y=$ \varnothing. Let $\rho:\left[y_{s}, y_{t}\right]_{i} \cap Y \rightarrow\left\{\left(z_{s}, i\right),\left(z_{t}, i\right)\right\}$ be defined by

$$
\rho(y)= \begin{cases}\left(z_{s}, i\right) & \text { if } y \in\left[y_{s}, y_{s}^{\prime}\right]_{i} \cap Y \\ \left(z_{t}, i\right) & \text { if } y \in\left[y_{t}^{\prime}, y_{t}\right]_{i} \cap Y\end{cases}
$$

By the above procedure for all adjacent pairs, we obtain a space Z such that $Z \cap(0,1)_{i}$ is a union of finitely many intervals for each $i \in\{1,2, \ldots, l\}$.

Notice that ρ is defined on each $\left[y_{s}, y_{t}\right]_{i} \cap Y$ piece by piece, and $\rho\left(\left(y_{s}, i\right)\right)=\left(z_{s}, i\right)$ for each s, i. The definitions of ρ on different pieces are consistent. Then we obtain a surjective map $\rho: Y \cap(0,1)_{i} \rightarrow Z \cap(0,1)_{i}$. Let $\rho: Y \cap \operatorname{Sp}\left(F_{1}\right) \rightarrow Z \cap \operatorname{Sp}\left(F_{1}\right)$ be defined by $\rho\left(\theta_{j}\right)=\theta_{j}$ for all $j \in J$.

Then we obtain a surjective map $\rho: Y \rightarrow Z$, and we have $\operatorname{dist}(\rho(y), y)<\delta$ for all $y \in Y$.
3.2 For any closed subset $X \subset \operatorname{Sp}(A)$, denote that $\left.A\right|_{X}=\left\{\left.f\right|_{X} \mid f \in A\right\}$. For the ideal $I \subset A$, there exists a closed subset $Y \subset \operatorname{Sp}(A)$ such that $I=\left\{f \in A|f|_{Y}=0\right\}$. Then $A /\left.I \cong A\right|_{Y}$.

Lemma 3.3 Let $A \in \mathcal{C}$ be minimal, let $\varepsilon>0, Y \subset \operatorname{Sp}(A)$ be a closed subset, and let $\left.G \subset A\right|_{Y}$ be a finite subset. Suppose that $\delta>0$ satisfies that $\operatorname{dist}\left(y, y^{\prime}\right)<\delta$ implies that $\left\|g(y)-g\left(y^{\prime}\right)\right\|<\varepsilon$ for all $g \in G$. Then there exists a closed subset $Z \subset \operatorname{Sp}(A)$ and a surjective map $\rho: Y \rightarrow Z$ such that $\left.A\right|_{Z} \in \mathcal{C}$ and $\left.G \subset_{\varepsilon} A\right|_{Z}$, where $\left.A\right|_{Z}$ is considered as a subalgebra of $\left.A\right|_{Y}$ by the inclusion $\rho^{*}:\left.\left.A\right|_{Z} \rightarrow A\right|_{Y}$.

Proof For a closed subset $Y \subset \operatorname{Sp}(A)$ and $\delta>0$, we can construct Z and ρ as in 3.1. The surjective map $\rho: Y \rightarrow Z$ induces a homomorphism

$$
\begin{gathered}
\rho^{*}:\left.\left.A\right|_{Z} \longrightarrow A\right|_{Y}, \\
\left(\rho^{*}(g)\right)(y)=g(\rho(y)), \quad \forall y \in Y .
\end{gathered}
$$

Then we have

$$
\left\|\rho^{*}(g)-g\right\|=\max _{y \in Y}\|g(y)-g(\rho(y))\|<\varepsilon
$$

for any $g \in G$, and $\left.G \subset_{\varepsilon} A\right|_{Z}$.
We need to verify $\left.A\right|_{Z} \in \mathcal{C}$. Defining index sets for Z, we will have

$$
\begin{aligned}
J_{Z} & =J_{Y}, & L_{0, Z} & =L_{0, Y}, \\
L_{1, Z} & \supset L_{1, Y}, & L_{l l, Z} & =L_{r r, Z}=\varnothing
\end{aligned}
$$

We will define positive numbers s_{i} for all $i \in L_{l, Z}$, positive numbers t_{i} for all $i \in L_{r, Z}$, and positive numbers $a_{i}<b_{i}$ for all $i \in L_{a, Z}$ to satisfy that $s_{i}<a_{i}<b_{i}$ (if $i \in L_{l, Z}$) and $a_{i}<b_{i}<t_{i}$ (if $\left.i \in L_{r, Z}\right)$ as below.

For $i \in L_{l, Z}$, let $s_{i}=\max \left\{s \mid(0, s]_{i} \subset Z\right\}$. For $i \in L_{r, Z}$, let $t_{i}=\min \left\{t \mid[t, 1)_{i} \subset Z\right\}$. Note that if $i \in L_{l, Z} \cap L_{r, Z}$, then $s_{i}<t_{i}$.

For $i \in L_{l, Z}$, choose a_{i} with $s_{i}<a_{i}<1$ such that $\left(s_{i}, a_{i}\right)_{i} \cap Y=\varnothing$. For $i \in L_{a, Z} \backslash L_{l, Z}$, choose a_{i} with $0<a_{i}<\delta$ such that $\left(0, a_{i}\right)_{i} \cap Y=\varnothing$ (we do not need to define s_{i} in this case). Evidently the numbers a_{i} satisfies that $a_{i}<t_{i}$ provided $i \in L_{r, Z}$.

For $i \in L_{r, Z}$, choose b_{i} with $a_{i}<b_{i}<t_{i}$ such that $\left(b_{i}, t_{i}\right)_{i} \cap Y=\varnothing$. For $i \in$ $L_{a, Z} \backslash L_{r, Z}$, choose b_{i} with $b_{i}>1-\delta$ such that $\left(b_{i}, 1\right)_{i} \cap Y=\varnothing$ (we do not need to define t_{i} in this case).

Define closed subsets of $\operatorname{Sp}(A)$ as below:

$$
\begin{aligned}
& Z_{1}=\underset{i \in L_{a, Z}}{\amalg}\left[a_{i}, b_{i}\right]_{i}, \\
& Z_{2}=\left\{\theta_{j}, j \in J\right\} \cup \underset{i \in L_{l, Z}}{\amalg}(0,1)_{i} \cup \underset{i \in L_{l, Z}}{\amalg}\left(0, s_{i}\right]_{i} \cup \underset{i \in L_{r, Z}}{\amalg}\left[t_{i}, 1\right)_{i} .
\end{aligned}
$$

Then $Z_{1} \cap Z_{2}=\varnothing$ and $Z \subset Z_{1} \cup Z_{2}$, we have $\left.\left.\left.A\right|_{Z} \cong A\right|_{Z_{2}} \oplus A\right|_{Z_{1}}$, where $\left.A\right|_{Z_{1}}$ is a direct sum of matrices over interval algebras or matrix algebras.

Now we consider $\left.A\right|_{Z_{2}}$, for each $i \in L_{l, Z}$, we denote $F_{2}^{i}=M_{l_{i}}(\mathbb{C})$ by $F_{2, l}^{i}$, and for each $i \in L_{r, Z}$, we denote $F_{2}^{i}=M_{l_{i}}(\mathbb{C})$ by $F_{2, r}^{i}$. Let

$$
\begin{aligned}
& E_{1}=\underset{j \in J_{Z}}{\oplus} F_{1}^{j} \oplus \underset{i \in L_{l, Z}}{\oplus} F_{2, l}^{i} \oplus \underset{i \in L_{r, Z}}{\oplus} F_{2, r}^{i} \\
& E_{2}=\underset{i \in L_{1, z}}{\oplus} F_{2}^{i} \oplus \underset{i \in L_{l, z}}{\oplus} F_{2, l}^{i} \oplus \underset{i \in L_{r, Z}}{\oplus} F_{2, r}^{i} .
\end{aligned}
$$

Write $a \in F_{1}$ by $a=\left(a\left(\theta_{1}\right), a\left(\theta_{2}\right), \ldots, a\left(\theta_{p}\right)\right)$. Define $\pi: F_{1} \rightarrow F_{1}$ by

$$
\pi(a)=a^{\prime}=\left(a^{\prime}\left(\theta_{1}\right), a^{\prime}\left(\theta_{2}\right), \ldots, a^{\prime}\left(\theta_{p}\right)\right)
$$

where

$$
a^{\prime}\left(\theta_{j}\right)= \begin{cases}a\left(\theta_{j}\right) & \text { if } j \in J_{Z} \\ 0_{k_{j}} & \text { if } j \notin J_{Z}\end{cases}
$$

Then there exist a natural inclusion ι and a projection ι^{*} such that

$$
\begin{aligned}
& \iota \circ \iota^{*}=\pi: F_{1} \rightarrow F_{1}, \\
& \iota^{*} \circ \iota=\mathrm{id}: \underset{j \in J_{Z}}{\oplus} F_{1}^{j} \longrightarrow \underset{j \in J_{Z}}{\oplus} F_{1}^{j} .
\end{aligned}
$$

Then we have if $i \in L_{1, Z} \cup L_{l, Z}$, then $\varphi_{0}^{i}(a)=\varphi_{0}^{i}(\pi(a))$ for any $a \in F_{1}$, and if $i \in$ $L_{1, Z} \cup L_{r, Z}$, then $\varphi_{1}^{i}(a)=\varphi_{1}^{i}(\pi(a))$ for any $a \in F_{1}$.

Let $\psi_{0}: E_{1} \rightarrow E_{2}$ be defined as follows:
(1) For the part $\oplus_{j \in J_{Z}} F_{1}^{j}$ in E_{1}, the partial map of ψ_{0} is defined to be

$$
\underset{i \in L_{l, z}}{ } \varphi_{0}^{i} \circ \iota \oplus \underset{i \in L_{l, Z}}{\oplus} \varphi_{0}^{i} \circ \iota \oplus \underset{i \in L_{r, Z}}{\oplus} 0
$$

(2) For the part $\oplus_{i \in L_{l, Z}} F_{2, l}^{i}$ in E_{1}, the partial map of ψ_{0} is zero.
(3) For the part $\oplus_{i \in L_{r, Z}} F_{2, r}^{i}$ in E_{1}, the partial map of ψ_{0} is defined to be

$$
\underset{i \in L_{1, Z}}{\oplus} 0 \oplus \underset{i \in L_{l, Z}}{\oplus} 0 \oplus \underset{i \in L_{r, Z}}{\oplus} \mathrm{id}_{i}
$$

where $\operatorname{id}_{i}\left(i \in L_{r, Z}\right)$ is the identity map from $M_{l_{i}}(\mathbb{C})$ to $M_{l_{i}}(\mathbb{C})$.
Similarly, let $\psi_{1}: E_{1} \rightarrow E_{2}$ be defined as follows:
(1) For the part $\oplus_{j \in J_{Z}} F_{1}^{j}$ in E_{1}, the partial map of ψ_{1} is defined to be

$$
\underset{i \in L_{1, Z}}{\oplus} \varphi_{1}^{i} \circ \iota \oplus \underset{i \in L_{l, Z}}{\oplus} 0 \oplus \underset{i \in L_{r, Z}}{\oplus} \varphi_{1}^{i} \circ \iota
$$

(2) For the part $\oplus_{i \in L_{l, Z}} F_{2, l}^{i}$ in E_{1}, the partial map of ψ_{0} is defined to be

$$
\underset{i \in L_{1, Z}}{\oplus} 0 \oplus \underset{i \in L_{l, Z}}{\oplus} i d_{i} \oplus \underset{i \in L_{r, Z}}{\oplus} 0
$$

where $\operatorname{id}_{i}\left(i \in L_{l, Z}\right)$ is the identity map from $M_{l_{i}}(\mathbb{C})$ to $M_{l_{i}}(\mathbb{C})$.
(3) For the part $\oplus_{i \in L_{r, Z}} F_{2, r}^{i}$ in E_{1}, the partial map of ψ_{0} is zero.

Evidently, $\left.A\right|_{Z_{2}} \cong B\left(E_{1}, E_{2}, \psi_{0}, \psi_{1}\right) \in \mathcal{C}$; then we have $\left.A\right|_{Z} \in \mathcal{C}$.
We will apply some techniques from [14] and obtain some perturbation results.
Lemma 3.4 Let $A=A\left(F_{1}, F_{2}, \varphi_{0}, \varphi_{1}\right) \in \mathcal{C}$ be minimal, $B=M_{n}(\mathbb{C})$, and let $F \subset A$ be a finite subset. Given $1>\varepsilon>0$, there exist $\eta, \varepsilon^{\prime}>0$ such that, if unital homomorphisms $\phi, \psi: A \rightarrow B$ satisfy the conditions
(i) $\operatorname{Sp} \phi=\operatorname{Sp} \psi$,
(ii) $\|\phi(h)-\psi(h)\|<\varepsilon^{\prime}$ for all $h \in H(\eta) \cup \widetilde{H}(\eta)$,
then there is a continuous path of homomorphisms $\phi_{t}: A \rightarrow B$ such that $\phi_{0}=\phi, \phi_{1}=\psi$, and $\left\|\phi_{t}(f)-\phi(f)\right\|<\varepsilon$ for all $f \in F, t \in[0,1]$.

Proof Without loss of generality, we can suppose that for each $f \in F,\|f\| \leq 1$. Since $F \subset A$ is a finite set, there exists an integer $m>0$ such that for any $\operatorname{dist}\left(x, x^{\prime}\right)<\frac{2}{m}$, $\left\|f(x)-f\left(x^{\prime}\right)\right\|<\frac{\varepsilon}{2}$ holds for all $f \in F$, and ε^{\prime} will be specified later. Set $\eta=\frac{1}{2 m n}$; then we have finite subsets $H(\eta)$ and $\widetilde{H}(\eta)$.

There exist unitaries U, V such that

$$
\phi(f, a)=U^{*} \phi^{\prime}(f, a) U, \quad \psi(f, a)=V^{*} \phi^{\prime}(f, a) V
$$

Here we denote $\phi^{\prime}: A \rightarrow B$ by

$$
\phi^{\prime}(f, a)=\operatorname{diag}\left(a\left(\theta_{1}\right)^{\sim t_{1}}, \ldots, a\left(\theta_{p}\right)^{\sim t_{p}}, f\left(x_{1}\right), f\left(x_{2}\right), \ldots, f\left(x_{\bullet}\right)\right),
$$

where $x_{1}, x_{2}, \ldots \in \coprod_{i=1}^{l}(0,1)_{i}$.
Divide $(0,1)_{i}$ into $2 m n$ intervals of equal length $\frac{1}{2 m n}$. For each sub-interval $\left(\frac{k-1}{m}, \frac{k}{m}\right)_{i}, k=1,2, \ldots, m$, there exist an integer a_{k}^{i} such that

$$
\left(a_{k}^{i} \eta, a_{k}^{i} \eta+2 \eta\right)_{i} \subset\left(\frac{k-1}{m}, \frac{k}{m}\right)_{i} \quad \text { and } \quad\left(a_{k}^{i} \eta, a_{k}^{i} \eta+2 \eta\right)_{i} \cap \operatorname{Sp} \phi=\varnothing .
$$

Then we have

$$
\operatorname{Sp} \phi^{\prime}=\operatorname{Sp} \phi^{\prime} \cap \bigsqcup_{i=1}^{l}\left(\left[0, a_{1}^{i} \eta\right]_{i} \cup\left[a_{m}^{i} \eta+2 \eta, 1\right]_{i} \cup \bigcup_{k=1}^{m-1}\left[a_{k}^{i} \eta+2 \eta, a_{k+1}^{i} \eta\right]_{i}\right) .
$$

For each $X_{j}=\left\{\theta_{j}\right\}$ and $W_{j} \triangleq \amalg_{\left\{i \mid \alpha_{i j} \neq 0\right\}}\left[0, a_{1}^{i} \eta\right]_{i} \cup \bigsqcup_{\left\{i \mid \beta_{i j} \neq 0\right\}}\left[a_{m}^{i} \eta+2 \eta, 1\right]_{i}$, we can define h_{j} corresponding to $X_{j} \cup W_{j}$ for all $j \in\{1,2, \ldots, p\}$, and we can define h_{k}^{i} corresponding to $\left[a_{k}^{i} \eta+2 \eta, a_{k+1}^{i} \eta\right]_{i}$ for each $i \in\{1,2, \ldots, l\}, k \in\{1,2, \ldots, m-1\}$.

Denote

$$
G=\left\{h_{1}, h_{2}, \ldots, h_{p}, h_{1}^{1}, \ldots, h_{m-1}^{1}, \ldots, h_{1}^{l}, \ldots, h_{m-1}^{l}\right\},
$$

We will construct \widetilde{G} as in 2.7 :

$$
\widetilde{G}=\{h \mid h \in \widetilde{H}(\eta), \kappa(h) \in G\} .
$$

To define $\phi^{\prime \prime}: A \rightarrow B$, change all the elements

$$
\begin{aligned}
& x \in \operatorname{Sp} \phi^{\prime} \cap\left(0, a_{1}^{i} \eta\right]_{i} \quad \text { to } \quad 0_{i} \sim\left\{\theta_{1}^{\sim \alpha_{i 1}}, \ldots, \theta_{p}^{\sim \alpha_{i p}}\right\}, \\
& x \in \operatorname{Sp} \phi^{\prime} \cap\left(a_{m}^{i} \eta+2 \eta, 1\right)_{i} \quad \text { to } \quad 1_{i} \sim\left\{\theta_{1}^{\sim \beta_{i 1}}, \ldots, \theta_{p}^{\sim \beta_{i p}}\right\},
\end{aligned}
$$

change all the elements $x \in \operatorname{Sp} \phi^{\prime} \cap\left[a_{k-1}^{i} \eta+2 \eta, a_{k}^{i} \eta\right]_{i}$ to $\left(\frac{k-1}{m}, i\right) \in\left[a_{k-1}^{i} \eta+2 \eta, a_{k}^{i} \eta\right]_{i}$ for each $i \in\{1,2, \ldots, l\}, k \in\{2, \ldots, m\}$. Set $\omega_{k}^{i}=\#\left(\operatorname{Sp} \phi^{\prime} \cap\left[a_{k-1}^{i} \eta+2 \eta, a_{k}^{i} \eta\right]_{i}\right)$.

There exists a unitary W such that

$$
W \phi^{\prime \prime}(f) W^{*}=\left(\begin{array}{rccc}
a\left(\theta_{1}\right) \otimes I_{t_{1}^{\prime}(x)} & & \\
\ddots & & \\
& a\left(\theta_{p}\right) \otimes I_{t_{p}^{\prime}(x)} & \\
& f\left(\left(\frac{1}{m}, 1\right)\right) \otimes I_{\omega_{1}^{1}} & \\
& \ddots & f\left(\left(\frac{m-1}{m}, l\right)\right) \otimes I_{\omega_{m}^{l}}
\end{array}\right) .
$$

From the construction of $\phi^{\prime \prime}$, we have

$$
\phi^{\prime}(h)=\phi^{\prime \prime}(h), \quad \forall h \in G \cup \widetilde{G} .
$$

Let $P_{j}=W \phi^{\prime}\left(h_{j}\right) W^{*}, P_{k}^{i}=W \phi^{\prime}\left(h_{k}^{i}\right) W^{*}$; then $P_{1}, \ldots, P_{p}, P_{1}^{1}, \ldots, P_{1}^{l}, \ldots, P_{m-1}^{l}$ are projections; some of them may be zero. We rewrite the nonzero ones as $P_{1}, \ldots, P_{n^{\prime}}$. Note that $n^{\prime} \leq n$, and we can write

$$
P_{1}=\left(\begin{array}{cccc}
I_{r_{1}} & & & \\
& 0 & & \\
& & \ddots & \\
& & & 0
\end{array}\right), \ldots, P_{n^{\prime}}=\left(\begin{array}{cccc}
0 & & & \\
& 0 & & \\
& & \ddots & \\
& & & I_{r_{n^{\prime}}}
\end{array}\right) .
$$

Since

$$
\|\phi(h)-\psi(h)\|<\varepsilon^{\prime}, \quad \forall h \in H(\eta) \cup \widetilde{H}(\eta)
$$

we have the inequality

$$
\left\|U^{*} W^{*} P_{r} W U-V^{*} W^{*} P_{r} W V\right\|<\varepsilon^{\prime}, \quad r=1,2, \ldots, n^{\prime}
$$

Set $\widetilde{W}=W V U^{*} W^{*}$. Let us write the unitary $\widetilde{W}=\left(\begin{array}{cc}w_{11} & w_{1 *} \\ w_{* 1} & w_{* *}\end{array}\right)$, where the size of w_{11} is the same as the rank of P_{1}. Then we have $\left\|w_{1 *}\right\|<\varepsilon^{\prime}$ and $\left\|w_{* 1}\right\|<\varepsilon^{\prime}$. Applying this computation to $P_{2}, \ldots, P_{n^{\prime}}$, we then have

$$
\left\|\widetilde{W}-\left(\begin{array}{ccc}
w_{11} & & \\
& \ddots & \\
& & w_{n^{\prime} n^{\prime}}
\end{array}\right)\right\|<n^{\prime 2} \varepsilon^{\prime} \leq n^{2} \varepsilon^{\prime}
$$

Writing $T=\left(\begin{array}{ccc}w_{11} & & \\ & \ddots & \\ & & w_{n^{\prime} n^{\prime}}\end{array}\right)$, T is invertible if $n^{2} \varepsilon^{\prime}<1$. There is a unitary S such that $T=\left|T^{*}\right| S$, so

$$
\left\|\widetilde{W} S^{*}-\left|T^{*}\right|\right\|<n^{2} \varepsilon^{\prime}
$$

Since $\widetilde{W} S^{*}$ is a unitary and $\left|T^{*}\right|$ is close to I to within $n^{2} \varepsilon^{\prime}$, we have

$$
\left\|\widetilde{W} S^{*}-I\right\| \leq\left\|\widetilde{W} S^{*}-\left|T^{*}\right|\right\|+\left\|\left|T^{*}\right|-I\right\|<2 n^{2} \varepsilon^{\prime}
$$

Let $R_{t}\left(t \in\left[\frac{2}{3}, 1\right]\right)$ be a unitary path in a $2 n^{2} \varepsilon^{\prime}$ neighbourhood of I such that $R_{\frac{2}{3}}=\widetilde{W} S^{*}$ and $R_{1}=I$.

Since
$\left\|U^{*} W^{*}\left(W \phi^{\prime}(h) W^{*}\right) W U-V^{*} W^{*}\left(W \phi^{\prime}(h) W^{*}\right) W V\right\|<\varepsilon^{\prime}, \quad \forall h \in H(\eta) \cup \widetilde{H}(\eta)$.
Then we have
$\left\|U^{*} W^{*}\left(W \phi^{\prime}(h) W^{*}\right) W U-V^{*} W^{*} R_{t}\left(W \phi^{\prime}(h) W^{*}\right) R_{t}^{*} W V\right\|<4 n^{2} \varepsilon^{\prime}+\varepsilon^{\prime}<5 n^{2} \varepsilon^{\prime}$,
for all $h \in H(\eta) \cup \widetilde{H}(\eta), t \in\left[\frac{2}{3}, 1\right]$. When $t=\frac{2}{3}$, we have

$$
\left\|S\left(W \phi^{\prime}(h) W^{*}\right)-\left(W \phi^{\prime}(h) W^{*}\right) S\right\|<5 n^{2} \varepsilon^{\prime}, \quad \forall h \in H(\eta) \cup \widetilde{H}(\eta)
$$

For any $h \in G \cup \widetilde{G}$, we have $\phi^{\prime}(h)=\phi^{\prime \prime}(h)$. Then

$$
\left\|S\left(W \phi^{\prime \prime}(h) W^{*}\right)-\left(W \phi^{\prime \prime}(h) W^{*}\right) S\right\|<5 n^{2} \varepsilon^{\prime}, \quad \forall h \in G \cup \widetilde{G}
$$

Recall that S has diagonal form $S=\operatorname{diag}\left(S_{1}, \ldots, S_{n^{\prime}}\right)$; write $S=\left(w_{s t}^{r}\right)$ as

$$
S=\left(\begin{array}{ccccc}
\left(\begin{array}{ccc}
w_{11}^{1} & \cdots & w_{1 r_{1}}^{1} \\
\vdots & \ddots & \vdots \\
w_{r_{1} 1}^{1} & \cdots & w_{r_{1} r_{1}}^{1}
\end{array}\right) & & & & \\
& & & \ddots & \\
& & & & \left(\begin{array}{ccc}
w_{11}^{n^{\prime}} & \cdots & w_{1 r_{n^{\prime}}}^{n^{\prime}} \\
\vdots & \ddots & \vdots \\
w_{r_{n}^{\prime} 1}^{n^{\prime}} & \cdots & w_{r_{n^{\prime}} r_{n^{\prime}}}^{n^{\prime}}
\end{array}\right)
\end{array}\right) .
$$

Then the matrix $w_{s t}^{r}$ commutes with the matrix units to within $5 n^{2} \varepsilon^{\prime}$, so there exist $d_{s t}^{r} \in \mathbb{C}$ such that

$$
\left\|w_{s t}^{r}-d_{s t}^{r} I_{s t}^{r}\right\|<5 n^{4} \varepsilon^{\prime}
$$

where $I_{s t}^{r}$ is the identity matrix with suitable size. Write $D=\left(d_{s t}^{r} I_{s t}^{r}\right)$ as

$$
\left.\left(\begin{array}{cccccc}
\left(\begin{array}{ccc}
d_{11}^{1} I_{11}^{1} & \cdots & d_{1 r_{1}}^{1} I_{1 r_{1}}^{1} \\
\vdots & \ddots & \vdots \\
d_{r_{1} 1}^{1} I_{r_{1} 1}^{1} & \cdots & d_{r_{1} r_{1}}^{1} I_{r_{1} r_{1}}^{1}
\end{array}\right) & & & & \\
& & & \ddots & & \\
& & & & \\
& & & & \\
& & & & \\
d_{11}^{n^{\prime}} I_{11}^{n^{\prime}} & \cdots & d_{1 r_{n}^{\prime}}^{n^{\prime}} I_{1 r_{n}^{\prime}}^{n^{\prime}} \\
\vdots & \ddots & \vdots \\
d_{r_{n}^{\prime} 1}^{n_{1}^{\prime}} I_{r_{n}^{\prime} 1}^{n^{\prime}} & \cdots & d_{r_{n^{\prime}} r_{n^{\prime}}^{\prime}}^{n^{\prime}} I_{r_{n^{\prime}} r_{n^{\prime}}}^{n^{\prime}}
\end{array}\right)\right) .
$$

Then we have

$$
\begin{aligned}
\|S-D\| & <5 n^{6} \varepsilon^{\prime} \\
D\left(W \phi^{\prime \prime}(f) W^{*}\right) & =\left(W \phi^{\prime \prime}(f) W^{*}\right) D, \quad \forall f \in A .
\end{aligned}
$$

Hence,
$\left\|D\left(W \phi^{\prime}(f) W^{*}\right)-\left(W \phi^{\prime}(f) W^{*}\right) D\right\|<2\|D\| \varepsilon^{\prime}<2\left(1+5 n^{6} \varepsilon^{\prime}\right) \varepsilon^{\prime}<12 n^{6} \varepsilon^{\prime}, \quad \forall f \in F$.
Decompose $D=\left|D^{*}\right| O$ in the commutant of $W \phi^{\prime \prime}(f) W^{*}$. Let $R_{t}^{\prime}\left(t \in\left[\frac{1}{3}, \frac{2}{3}\right]\right)$ be an exponential unitary path in that commutant such that $R_{\frac{1}{3}}^{\prime}=O^{*}$ and $R_{\frac{2}{3}}^{\prime}=I$.

Notice that

$$
\left\|S^{*} O^{*}-\left|D^{*}\right|\right\|<5 n^{6} \varepsilon^{\prime}
$$

Using the same technique as above, we have

$$
\left\|S^{*} O^{*}-I\right\|<10 n^{6} \varepsilon^{\prime}
$$

Hence there is a unitary path $R_{t}^{\prime \prime}\left(t \in\left[0, \frac{1}{3}\right]\right)$ in a $10 n^{6} \varepsilon^{\prime}$ neighbourhood of I such that $R_{0}^{\prime \prime}=I$ and $R_{\frac{1}{3}}^{\prime \prime}=S^{*} O^{*}$.

Finally, choose ε^{\prime} such that $4 n^{2} \varepsilon^{\prime}+12 n^{6} \varepsilon^{\prime}+20 n^{6} \varepsilon^{\prime}<\varepsilon$. We can take ε^{\prime} to be $\frac{\varepsilon}{40 n^{6}}$, and define a unitary path u_{t} on $[0,1]$ as follows:

$$
u_{t}^{*}= \begin{cases}U^{*} W^{*} R_{t}^{\prime \prime} W & \text { if } t \in\left[0, \frac{1}{3}\right] \\ U^{*} W^{*} S^{*} R_{t}^{\prime} W & \text { if } t \in\left[\frac{1}{3}, \frac{2}{3}\right] \\ V^{*} W^{*} R_{t} W & \text { if } t \in\left[\frac{2}{3}, 1\right]\end{cases}
$$

Denote

$$
\phi_{t}(f)=u_{t}^{*} \cdot \operatorname{diag}\left(a\left(\theta_{1}\right)^{\sim t_{1}}, \ldots, a\left(\theta_{p}\right)^{\sim t_{p}}, f\left(x_{1}\right), f\left(x_{2}\right), \ldots, f\left(x_{\bullet}\right)\right) \cdot u_{t} .
$$

Then $\phi_{0}=\phi, \phi_{1}=\psi, u_{0}=U, u_{1}=V$, and we will have

$$
\left\|\phi_{t}(f)-\phi(f)\right\|<\varepsilon
$$

for all $f \in F, t \in[0,1]$.
Lemma 3.5 Let $A=A\left(F_{1}, F_{2}, \varphi_{0}, \varphi_{1}\right) \in \mathcal{C}$ be minimal, let $B=M_{n}(\mathbb{C})$, and let $F \subset A$ be a finite subset. Given $1>\varepsilon>0$, there exist $\eta, \eta_{1}, \varepsilon^{\prime}>0$, such that if $\phi, \psi: A \rightarrow B$ are unital homomorphisms that satisfy the following conditions:
(i) $\|\phi(h)-\psi(h)\|<1, \forall h \in H\left(\eta_{1}\right)$;
(ii) $\|\phi(h)-\psi(h)\|<\frac{\varepsilon^{\prime}}{8}, \forall h \in H(\eta) \cup \widetilde{H}(\eta)$,
then there is a continuous path of homomorphisms $\phi_{t}: A \rightarrow B$ such that $\phi_{0}=\phi, \phi_{1}=\psi$ and

$$
\left\|\phi_{t}(f)-\phi(f)\right\|<\varepsilon
$$

for all $f \in F, t \in[0,1]$. Moreover, for each $y \in(\operatorname{Sp} \phi \cup \operatorname{Sp} \psi) \cap \amalg_{i=1}^{l}(0,1)_{i}$, we have

$$
\overline{B_{4 \eta_{1}}(y)} \subset \bigcup_{t \in[0,1]} \operatorname{Sp} \phi_{t}
$$

where $\overline{B_{4 \eta_{1}}(y)}=\left\{x \in \coprod_{i=1}^{l}[0,1]_{i}: \operatorname{dist}(x, y) \leq 4 \eta_{1}\right\}$.
Proof Take $\varepsilon^{\prime}, \eta, m$ as in Lemma 3.4. Let $\eta_{1}=\frac{1}{m_{1}}<\frac{\eta}{2}$ satisfy $\left\|h(x)-h\left(x^{\prime}\right)\right\|<\frac{\varepsilon^{\prime}}{8}$ for any $\operatorname{dist}\left(x, x^{\prime}\right) \leq 4 \eta_{1}$ and for all $h \in H(\eta) \cup \widetilde{H}(\eta)$.

There exist unitaries U, V such that

$$
\begin{aligned}
& \phi(f, a)=U^{*} \cdot \operatorname{diag}\left(a\left(\theta_{1}\right)^{\sim s_{1}}, \ldots, a\left(\theta_{p}\right)^{\sim s_{p}}, f\left(x_{1}\right), f\left(x_{2}\right), \ldots, f\left(x_{\bullet}\right)\right) \cdot U \\
& \psi(f, a)=V^{*} \cdot \operatorname{diag}\left(a\left(\theta_{1}\right)^{\sim t_{1}}, \ldots, a\left(\theta_{p}\right)^{\sim t_{p}}, f\left(y_{1}\right), f\left(y_{2}\right), \ldots, f\left(y_{\bullet \bullet}\right)\right) \cdot V
\end{aligned}
$$

where $f \in A, x_{1}, x_{2}, \ldots, y_{1}, y_{2}, \cdots \in \coprod_{i=1}^{l}(0,1)_{i}$.
From condition (i) and Lemma 2.4, for each $i \in\{1,2, \ldots, l\}$, there exists $X_{i} \subset$ $\operatorname{Sp} \phi \cap(0,1)_{i}, X_{i}^{\prime} \subset \operatorname{Sp} \psi \cap(0,1)_{i}$ with $X_{i} \supset \operatorname{Sp} \phi \cap\left[\eta_{1}, 1-\eta_{1}\right]_{i}, X_{i}^{\prime} \supset \operatorname{Sp} \psi \cap\left[\eta_{1}, 1-\eta_{1}\right]_{i}$ such that X_{i} and X_{i}^{\prime} can be paired to within $2 \eta_{1}$ one by one. Denote the one to one correspondence by $\pi: X_{i} \rightarrow X_{i}^{\prime}$.

To define ϕ^{\prime}, change all the elements $x_{k} \in\left(0, \eta_{1}\right)_{i} \backslash X_{i}$ to $0_{i} \sim\left\{\theta_{1}^{\sim \alpha_{i 1}}, \ldots, \theta_{p}^{\sim \alpha_{i p}}\right\}$ and $x_{k} \in\left(1-\eta_{1}, 1\right)_{i} \backslash X_{i}$ to $1_{i} \sim\left\{\theta_{1}^{\sim \beta_{i 1}}, \ldots, \theta_{p}^{\sim \beta_{i p}}\right\}$, and finally, change all the $x_{k} \in$ X_{i} to $\pi\left(x_{k}\right) \in X_{i}^{\prime}$. To define ψ^{\prime}, change all the elements $y_{k} \in\left(0, \eta_{1}\right)_{i} \backslash X_{i}^{\prime}$ to $0_{i} \sim$ $\left\{\theta_{1}^{\sim \alpha_{i 1}}, \ldots, \theta_{p}^{\sim \alpha_{i p}}\right\}$ and $y_{k} \in\left(1-\eta_{1}, 1\right)_{i} \backslash X_{i}^{\prime}$ to $1_{i} \sim\left\{\theta_{1}^{\sim \beta_{i 1}}, \ldots, \theta_{p}^{\sim \beta_{i p}}\right\}$. Then we have

$$
\operatorname{Sp} \phi^{\prime} \cap(0,1)_{i}=\operatorname{Sp} \psi^{\prime} \cap(0,1)_{i}
$$

for all $i=1,2, \ldots, l$.
Since $2 \eta_{1}<\eta=\frac{1}{2 m n}$, then for each $[0,1]_{i}$, there exist integers a_{i}, b_{i} with $1<a_{i}<$ $a_{i}+2 \leq b_{i}<m_{1}$ such that

$$
\operatorname{Sp} \phi \cap\left(a_{i} \eta_{1}, b_{i} \eta_{1}\right)_{i}=\operatorname{Sp} \psi \cap\left(a_{i} \eta_{1}, b_{i} \eta_{1}\right)_{i}=\varnothing .
$$

Then for $X_{j}=\left\{\theta_{j}\right\}$ and $W_{j} \triangleq \coprod_{\left\{i \mid \alpha_{i j} \neq 0\right\}}\left[0, a_{i} \eta_{1}\right]_{i} \cup \coprod_{\left\{i \mid \beta_{i j} \neq 0\right\}}\left[b_{i} \eta_{1}, 1\right]_{i}$, we can define h_{j} corresponding to X_{j} and W_{j} in $H\left(\eta_{1}\right)$, then $\phi\left(h_{j}\right), \psi\left(h_{j}\right)$ are projections and

$$
\phi\left(h_{j}\right)=\phi^{\prime}\left(h_{j}\right), \quad \psi\left(h_{j}\right)=\psi^{\prime}\left(h_{j}\right), \quad\left\|\phi\left(h_{j}\right)-\psi\left(h_{j}\right)\right\|<1,
$$

for each $j=1,2, \ldots, p$, this fact means that

$$
\operatorname{Sp} \phi^{\prime} \cap \operatorname{Sp}\left(F_{1}\right)=\operatorname{Sp} \psi^{\prime} \cap \operatorname{Sp}\left(F_{1}\right)
$$

Now we have $\operatorname{Sp} \phi^{\prime}=\operatorname{Sp} \psi^{\prime}$.
For each $x_{k} \in \operatorname{Sp} \phi \cap(0,1)_{i}$, define a continuous map

$$
\gamma_{k}:\left[0, \frac{1}{3}\right] \longrightarrow \coprod_{i=1}^{l}[0,1]_{i}
$$

with the following properties:

$$
\begin{equation*}
\gamma_{k}(0)=x_{k} \tag{i}
\end{equation*}
$$

$$
\begin{align*}
\gamma_{k}\left(\frac{1}{3}\right) & = \begin{cases}0_{i} & \text { if } x_{k} \in\left(0, \eta_{1}\right)_{i} \backslash X_{i} \\
\pi\left(x_{k}\right) & \text { if } x_{k} \in X_{i} \\
1_{i} & \text { if } x_{k} \in\left(1-\eta_{1}, 1\right)_{i} \backslash X_{i}\end{cases} \tag{ii}\\
\Im \gamma_{k} & =\overline{B_{4 \eta_{1}}\left(x_{k}\right)}=\left\{x \in \coprod_{i=1}^{l}[0,1]_{i} ; \operatorname{dist}\left(x, x_{k}\right) \leq 4 \eta_{1}\right\} \tag{iii}
\end{align*}
$$

Define ϕ_{t} on $\left[0, \frac{1}{3}\right]$ by
$\phi_{t}(f)=U^{*} \cdot \operatorname{diag}\left(a\left(\theta_{1}\right)^{\sim s_{1}}, \ldots, a\left(\theta_{p}\right)^{\sim s_{p}}, f\left(\gamma_{1}(x)\right), f\left(\gamma_{2}(x)\right), \ldots, f(\gamma \bullet(x))\right) \cdot U$.
Then $\phi_{\frac{1}{3}}=\phi^{\prime}$ and

$$
\left\|\phi(h)-\phi^{\prime}(h)\right\|<\frac{\varepsilon^{\prime}}{8}, \quad \forall h \in H(\eta) \cup \widetilde{H}(\eta)
$$

Similarly, for each $y_{k} \in \operatorname{Sp} \psi \cap(0,1)_{i}$, define a continuous map

$$
\gamma_{k}^{\prime}:\left[\frac{2}{3}, 1\right] \longrightarrow \coprod_{i=1}^{l}[0,1]_{i}
$$

with the following properties:

$$
\gamma_{k}^{\prime}\left(\frac{2}{3}\right)= \begin{cases}0_{i} & \text { if } y_{k} \in\left(0, \eta_{1}\right)_{i} \backslash X_{i}^{\prime} \tag{i}\\ y_{k} & \text { if } y_{k} \in X_{i}^{\prime} \\ 1_{i} & \text { if } y_{k} \in\left(1-\eta_{1}, 1\right)_{i} \backslash X_{i}^{\prime}\end{cases}
$$

$$
\begin{equation*}
\gamma_{k}^{\prime}(1)=y_{k} \tag{ii}
\end{equation*}
$$

$$
\begin{equation*}
\Im \gamma_{k}^{\prime}=\overline{B_{4 \eta_{1}}\left(y_{k}\right)}=\left\{y \in \coprod_{i=1}^{l}[0,1]_{i} ; \operatorname{dist}\left(y, y_{k}\right) \leq 4 \eta_{1}\right\} . \tag{iii}
\end{equation*}
$$

Define ϕ_{t} on $\left[\frac{2}{3}, 1\right]$ by
$\phi_{t}(f)=V^{*} \cdot \operatorname{diag}\left(a\left(\theta_{1}\right)^{\sim t_{1}}, \ldots, a\left(\theta_{p}\right)^{\sim t_{p}}, f\left(\gamma_{1}^{\prime}(y)\right), f\left(\gamma_{2}^{\prime}(y)\right), \ldots, f\left(\gamma_{\bullet \bullet}^{\prime}(y)\right)\right) \cdot V$.
Then $\phi_{\frac{2}{3}}=\psi^{\prime}$, and

$$
\begin{array}{ll}
\left\|\psi(h)-\psi^{\prime}(h)\right\|<\frac{\varepsilon^{\prime}}{8}, & \forall h \in H(\eta) \cup \widetilde{H}(\eta) \\
\left\|\phi^{\prime}(h)-\psi^{\prime}(h)\right\|<\frac{\varepsilon^{\prime}}{8}+\frac{\varepsilon^{\prime}}{8}+\frac{\varepsilon^{\prime}}{8}<\frac{\varepsilon^{\prime}}{2}, & \forall h \in H(\eta) \cup \widetilde{H}(\eta)
\end{array}
$$

Apply Lemma 3.4; then there is a continuous path of homomorphisms $\phi_{t}: A \rightarrow B$, $t \in\left[\frac{1}{3}, \frac{2}{3}\right]$, such that $\phi_{\frac{1}{3}}=\phi^{\prime}, \phi_{\frac{2}{3}}=\psi^{\prime}$ and

$$
\left\|\phi_{t}(f)-\phi^{\prime}(f)\right\|<\frac{\varepsilon}{2}, \quad \forall f \in F
$$

Now we have a continuous path of homomorphisms $\phi_{t}: A \rightarrow B$ such that $\phi_{0}=\phi$, $\phi_{1}=\psi$ and $\left\|\phi_{t}(f)-\phi(f)\right\|<\varepsilon$ for all $f \in F, t \in[0,1]$.

From property (iii) of γ_{k} and γ_{k}^{\prime}, for any $y \in(\operatorname{Sp} \phi \cup \operatorname{Sp} \psi) \cap \coprod_{i=1}^{l}(0,1)_{i}$, we have

$$
\overline{B_{4 \eta_{1}}(y)} \subset \bigcup_{t \in[0,1]} \operatorname{Sp} \phi_{t}
$$

where $\overline{B_{4 \eta_{1}}(y)}=\left\{x \in \coprod_{i=1}^{l}[0,1]_{i}: \operatorname{dist}(x, y) \leq 4 \eta_{1}\right\}$.
Theorem 3.6 Let $A, B \in \mathcal{C}$, let $F \subset A$ be a finite subset, let $Y \subset \operatorname{Sp}(B)$ be a closed subset, and let $\left.G \subset B\right|_{Y}$ be a finite subset. Let $\phi:\left.A \rightarrow B\right|_{Y}$ be a unital injective homomorphism; then for any $\varepsilon>0$, there exist a closed subset $Z \subset Y$ and a unital injective homomorphism $\psi:\left.A \rightarrow B\right|_{Z}$ such that
(i) $\|\phi(f)-\psi(f)\|<\varepsilon, \forall f \in F$;
(ii) $\left.G \subset_{\varepsilon} B\right|_{Z} \in \mathcal{C}$.

Proof Set $n=L(B)$, choose $\varepsilon^{\prime}, \eta, \eta_{1}$ as in Lemma 3.5; then there exists $\delta>0$ such that for any $\operatorname{dist}\left(y, y^{\prime}\right)<\delta$, we have the following:

$$
\begin{aligned}
\left\|\phi_{y}(h)-\phi_{y^{\prime}}(h)\right\|<1 & \forall h \in H\left(\eta_{1}\right) \\
\left\|\phi_{y}(h)-\phi_{y^{\prime}}(h)\right\|<\frac{\varepsilon^{\prime}}{8} & \forall h \in H(\eta) \cup \widetilde{H}(\eta) \\
\left\|g(y)-g\left(y^{\prime}\right)\right\|<\varepsilon & \forall g \in G
\end{aligned}
$$

Applying Lemma 3.3, we can obtain a closed subset Z and a surjective map $\rho: Y \rightarrow Z$ such that $\left.G \subset_{\varepsilon} B\right|_{Z} \in \mathcal{C}$.

We will define an injective homomorphism $\psi:\left.A \rightarrow B\right|_{Z}$ as follows.
Recall the construction of \widehat{Y} and $P(Z)$ in 3.1. Let $P(Z)=\left\{z_{1}, z_{2}, \ldots\right\}$ be the points corresponding to the finite points $\left\{y_{1}, y_{2}, \ldots\right\}=\widehat{Y}$. Define

$$
\psi_{z_{k}}(f)=\psi_{\rho\left(y_{k}\right)}(f)=\phi_{y_{k}}(f), \quad \forall f \in A, \quad z_{k} \in\left\{z_{1}, z_{2}, \ldots\right\} .
$$

For each adjacent pair $\left\{\left(y_{s}, i\right),\left(y_{t}, i\right)\right\}$, if $\left(y_{s}, y_{t}\right)_{i} \cap Y$ has at most countably many points, then $\left(z_{s}, z_{t}\right)_{i} \cap Z=\varnothing$, and we do not need to define ψ on $\left(z_{s}, z_{t}\right)_{i}$, if $\left(y_{s}, y_{t}\right)_{i} \cap$ Y has uncountable many points, then we have $\operatorname{dist}\left(\left(y_{s}, i\right),\left(y_{t}, i\right)\right)<\delta$ and $\left[z_{s}, z_{t}\right]_{i} \subset$ Z. Then by Lemma 3.5, we can define ψ on $\left[z_{s}, z_{t}\right]_{i}$ and

$$
\left\|\psi_{z}(f)-\phi_{\left(y_{s}, i\right)}(f)\right\|<\varepsilon, \quad \forall f \in F, \quad \forall z \in\left[z_{s}, z_{t}\right]_{i}
$$

Applying the above procedure to all adjacent pairs in \widehat{Y}, we can define ψ on each $\left[z_{s}, z_{t}\right]_{i} \subset Z$ piece by piece, then we obtain ψ on $Z \cap \coprod_{i=1}^{l}[0,1]_{i}$. For each $\theta_{j} \in Z \cap$ $\operatorname{Sp}\left(F_{1}\right)$, define $\psi_{\theta_{j}}(f)=\phi_{\theta_{j}}(f)$ for all $\theta_{j} \in Y \cap \operatorname{Sp}\left(F_{1}\right)$. Then we have defined ψ on Z and ψ satisfies property (i).

To prove ψ is injective, we only need to verify that $\operatorname{Sp} \psi=\bigcup_{z \in Z} \operatorname{Sp} \psi_{z}=\operatorname{Sp}(A)$. The proof is similar to the corresponding part of [10].

Write $A=\oplus_{k=1}^{m} A_{k}$ with all A_{k} minimal. Then $\operatorname{Sp}(A)=\coprod_{k=1}^{m} \operatorname{Sp}\left(A_{k}\right)$. Define an index set $\Lambda \subset\{1,2, \ldots, m\}$ such that A_{k} is a finite dimensional C^{*}-algebra if and only if $k \in \Lambda$. For $k \in \Lambda,\left.\phi\right|_{A_{k}} \neq 0$ means that $\operatorname{Sp}\left(A_{k}\right) \subset \operatorname{Sp} \phi$, by the definition of ψ, we have $\left.\psi\right|_{A_{k}} \neq 0$, then $\operatorname{Sp}\left(A_{k}\right) \subset \operatorname{Sp} \psi$.

Consider $\widetilde{A}=\widetilde{A}\left(\widetilde{F}_{1}, \widetilde{F}_{2}, \widetilde{\varphi}_{0}, \widetilde{\varphi}_{1}\right)=\oplus_{k \notin \Lambda} A_{k}$. We define two sets $Y^{\prime}, Y^{\prime \prime} \subset Y$, for each adjacent pair $\left\{\left(y_{s}, i\right),\left(y_{t}, i\right)\right\}$. If $\left(y_{s}, y_{t}\right)_{i} \cap Y$ has at most countably many points, let $\left(y_{s}, y_{t}\right)_{i} \cap Y \subset Y^{\prime}$. If $\left(y_{s}, y_{t}\right)_{i} \cap Y$ has uncountably many points, let $\left[y_{s}, y_{t}\right]_{i} \cap Y \subset$ $Y^{\prime \prime}$. Then we have $Y^{\prime} \cap Y^{\prime \prime}=\varnothing$ and $Y^{\prime} \cup Y^{\prime \prime}=Y \cap \coprod_{i=1}^{l}[0,1]_{i}$. Note that Y^{\prime} has at most countably many points.

For any point $x_{0} \in \amalg_{i=1}^{l}(0,1)_{i}$ and $\overline{B_{\eta_{1}}\left(x_{0}\right)}=\left\{x \in \operatorname{Sp}(\widetilde{A}): \operatorname{dist}\left(x, x_{0}\right) \leq \eta_{1}\right\}$, $\overline{B_{\eta_{1}}\left(x_{0}\right)} \cap\left(\cup_{y \in Y^{\prime}} \operatorname{Sp} \phi_{y}\right)$ have at most countably many points. Following the injectivity of ϕ, we have

$$
\overline{B_{\eta_{1}}\left(x_{0}\right)} \subset \operatorname{Sp} \phi=\bigcup_{y \in Y^{\prime \prime}} \operatorname{Sp} \phi_{y} \cup \bigcup_{y \in Y^{\prime}} \operatorname{Sp} \phi_{y} \cup \underset{y \in Y \cap S p\left(\widetilde{F}_{1}\right)}{\bigcup} \operatorname{Sp} \phi_{y} .
$$

Then the set $\bigcup_{y \in Y^{\prime \prime}} \operatorname{Sp} \phi_{y} \cap \overline{B_{\eta_{1}}\left(x_{0}\right)}$ has uncountably many points. Recall the definition of $Y^{\prime \prime}$; there is at least one adjacent pair $\left\{\left(y_{s}, i\right),\left(y_{t}, i\right)\right\}$ such that $\left[y_{s}, y_{t}\right]_{i} \cap Y$ has uncountably many points. Then we have ψ defined on $\left[z_{s}, z_{t}\right]_{i} \subset Z$.

Choose

$$
x_{1} \in \bigcup_{y \in\left[y_{s}, y_{t}\right]_{i} \cap Y^{\prime \prime}} \operatorname{Sp} \phi_{y} \cap \overline{B_{\eta_{1}}\left(x_{0}\right)} ;
$$

then there exists $x_{2} \in \operatorname{Sp} \phi_{\left(y_{s}, i\right)}$ such that $\operatorname{dist}\left(x_{1}, x_{2}\right) \leq 2 \eta_{1}$. We have

$$
\operatorname{dist}\left(x_{0}, x_{2}\right) \leq \operatorname{dist}\left(x_{0}, x_{1}\right)+\operatorname{dist}\left(x_{1}, x_{2}\right) \leq 3 \eta_{1}<4 \eta_{1} .
$$

By Lemma 3.5, we will have

$$
x_{0} \in \overline{B_{4 \eta_{1}}\left(x_{2}\right)} \subset \bigcup_{z \in\left[z_{s}, z_{t}\right]_{i}} \operatorname{Sp} \psi_{z} .
$$

This means that $\coprod_{i=1}^{l}(0,1)_{i} \subset \operatorname{Sp} \psi$.
Note that, if we choose x_{0} such that $x_{0} \in \amalg_{i=1}^{l}\left(0, \eta_{1}\right)_{i} \cup\left(\eta_{1}, 1\right)_{i}$, then we will have $0_{i}, 1_{i} \in \operatorname{Sp} \psi$ for all $i \in\{1,2, \ldots, l\}$, this means that $\operatorname{Sp}\left(\widetilde{F}_{1}\right) \subset \operatorname{Sp} \psi$.

Now we have

$$
\operatorname{Sp} \psi=\bigcup_{z \in Z} \operatorname{Sp} \psi_{z}=\operatorname{Sp}(\widetilde{A}) \cup \coprod_{k \in \Lambda} \operatorname{Sp}\left(A_{k}\right)=\operatorname{Sp}(A)
$$

This ends the proof of the injectivity of ψ.
Remark 3.7 Theorem 3.6 still holds if we let ϕ be non-unital, then the homomorphism ψ will also be non-unital.

Proof of [10, Theorem 3.1] Let $\widetilde{A}_{n}=\phi_{n, \infty}\left(A_{n}\right), n=1,2, \ldots$. Then we can write $A=\lim _{n \rightarrow \infty}\left(\widetilde{A}_{n}, \tilde{\phi}_{n, m}\right)$, where the homomorphism $\widetilde{\phi}_{n, m}$ are induced by $\phi_{n, m}$, and they are injective.

Let $\varepsilon_{n}=\frac{1}{2^{n}},\left\{x_{i}\right\}_{i=1}^{\infty}$ be a dense subset of A. We will construct an injective inductive limit $B_{1} \rightarrow B_{2} \rightarrow \cdots$ as follows.

Consider $G_{1}=x_{1} \subset A$. There is an $\widetilde{A}_{i_{1}}$, and a finite subset $\tilde{G}_{1} \subset \widetilde{A}_{i_{1}}$ such that $G_{1} \subset \frac{\varepsilon_{1}}{2} \widetilde{G}_{i_{1}}$.

For $\widetilde{G}_{1} \subset \widetilde{A}_{i_{1}}$, apply Lemma 3.3; there exists a sub-algebra $B_{1} \subset \widetilde{A}_{i_{1}}$ such that $B_{1} \in \mathcal{C}$ and $\widetilde{G}_{1} \subset_{\frac{\varepsilon_{1}}{2}} \widetilde{B}_{1}$. This give us an injective homomorphism $B_{1} \hookrightarrow \widetilde{A}_{i_{1}}$. Let $\left\{b_{1 j}\right\}_{j=1}^{\infty}$ be a dense subset of B_{1}. Set $\widetilde{F}_{1}=\left\{b_{11}\right\} \subset B_{1}$ and $G_{2}=\left\{x_{1}, x_{2}\right\} \subset A$. There exist $\tilde{A}_{i_{2}}, i_{2}>i_{1}$ and a finite subset $\widetilde{G}_{2} \subset \widetilde{A}_{i_{2}}$ such that $G_{2} \subset \frac{\varepsilon_{2}}{2} \widetilde{G}_{2}$. Apply Theorem 3.6 and Remark 3.7 to $\widetilde{F}_{1} \subset B_{1}, \widetilde{G}_{2} \subset \widetilde{A}_{i_{2}}$, and the injective map $B_{1} \hookrightarrow \widetilde{A}_{i_{1}} \rightarrow \widetilde{A}_{i_{2}}$; there exist a sub-algebra $B_{2} \subset \widetilde{A}_{i_{2}}$ and an injective homomorphism $\psi_{1,2}: B_{1} \rightarrow B_{2}$ such that $\widetilde{G}_{2} \subset_{\frac{\varepsilon_{2}}{2}} \widetilde{B}_{2}$ and such that the diagram

almost commutes on \widetilde{F}_{1} to within ε_{1}. Let $\left\{b_{2 j}\right\}_{j=1}^{\infty}$ be a dense subset of B_{2}. Choose

$$
\widetilde{F}_{2}=\left\{b_{21}, b_{22}\right\} \cup\left\{\psi_{1,2}\left(b_{11}\right), \psi_{1,2}\left(b_{12}\right)\right\}, \quad G_{3}=\left\{x_{2}, x_{2}, x_{3}\right\}
$$

in the place of \widetilde{F}_{1} and G_{2} respectively, and repeat the above construction to obtain $\widetilde{A}_{i_{3}}$, $B_{3} \subset \widetilde{A}_{i_{3}}$ and an injective map $\psi_{2,3}: B_{2} \rightarrow B_{3}$ (using ε_{2} and ε_{3} in place of ε_{1} and ε_{2}, respectively).

In general, we can construct the diagram

with the following properties:
(i) The homomorphism $\psi_{k, k+1}$ are injective;
(ii) For each $k, G_{k}=\left\{x_{1}, x_{2}, \ldots, x_{k}\right\} \subset_{\varepsilon_{k}} \widetilde{\phi}_{i_{k}, \infty}\left(B_{k}\right)$, where B_{k} is considered to be a sub-algebra of $\widetilde{A}_{i_{k}}$;
(iii) The diagram

almost commutes on $\widetilde{F}_{k}=\left\{b_{i j} ; 1 \leq i \leq k, 1 \leq j \leq k\right\}$ to within ε_{k}, where $\left\{b_{i j}\right\}_{j=1}^{\infty}$ is a dense subset of B_{i}.

Then by [3, 2.3 and 2.4], the above diagram defines a homomorphism from $B=$ $\xrightarrow{\lim }\left(B_{n}, \psi_{n, m}\right)$ to $A=\underset{\longrightarrow}{\lim }\left(\widetilde{A}_{n}, \widetilde{\phi}_{n, m}\right)$. It is routine to check that the homomorphism $\overrightarrow{\text { is in fact an isomorphism. This concludes the proof. }}$

Acknowledgements The author would like to thank Guihua Gong for helpful suggestions and discussions.

References

[1] B. Blackadar, O. Bratteli, G. A. Elliott, and A. Kumjian, Reduction of real rank in inductive limits of C^{*}-algebras. Math. Ann. 292(1992), 111-126. http://dx.doi.org/10.1007/BF01444612
[2] G. A. Elliott, A classification of certain simple C^{*}-lgebras. In: Quantum and non-commutative analysis (Kyoto, 1992), Math. Phys. Stud., 16, Kluwer Acad. Publ., Dordrecht, 1993, pp. 373-385.
[3] \longrightarrow On the classification of C^{*}-algebras of real rank zero. J. Reine. Angew. Math. 443(1993), 179-219. http://dx.doi.org/10.1515/crll.1993.443.179
[4] \longrightarrow, A classification of certain simple C*-algebras, II. J. Ramanujan Math. Soc. 12(1997), 97-134
[5] G. A. Elliott, G. Gong, and L. Li, Injectivity of the connecting maps in AH inductive systems. Canad. Math. Bull. 48(2005), 50-68. http://dx.doi.org/10.4153/CMB-2005-005-9
[6] G. A. Elliott and K. Thomsen, The state space of the K_{0}-group of a simple separable C^{*}-algebra. Geom. Funct. Anal. 4(1994), 522-538. http://dx.doi.org/10.1007/BF01896406
[7] G. Gong, On the classification of simple inductive limit C^{*}-algebras, I. The reduction theorem. Doc. Math. 7(2002), 255-461.
[8] G. Gong, and H. Lin, On classification of simple non-unital amenable C^{*}-algebras, II. arxiv:1702.01073
[9] G. Gong, H. Lin, and Z. Niu, Classification of finite simple amenable Z-stable C^{*}-algebras. arxiv:1501.00135v6
[10] L. Li, Classification of simple C^{*}-algebras inductive limits of matrix algebras over trees. Mem. Amer. Math. Soc. 127(1997), no. 605.
[11] , Simple inductive limit C*-algebras: Spectra and approximation by interval algebras. J. Reine Angew. Math. 507(1999), 57-79. http://dx.doi.org/10.1515/crll.1999.019
[12] —_Classification of simple C^{*}-algebras: inductive limit of matrix algebras over 1-dimensional spaces. J. Funct. Anal. 192(2002), 1-51. http://dx.doi.org/10.1006/jfan.2002.3895
[13] Z. Liu, A decomposition theorem for real rank zero inductive limits of 1-dimensional non-commutative CW complexes. arxiv:1709.03684v1
[14] $\mathrm{H} . \mathrm{Su}, \mathrm{On}$ the classification of C^{*}-algebras of real rank zero: Inductive limits of matrix algebras over non-Hausdorff graphs. Mem. Amer. Math. Soc. 114(1995), no. 547. http://dx.doi.org/10.1090/memo/0547

Postdoctoral Research Station of Mathematics, Hebei Normal University, Shijiazhuang, 050024, China e-mail: Izc.12@outlook.com

[^0]: Received by the editors September 12, 2017; revised May 9, 2018.
 Published electronically July 6, 2018.
 AMS subject classification: 46L05, 46L35.
 Keywords: injective, inductive limit, Elliott-Thomsen algebra.

