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Injectivity of the Connecting
Homomorphisms in Inductive Limits of
Elliott–Thomsen Algebras
Dedicated to Prof. Chunlan Jiang on the occasion of his 60th birthday

Zhichao Liu

Abstract. Let A be the inductive limit of a sequence

A1
ϕ1,2ÐÐ→ A2

ϕ2,3ÐÐ→ A3 Ð→ ⋅ ⋅ ⋅
with An =⊕n i

i=1 A[n , i], where all the A
[n , i] are Elliott–_omsen algebras and ϕn ,n+1 are homomor-

phisms. In this paper, we will prove that A can be written as another inductive limit

B1
ψ1,2ÐÐ→ B2

ψ2,3ÐÐ→ B3 Ð→ ⋅ ⋅ ⋅

with Bn = ⊕
n′i
i=1 B[n , i]′ , where all the B

[n , i]′ are Elliott–_omsen algebras and with the extra con-
dition that all the ψn ,n+1 are injective.

1 Introduction

In 1997, Li proved the result that if A = lim
Ð→

(An , ϕm ,n) is an inductive limitC∗-algebra
with An =⊕

n i
i=1 M[n , i](C(X[n , i])), where all X[n , i] are graphs, n i and [n, i] are pos-

itive integers, then one can write A = lim
Ð→

(Bn ,ψm ,n), where

Bn =
n′i
⊕

i=1
M[n , i]′(C(Y[n , i]′))

are ûnite direct sums of matrix algebras over graphs Y[n , i]′ with the extra property
that the homomorphisms ψm ,n are injective [10]. _is played an important role in the
classiûcation of simple AH algebras with one-dimensional local spectra (see [2,3, 10–
12]). _is resultwas extended to the case of AH algebras [5], inwhich the space X[n , i]
are replaced by connected ûnite simplicial complexes.

In this article, we consider the C∗-algebra A that can be expressed as the inductive
limit of a sequence

A1
ϕ1,2
ÐÐ→ A2

ϕ2,3
ÐÐ→ A3 Ð→ ⋅ ⋅ ⋅ ,

where all A i are Elliott–_omsen algebras and ϕn ,n+1 are homomorphisms. _ese
algebras were introduced by Elliott in [4] and _omsen in [6], and are also called
one-dimensional non-commutative ûnite CW complexes. We will prove that A can
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bewritten as inductive limits of sequences of Elliott–_omsen algebraswith the prop-
erty that all connecting homomorphisms are injective. _e results in this paper will
be used in to classify real rank zero inductive limits of one-dimensional non-commu-
tative ûnite CW complexes.

2 Preliminaries

Deûnition 2.1 Let F1 and F2 be two ûnite dimensional C∗-algebras. Suppose that
there are two homomorphisms φ0 , φ1∶ F1 → F2. Consider the C∗-algebra

A = A(F1 , F2 , φ0 , φ1) = {( f , a) ∈ C([0, 1], F2)⊕F1 ∶ f (0) = φ0(a), f (1) = φ1(a)} .

_ese C∗-algebras have been introduced into the Elliott program by Elliott and
_omsen in [6]. Denote by C the class of all unital C∗-algebras of the form
A(F1 , F2 , φ0 , φ1). (_is class includes the ûnite dimensional C∗-algebras, the case
F2 = 0.) _ese C∗-algebras will be called Elliott–_omsen algebras. Following [9], let
us say that a unital C∗-algebra A ∈ C is minimal if it is indecomposable, i.e., not the
direct sum of two or more C∗-algebras in C.

Proposition 2.2 ([9]) Let A = A(F1 , F2 , φ0 , φ1), where F1 = ⊕
p
j=1Mk j(C), F2 =

⊕
l
i=1M l i (C) and φ0 , φ1∶ F1 → F2 be two homomorphisms. Let φ0∗ , φ1∗∶K0(F1) =

Zp
→ K0(F1) = Zl be represented by matrices α = (α i j)l×p and β = (β i j)l×p , where

α i j , β i j ∈ Z+ for each pair i , j. _en

K0(A) = Ker(α − β), K1(A) = Zl
/ Im(α − β).

2.1 We use the notation #( ⋅ ) to denote the cardinal number of a set, the sets under con-
siderationwill be setswithmultiplicity, and thenwe shall also countmultiplicitywhen
we use the notation #. We use ● or ●● to denote any possible positive integer. We shall
use {a∼k} to denote {a, . . . , a

´¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¶

k t imes

}. For example, {a∼3 , b∼2} = {a, a, a, b, b}.

2.2 Let us use θ1 , θ2 , . . . , θ p to denote the spectrum of F1 and denote the spectrum of
C([0, 1], F2) by (t, i), where 0 ≤ t ≤ 1 and i ∈ {1, 2, . . . , l} indicates that it is in i-th
block of F2. So

Sp (C([0, 1], F2)) =

l
∐

i=1
{(t, i), 0 ≤ t ≤ 1} .

Using identiûcation of f (0) = φ0(a) and f (1) = φ1(a) for ( f , a) ∈ A, (0, i) ∈

Sp(C[0, 1]) is identiûed with

(θ∼α i1
1 , θ∼α i2

2 , . . . , θ∼α i p
p ) ⊂ Sp(F1)

and (1, i) ∈ Sp(C([0, 1], F2)) is identiûed with

(θ∼β i11 , θ∼β i22 , . . . , θ∼β i pp ) ⊂ Sp(F1)

as in Sp(A) = Sp(F1) ∪∐
l
i=1(0, 1)i .
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2.3 With A = A(F1 , F2 , φ0 , φ1) as above, let φ∶A → Mn(C) be a homomorphism; then
there exists a unitary u such that

φ( f , a) =
u∗ ⋅ diag ( a(θ1), . . . , a(θ1)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
t1

, . . . , a(θ p), . . . , a(θ p)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

tp

, f (y1), . . . , f (y●), 0●●) ⋅ u,

where y1 , y2 , . . . , y● ∈∐l
i=1[0, 1]i . For y = (0, i) (also denoted by 0i), one can replace

f (y) by

( a(θ1), . . . , a(θ1)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

α i1

, . . . , a(θ p), . . . , a(θ p)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

α i p

)

in the above expression, and do the same with y = (1, i). A�er this procedure, we
can assume each yk is strictly in the open interval (0, 1)i for some i. We write the
spectrum of φ by

Spφ = {θ∼t11 , θ∼t22 , . . . , θ∼tpp , y1 , y2 , . . . , y●},

where yk ∈∐
l
i=1(0, 1)i .

If f = f ∗ ∈ A, we use Eig(φ( f )) to denote the eigenvalue list of φ( f ), and then

#(Eig(φ( f ))) = n (counting multiplicity).

2.4 Let A = A(F1 , F2 , φ0 , φ1) ∈ C beminimal. Write a ∈ F1 as

a = (a(θ1), a(θ2), . . . , a(θ p)), f (t) ∈ C([0, 1], F2)

as

f (t) = ( f (t, 1), f (t, 2), . . . , f (t, l)) ,

where a(θ j) ∈ Mk j(C), f (t, i) ∈ C([0, 1],M l i (C)).
For any ( f , a) ∈ A and i ∈ {1, 2, . . . , l}, deûne πt ∶A→ C([0, 1], F2) by πt( f , a) =

f (t) and π i
t ∶A → C([0, 1],M l i (C)) by π i

t( f , a) = f (t, i), where t ∈ (0, 1) and
π i
0( f , a) = f (0, i) (denoted by φ i

0(a)), π i
1( f , a) = f (1, i) (denoted by φ i

1(a)). _ere
is a canonical map πe ∶A→ F1 deûned by πe(( f , a)) = a, for all j = {1, 2, . . . , p}.

2.5 We use the convention that A = A(F1 , F2 , φ0 , φ1), B = B(F′1 , F′2 , φ′0 , φ′1), where

F1 =
p
⊕

j=1
Mk j(C), F2 =

l
⊕

i=1
M l i (C), F′1 =

p′

⊕

j′=1
Mk′

j′
(C), F′2 =

l ′

⊕

i′=1
M l ′

i′
(C).

Set L(A) = ∑
l
i=1 l i , L(B) = ∑

l ′
i′=1 l

′
i′ . Denote by {e iss′}(1 ≤ i ≤ l , 1 ≤ s, s′ ≤ l i) the

set of matrix units for⊕l
i=1 M l i (C) and by { f j

ss′}(1 ≤ j ≤ p, 1 ≤ s, s′ ≤ k j) the set of
matrix units for⊕p

j=1 Mk j(C).
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2.6 For each η = 1
m where m ∈ N+, let 0 = x0 < x1 < ⋅ ⋅ ⋅ < xm = 1 be a partition of [0, 1]

into m subintervals with equal length 1
m . We will deûne a ûnite subset H(η) ⊂ A+,

consisting of two kinds of elements as described below.
(a) For each subset X j = {θ j} ⊂ Sp(F1) = {θ1 , θ2 , . . . , θ p} and a list of integers

a1 , b2 , . . . , a l , b l with 0 ≤ a i < a i + 2 ≤ b i ≤ m, denote Wj ≜ ∐{i∣α i j /=0}[0, a iη]i ∪
∐{i∣β i j /=0}[b iη, 1]i . _enwe callWj the closed neighborhood of X j ;we deûne element
( f , a) ∈ A+ corresponding to X j ∪Wj as follows:

Let a = (a(θ1), a(θ2), . . . , a(θ p)) ∈ F1,where a(θ j) = Ik j and a(θs) = 0ks if s /= j.
For each t ∈ [0, 1]i , i = {1, 2, . . . , l}, deûne

f (t, i) =

⎧
⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪
⎩

φ i
0(a)

η−dist(t ,[0,a i η]i)
η if 0 ≤ t ≤ (a i + 1)η,

0 if (a i + 1)η ≤ t ≤ (b i − 1)η,
φ i

1(a)
η−dist(t ,[b i η ,1]i)

η if (b i − 1)η ≤ t ≤ 1.

All such elements ( f , a) = ( f (t, 1), f (t, 2), . . . , f (t, l)) ∈ A+ are included in the set
H(η) and are called test functions of type 1.

(b) For each closed subset X = ⋃s[xrs , xrs+1]i ⊂ [η, 1 − η]i (the ûnite union of
closed intervals [xr , xr+1] and points), so there are ûnite subsets for each i. Deûne
( f , a) corresponding to X by a = 0 and for each t ∈ (0, 1)r , r /= i , f (t, r) = 0 and for
t ∈ (0, 1)i , deûne

f (t, i) =
⎧
⎪⎪
⎨
⎪⎪
⎩

1 − dist(t ,X)
η if dist(t, X) < η,

0 if dist(t, X) ≥ η.

All such elements are called test functions of type 2.
Note that for any closed subset Y ⊂ [η, 1 − η], there is a closed subset X con-

sisting of the union of the intervals and points such that X ⊃ Y and for any x ∈ X,
dist(x ,Y) ≤ η.

2.7 Take η as above, deûne a ûnite set H̃(η) as follows:
In the construction of test functions of type 1, we can use f j

ss′ ∈ F1 in place of
a ∈ F1, assume that all these elements are in H̃(η), and for all test functions h ∈ H(η)
of type 2, assume that all these elements e iss′ ⋅ h are in H̃(η).

_en there exists a natural surjective map κ∶ H̃(η) → H(η). For any subset
G ⊂ H(η), deûne a ûnite subset G̃ ⊂ H̃(η) by

G̃ = {h ∣ h ∈ H̃(η), κ(h) ∈ G} .

2.8 Suppose A is a C∗-algebra, B ⊂ A is a subalgebra, F ⊂ A is a ûnite subset, and let ε > 0.
If for each f ∈ F, there exists an element g ∈ B such that ∥ f − g∥ < ε, then we say that
F is approximately contained in B to within ε, and denote this by F ⊂ε B.

_e following is clear by the standard techniques of spectral theory [1].

134

https://doi.org/10.4153/CMB-2018-020-2 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2018-020-2


Injectivity of the Connecting Homomorphisms

Lemma 2.3 Let A = lim
Ð→

(An , ϕm ,n) be an inductive limit of C∗-algebras An with
morphisms ϕm ,n ∶Am → An . _en A has RR(A) = 0 if and only if for any ûnite self-
adjoint subset F ⊂ Am and ε > 0, there exists n ≥ m such that

ϕm ,n(F) ⊂ε { f ∈ (An)sa ∣ f has ûnite spectrum} .

Lemma 2.4 ([13, Lemma 2.3]) Let A ∈ C, for any 1 > ε > 0 and η = 1
m wherem ∈ N+.

If ϕ,ψ∶A → Mn(C) are unital homomorphisms with the condition that Eig(ϕ(h))
and Eig(ψ(h)) can be paired to within ε one by one for all h ∈ H(η), then for each
i ∈ {1, 2, . . . , l}, then there exists X i ⊂ Sp ϕ ∩ (0, 1)i , X′

i ⊂ Spψ ∩ (0, 1)i with X i ⊃

Sp ϕ ∩ [η, 1 − η]i , X′
i ⊃ Spψ ∩ [η, 1 − η]i such that X i and X′

i can be paired to within
2η one by one.

3 Main Results

In this section, we will prove the following theorem.

_eorem 3.1 Let A = lim
Ð→

(An , ϕm ,n) be an inductive limit of Elliott–_omsen al-
gebras. _en one can write A = lim

Ð→
(Bn ,ψm ,n), where all the Bn are Elliott–_omsen

algebras, and all the homomorphisms ψm ,n are injective.

Lemma 3.2 ([10]) Let Y ⊂ [0, 1] be a closed subset containing uncountably many
points. _en there exists a surjective non-decreasing continuous map ρ∶Y → [0, 1].

3.1 Let A = A(F1 , F2 , φ0 , φ1) ∈ C beminimal. _e topology base on

Sp(A) = {θ1 , θ2 , . . . , θ p} ∪
l
∐

i=1
(0, 1)i

at each point θ j is given by

{θ j} ∪ ∐

{i∣α i j /=0}
(0, ε)i ∪ ∐

{i∣β i j /=0}
(1 − ε, 1)i .

In general, this is a non-Hausdorò topology.
For closed subset Y ⊂ Sp(A) and δ > 0, wewill construct a space Z and a continu-

ous surjectivemap ρ∶Y → Z such that Z ∩ (0, 1)i is a union of ûnitelymany intervals
for each i ∈ {1, 2, . . . , l}, and dist(ρ(y), y) < δ for all y ∈ Y . We can ûnd a similar
discussion in an old version of [8].
For any closed subset Y ⊂ Sp(A), deûne index sets

JY = { j ∣ θ j ∈ Y},
L0,Y = {i ∣ (0, 1)i ∩ Y = ∅},
L1,Y = {i ∣ (0, 1)i ⊂ Y},
L l ,Y = {i ∣ i ∉ L1,Y and ∃ s > 0 such that (0, s]i ⊂ Y},
L l l ,Y = {i ∣ i ∉ L1,Y ∪ L l ,Y and ∃{yn}

∞
n=1 ⊂ (0, 1)i ∩ Y such that lim

n→∞
yn = 0i},
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Lr ,Y = {i ∣ i ∉ L1,Y and ∃t > 0 such that [1 − t, 1)i ⊂ Y},
Lrr ,Y = {i ∣ i ∉ L1,Y ∪ Lr ,Y and ∃{yn}

∞
n=1 ⊂ (0, 1)i ∩ Y such that lim

n→∞
yn = 1i},

La ,Y = {i ∣ i ∉ L0,Y ∪ L1,Y}.

_en we have

L l ,Y ∪ L l l ,Y ∪ Lr ,Y ∪ Lrr ,Y ⊂ La ,Y ,
L0,Y ∪ L1,Y ∪ La ,Y = {1, 2, . . . , l}.

Consider Y ⊂ Sp(A); if i ∈ L1,Y ∪ L l ,Y ∪ L l l ,Y , assume that (0, i) ∈ Y and if
i ∈ L1,Y ∪ Lr ,Y ∪ Lrr ,Y , assume that (1, i) ∈ Y . For δ > 0, there exists m ∈ N+ such that
1
m <

δ
2 . Denote Yi = Y ∩ [0, 1]i , i ∈ {1, 2, . . . , l}, then we can construct a collection of

ûnitely many points Ŷi = {y1 , y2 , . . .} ⊂ Yi as below.
(a) If i ∈ L0,Y , let Ŷi = ∅.
(b) If i ∈ L1,Y , let Ŷi = {(0, i), ( 1

m , i), . . . , (1, i)}.
(c) For each i ∈ La ,Y , consider the set Yi ∩ [

r−1
m , r

m ]i . If Yi ∩ [
r−1
m , r

m ]i /= ∅, then set

x r
i = min{x ∣ x ∈ Yi ∩ [

r − 1
m

, r
m

]
i
} ,

x̃ r
i = max{x ∣ x ∈ Yi ∩ [

r − 1
m

, r
m

]
i
} .

Assume that Yi ∩ [
r−1
m , r

m ]i /= ∅ if and only if r ∈ {r1 , r2 , . . . , r●} ⊂ {1, 2, . . . ,m}. _en
we have a ûnite set

{x r1
i , x̃

r1
i , x

r2
i , . . . , x

r●
i , x̃

r●
i }.

Some of the points may be the same; we can delete the extra repeating points and
denote the result by Ŷi .
Denote Ŷ = ∐

l
i=1 Ŷi . Two points (ys , i), (yt , i′) ∈ Ŷ are said to be adjacent if

(ys , i), (yt , i′) are in the same interval (the case i = i′), and inside the open interval
(ys , yt)i , there is no other point in Ŷ . Note that if {(ys , i), (yt , i)} is an adjacent pair
and (ys , yt)i ∩ Y /= ∅, then dist((ys , i), (yt , i)) < δ, and for any y ∈ Y ∩∐

l
i=1[0, 1]i ,

there exists y′ ∈ Ŷ such that dist(y, y′) < δ.
It is obvious that Yi can be written as the union of [ys , yt]i ∩ Yi , where {(ys , i),

(yt , i)} runs over all adjacent pairs. We will deûne a space Z and a continuous sur-
jectivemap ρ∶Y → Z as follows (see also [10]).
First, Y ∩ Sp(F1) ⊂ Z and Z contains a collection of ûnitely many points P(Z) =

{z1 , z2 , . . .}, each (zs , i) ∈ P(Z) corresponding to one and only one (ys , i) ∈ Ŷ . To
deûne the edges of Z, we consider an adjacent pair {(ys , i), (yt , i)}. We have the
following two cases.

Case 1: If [ys , yt]i∩Y has uncountablymany points, thenwe let Z contain [zs , zt]i , the
line segment connecting (zs , i), (zt , i). By Lemma 3.2, there exists a non-decreasing
surjective map ρ∶ [ys , yt]i ∩ Y → [zs , zt]i such that ρ((ys , i)) = (zs , i), ρ((yt , i)) =
(zt , i). (Here both [ys , yt]i and [zs , zt]i are identiûed with interval [0, 1].)

Case 2: If [ys , yt]i ∩Y has at most countablymany points, then it is deûned that there
isno edge connecting (zs , i) and (zt , i). Since [ys , yt]i∩Y is a countable closed subset
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of [ys , yt]i , there exists an open interval (y′s , y′t)i ⊂ (ys , yt)i such that (y′s , y′t)i ∩Y =

∅. Let ρ∶ [ys , yt]i ∩ Y → {(zs , i), (zt , i)} be deûned by

ρ(y) =
⎧
⎪⎪
⎨
⎪⎪
⎩

(zs , i) if y ∈ [ys , y′s]i ∩ Y ,
(zt , i) if y ∈ [y′t , yt]i ∩ Y .

By the above procedure for all adjacent pairs, we obtain a space Z such that
Z ∩ (0, 1)i is a union of ûnitely many intervals for each i ∈ {1, 2, . . . , l}.

Notice that ρ is deûned on each [ys , yt]i∩Y piece by piece, and ρ((ys , i)) = (zs , i)
for each s, i. _e deûnitions of ρ on diòerent pieces are consistent. _en we obtain a
surjectivemap ρ∶Y ∩ (0, 1)i → Z ∩ (0, 1)i . Let ρ∶Y ∩ Sp(F1)→ Z ∩ Sp(F1) be deûned
by ρ(θ j) = θ j for all j ∈ J.

_en we obtain a surjective map ρ∶Y → Z, and we have dist(ρ(y), y) < δ for all
y ∈ Y .

3.2 For any closed subset X ⊂ Sp(A), denote that A∣X = { f ∣X ∣ f ∈ A}. For the ideal
I ⊂ A, there exists a closed subset Y ⊂ Sp(A) such that I = { f ∈ A ∣ f ∣Y = 0}. _en
A/I ≅ A∣Y .

Lemma 3.3 Let A ∈ C be minimal, let ε > 0, Y ⊂ Sp(A) be a closed subset, and let
G ⊂ A∣Y be a ûnite subset. Suppose that δ > 0 satisûes that dist(y, y′) < δ implies that
∥g(y) − g(y′)∥ < ε for all g ∈ G. _en there exists a closed subset Z ⊂ Sp(A) and a
surjectivemap ρ∶Y → Z such that A∣Z ∈ C and G ⊂ε A∣Z , where A∣Z is considered as a
subalgebra of A∣Y by the inclusion ρ∗∶A∣Z → A∣Y .

Proof For a closed subset Y ⊂ Sp(A) and δ > 0, we can construct Z and ρ as in 3.1.
_e surjectivemap ρ∶Y → Z induces a homomorphism

ρ∗∶A∣Z Ð→ A∣Y ,
(ρ∗(g))(y) = g(ρ(y)), ∀y ∈ Y .

_en we have
∥ρ∗(g) − g∥ = max

y∈Y
∥g(y) − g(ρ(y))∥ < ε

for any g ∈ G, and G ⊂ε A∣Z .
We need to verify A∣Z ∈ C. Deûning index sets for Z, we will have

JZ = JY , L0,Z = L0,Y ,
L1,Z ⊃ L1,Y , L l l ,Z = Lrr ,Z = ∅.

We will deûne positive numbers s i for all i ∈ L l ,Z , positive numbers t i for all i ∈ Lr ,Z ,
and positive numbers a i < b i for all i ∈ La ,Z to satisfy that s i < a i < b i (if i ∈ L l ,Z)
and a i < b i < t i (if i ∈ Lr ,Z) as below.
For i ∈ L l ,Z , let s i = max{s ∣ (0, s]i ⊂ Z}. For i ∈ Lr ,Z , let t i = min{t ∣ [t, 1)i ⊂ Z}.

Note that if i ∈ L l ,Z ∩ Lr ,Z , then s i < t i .
For i ∈ L l ,Z , choose a i with s i < a i < 1 such that (s i , a i)i∩Y = ∅. For i ∈ La ,Z/L l ,Z ,

choose a i with 0 < a i < δ such that (0, a i)i ∩ Y = ∅ (we do not need to deûne s i in
this case). Evidently the numbers a i satisûes that a i < t i provided i ∈ Lr ,Z .

137

https://doi.org/10.4153/CMB-2018-020-2 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2018-020-2


Z. Liu

For i ∈ Lr ,Z , choose b i with a i < b i < t i such that (b i , t i)i ∩ Y = ∅. For i ∈
La ,Z/Lr ,Z , choose b i with b i > 1 − δ such that (b i , 1)i ∩ Y = ∅ (we do not need to
deûne t i in this case).
Deûne closed subsets of Sp(A) as below:

Z1 = ∐

i∈La ,Z
[a i , b i]i ,

Z2 = {θ j , j ∈ J} ∪ ∐

i∈L1,Z

(0, 1)i ∪ ∐

i∈L l ,Z

(0, s i]i ∪ ∐

i∈Lr ,Z

[t i , 1)i .

_en Z1 ∩ Z2 = ∅ and Z ⊂ Z1 ∪ Z2, we have A∣Z ≅ A∣Z2 ⊕ A∣Z1 , where A∣Z1 is a direct
sum ofmatrices over interval algebras or matrix algebras.

Now we consider A∣Z2 , for each i ∈ L l ,Z , we denote F i
2 = M l i (C) by F i

2, l , and for
each i ∈ Lr ,Z , we denote F i

2 = M l i (C) by F i
2,r . Let

E1 = ⊕
j∈JZ

F j
1 ⊕ ⊕

i∈L l ,Z

F i
2, l ⊕ ⊕

i∈Lr ,Z

F i
2,r

E2 = ⊕

i∈L1,Z

F i
2 ⊕ ⊕

i∈L l ,Z

F i
2, l ⊕ ⊕

i∈Lr ,Z

F i
2,r .

Write a ∈ F1 by a = (a(θ1), a(θ2), . . . , a(θ p)). Deûne π∶ F1 → F1 by

π(a) = a′ = ( a′(θ1), a′(θ2), . . . , a′(θ p)) ,

where

a′(θ j) =

⎧
⎪⎪
⎨
⎪⎪
⎩

a(θ j) if j ∈ JZ ,
0k j if j ∉ JZ .

_en there exist a natural inclusion ι and a projection ι∗ such that

ι ○ ι∗ = π∶ F1 → F1 ,

ι∗ ○ ι = id∶ ⊕
j∈JZ

F j
1 Ð→ ⊕

j∈JZ
F j
1 .

_en we have if i ∈ L1,Z ∪ L l ,Z , then φ i
0(a) = φ i

0(π(a)) for any a ∈ F1, and if i ∈
L1,Z ∪ Lr ,Z , then φ i

1(a) = φ i
1(π(a)) for any a ∈ F1.

Let ψ0∶ E1 → E2 be deûned as follows:
(1) For the part⊕ j∈JZ F

j
1 in E1, the partial map of ψ0 is deûned to be

⊕

i∈L1,Z

φ i
0 ○ ι ⊕ ⊕

i∈L l ,Z

φ i
0 ○ ι ⊕ ⊕

i∈Lr ,Z

0.

(2) For the part⊕i∈L l ,Z F
i
2, l in E1, the partial map of ψ0 is zero.

(3) For the part⊕i∈Lr ,Z F
i
2,r in E1, the partial map of ψ0 is deûned to be

⊕

i∈L1,Z

0⊕ ⊕

i∈L l ,Z

0⊕ ⊕

i∈Lr ,Z

idi ,

where idi (i ∈ Lr ,Z) is the identity map from M l i (C) to M l i (C).
Similarly, let ψ1∶ E1 → E2 be deûned as follows:
(1) For the part⊕ j∈JZ F

j
1 in E1, the partial map of ψ1 is deûned to be

⊕

i∈L1,Z

φ i
1 ○ ι ⊕ ⊕

i∈L l ,Z

0⊕ ⊕

i∈Lr ,Z

φ i
1 ○ ι.
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(2) For the part⊕i∈L l ,Z F
i
2, l in E1, the partial map of ψ0 is deûned to be

⊕

i∈L1,Z

0⊕ ⊕

i∈L l ,Z

id i ⊕ ⊕

i∈Lr ,Z

0,

where idi (i ∈ L l ,Z) is the identity map from M l i (C) to M l i (C).
(3) For the part⊕i∈Lr ,Z F

i
2,r in E1, the partial map of ψ0 is zero.

Evidently, A∣Z2 ≅ B(E1 , E2 ,ψ0 ,ψ1) ∈ C; then we have A∣Z ∈ C.

We will apply some techniques from [14] and obtain some perturbation results.

Lemma 3.4 Let A = A(F1 , F2 , φ0 , φ1) ∈ C beminimal, B = Mn(C), and let F ⊂ A be
a ûnite subset. Given 1 > ε > 0, there exist η, ε′ > 0 such that, if unital homomorphisms
ϕ,ψ∶A→ B satisfy the conditions
(i) Sp ϕ = Spψ,
(ii) ∥ϕ(h) − ψ(h)∥ < ε′ for all h ∈ H(η) ∪ H̃(η),
then there is a continuous path of homomorphisms ϕt ∶A→ B such that ϕ0 = ϕ, ϕ1 = ψ,
and ∥ϕt( f ) − ϕ( f )∥ < ε for all f ∈ F, t ∈ [0, 1].

Proof Without loss of generality, we can suppose that for each f ∈ F, ∥ f ∥ ≤ 1. Since
F ⊂ A is a ûnite set, there exists an integer m > 0 such that for any dist(x , x′) < 2

m ,
∥ f (x)− f (x′)∥ < ε

2 holds for all f ∈ F, and ε′ will be speciûed later. Set η = 1
2mn ; then

we have ûnite subsets H(η) and H̃(η).
_ere exist unitaries U ,V such that

ϕ( f , a) = U∗ϕ′( f , a)U , ψ( f , a) = V∗ϕ′( f , a)V .

Here we denote ϕ′∶A→ B by

ϕ′( f , a) = diag ( a(θ1)
∼t1 , . . . , a(θ p)

∼tp , f (x1), f (x2), . . . , f (x●)) ,

where x1 , x2 , . . . ∈∐l
i=1(0, 1)i .

Divide (0, 1)i into 2mn intervals of equal length 1
2mn . For each sub-interval

(
k−1
m , k

m )i , k = 1, 2, . . . ,m, there exist an integer a i
k such that

(a i
kη, a

i
kη + 2η)i ⊂ (

k − 1
m

, k
m

)
i

and (a i
kη, a

i
kη + 2η)i ∩ Sp ϕ = ∅.

_en we have

Sp ϕ′ = Sp ϕ′ ∩
l
∐

i=1
([0, a i

1η]i ∪ [a i
mη + 2η, 1]i ∪

m−1
⋃

k=1
[a i

kη + 2η, a i
k+1η]i) .

For each X j = {θ j} and Wj ≜ ∐{i∣α i j /=0}[0, a
i
1η]i ∪∐{i∣β i j /=0}[a

i
mη + 2η, 1]i , we

can deûne h j corresponding to X j ∪Wj for all j ∈ {1, 2, . . . , p}, and we can deûne h i
k

corresponding to [a i
kη + 2η, a i

k+1η]i for each i ∈ {1, 2, . . . , l}, k ∈ {1, 2, . . . ,m − 1}.
Denote

G = {h1 , h2 , . . . , hp , h1
1 , . . . , h

1
m−1 , . . . , h

l
1 , . . . , h

l
m−1} ,

We will construct G̃ as in 2.7:

G̃ = {h ∣ h ∈ H̃(η), κ(h) ∈ G} .
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To deûne ϕ′′∶A→ B, change all the elements

x ∈ Sp ϕ′ ∩ (0, a i
1η]i to 0i ∼ {θ∼α i1

1 , . . . , θ∼α i p
p },

x ∈ Sp ϕ′ ∩ (a i
mη + 2η, 1)i to 1i ∼ {θ∼β i11 , . . . , θ∼β i pp },

change all the elements x ∈ Sp ϕ′ ∩ [a i
k−1η+ 2η, a i

kη]i to (
k−1
m , i) ∈ [a i

k−1η+ 2η, a i
kη]i

for each i ∈ {1, 2, . . . , l}, k ∈ {2, . . . ,m}. Set ω i
k = #(Sp ϕ′ ∩ [a i

k−1η + 2η, a i
kη]i).

_ere exists a unitaryW such that

Wϕ′′( f )W∗
=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

a(θ1)⊗ It′1(x)
⋱

a(θ p)⊗ It′p(x)
f (( 1

m , 1))⊗ Iω1
1

⋱

f ((m−1
m , l))⊗ Iω l

m

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

.

From the construction of ϕ′′, we have

ϕ′(h) = ϕ′′(h), ∀h ∈ G ∪ G̃ .

Let Pj = Wϕ′(h j)W∗, P i
k = Wϕ′(h i

k)W
∗; then P1 , . . . , Pp , P1

1 , . . . , P l
1 , . . . ,P l

m−1 are
projections; some of them may be zero. We rewrite the nonzero ones as P1 , . . . , Pn′ .
Note that n′ ≤ n, and we can write

P1 =

⎛

⎜
⎜
⎜

⎝

Ir1
0

⋱

0

⎞

⎟
⎟
⎟

⎠

, . . . , Pn′ =

⎛

⎜
⎜
⎜

⎝

0
0

⋱

Irn′

⎞

⎟
⎟
⎟

⎠

.

Since
∥ϕ(h) − ψ(h)∥ < ε′ , ∀ h ∈ H(η) ∪ H̃(η),

we have the inequality
∥U∗W∗PrWU − V∗W∗PrWV∥ < ε′ , r = 1, 2, . . . , n′ .

Set W̃ = WVU∗W∗. Let us write the unitary W̃ = (
w11 w1∗
w∗1 w∗∗ ), where the size of w11

is the same as the rank of P1. _en we have ∥w1∗∥ < ε′ and ∥w∗1∥ < ε′. Applying this
computation to P2 , . . . , Pn′ , we then have

XXXXXXXXXXXX

W̃ −

⎛

⎜

⎝

w11
⋱

wn′n′

⎞

⎟

⎠

XXXXXXXXXXXX

< n′2ε′ ≤ n2ε′ .

Writing T = (

w11
⋱

wn′n′
), T is invertible if n2ε′ < 1. _ere is a unitary S such that

T = ∣T∗
∣S, so

∥W̃S∗ − ∣T∗
∣∥ < n2ε′ .

Since W̃S∗ is a unitary and ∣T∗
∣ is close to I to within n2ε′, we have

∥W̃S∗ − I∥ ≤ ∥W̃S∗ − ∣T∗
∣∥ + ∥∣T∗

∣ − I∥ < 2n2ε′ .

Let Rt (t ∈ [
2
3 , 1]) be a unitary path in a 2n2ε′ neighbourhood of I such that R 2

3
= W̃S∗

and R1 = I.
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Since

∥U∗W∗
(Wϕ′(h)W∗

)WU −V∗W∗
(Wϕ′(h)W∗

)WV∥ < ε′ , ∀h ∈ H(η)∪ H̃(η).

_en we have

∥U∗W∗
(Wϕ′(h)W∗

)WU−V∗W∗Rt(Wϕ′(h)W∗
)R∗t WV∥ < 4n2ε′+ε′ < 5n2ε′ ,

for all h ∈ H(η) ∪ H̃(η), t ∈ [
2
3 , 1]. When t = 2

3 , we have

∥S(Wϕ′(h)W∗
) − (Wϕ′(h)W∗

)S∥ < 5n2ε′ , ∀h ∈ H(η) ∪ H̃(η).

For any h ∈ G ∪ G̃, we have ϕ′(h) = ϕ′′(h). _en

∥S(Wϕ′′(h)W∗
) − (Wϕ′′(h)W∗

)S∥ < 5n2ε′ , ∀ h ∈ G ∪ G̃ .

Recall that S has diagonal form S = diag(S1 , . . . , Sn′); write S = (wr
st) as

S =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

⎜

⎝

w1
11 ⋅ ⋅ ⋅ w1

1r1
⋮ ⋱ ⋮

w1
r1 1 ⋅ ⋅ ⋅ w1

r1 r1

⎞

⎟

⎠

⋱

⎛

⎜
⎜

⎝

wn′
11 ⋅ ⋅ ⋅ wn′

1rn′
⋮ ⋱ ⋮

wn′
r′n 1

⋅ ⋅ ⋅ wn′
rn′ rn′

⎞

⎟
⎟

⎠

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

.

_en the matrix wr
st commutes with the matrix units to within 5n2ε′, so there exist

d r
st ∈ C such that

∥wr
st − d

r
st I

r
st∥ < 5n

4ε′ ,
where Irst is the identity matrix with suitable size. Write D = (d r

st I
r
st) as

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

⎜

⎝

d 1
11I

1
11 ⋅ ⋅ ⋅ d 1

1r1 I
1
1r1

⋮ ⋱ ⋮

d 1
r1 1I

1
r1 1 ⋅ ⋅ ⋅ d 1

r1 r1 I
1
r1 r1

⎞

⎟

⎠

⋱

⎛

⎜
⎜

⎝

dn′
11 I

n′
11 ⋅ ⋅ ⋅ dn′

1r′n
In

′

1r′n
⋮ ⋱ ⋮

dn′
r′n 1

In
′

r′n 1
⋅ ⋅ ⋅ dn′

rn′ rn′ I
n′
rn′ rn′

⎞

⎟
⎟

⎠

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

.

_en we have

∥S − D∥ < 5n6ε′ ,
D(Wϕ′′( f )W∗

) = (Wϕ′′( f )W∗
)D, ∀ f ∈ A.

Hence,

∥D(Wϕ′( f )W∗
)−(Wϕ′( f )W∗

)D∥ < 2∥D∥ε′ < 2(1+5n6ε′)ε′ < 12n6ε′ , ∀ f ∈ F .

Decompose D = ∣D∗∣O in the commutant ofWϕ′′( f )W∗. Let R′t (t ∈ [
1
3 ,

2
3 ]) be

an exponential unitary path in that commutant such that R′1
3
= O∗ and R′2

3
= I.

Notice that
∥S∗O∗

− ∣D∗∣∥ < 5n6ε′ .
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Using the same technique as above, we have

∥S∗O∗
− I∥ < 10n6ε′ ,

Hence there is a unitary path R
′′

t (t ∈ [0, 1
3 ]) in a 10n6ε′ neighbourhood of I such that

R
′′

0 = I and R
′′

1
3
= S∗O∗.

Finally, choose ε′ such that 4n2ε′ + 12n6ε′ + 20n6ε′ < ε. We can take ε′ to be ε
40n6 ,

and deûne a unitary path ut on [0, 1] as follows:

u∗t =

⎧
⎪⎪⎪⎪
⎨
⎪⎪⎪⎪
⎩

U∗W∗R
′′

t W if t ∈ [0, 1
3 ],

U∗W∗S∗R′tW if t ∈ [
1
3 ,

2
3 ],

V∗W∗RtW if t ∈ [
2
3 , 1].

Denote

ϕt( f ) = u∗t ⋅ diag ( a(θ1)
∼t1 , . . . , a(θ p)

∼tp , f (x1), f (x2), . . . , f (x●)) ⋅ ut .

_en ϕ0 = ϕ, ϕ1 = ψ, u0 = U , u1 = V , and we will have

∥ϕt( f ) − ϕ( f )∥ < ε

for all f ∈ F, t ∈ [0, 1].

Lemma 3.5 Let A = A(F1 , F2 , φ0 , φ1) ∈ C beminimal, let B = Mn(C), and let F ⊂ A
be a ûnite subset. Given 1 > ε > 0, there exist η, η1 , ε′ > 0, such that if ϕ,ψ∶A → B are
unital homomorphisms that satisfy the following conditions:
(i) ∥ϕ(h) − ψ(h)∥ < 1, ∀ h ∈ H(η1);
(ii) ∥ϕ(h) − ψ(h)∥ < ε′

8 , ∀ h ∈ H(η) ∪ H̃(η),
then there is a continuous path of homomorphisms ϕt ∶A→ B such that ϕ0 = ϕ, ϕ1 = ψ
and

∥ϕt( f ) − ϕ( f )∥ < ε

for all f ∈ F, t ∈ [0, 1]. Moreover, for each y ∈ (Sp ϕ ∪ Spψ) ∩∐l
i=1(0, 1)i , we have

B4η1(y) ⊂ ⋃

t∈[0,1]
Sp ϕt ,

where B4η1(y) = {x ∈∐l
i=1[0, 1]i ∶ dist(x , y) ≤ 4η1}.

Proof Take ε′ , η,m as in Lemma 3.4. Let η1 =
1

m1
<
η
2 satisfy ∥h(x) − h(x′)∥ < ε′

8
for any dist(x , x′) ≤ 4η1 and for all h ∈ H(η) ∪ H̃(η).

_ere exist unitaries U ,V such that

ϕ( f , a) = U∗
⋅ diag ( a(θ1)

∼s1 , . . . , a(θ p)
∼sp , f (x1), f (x2), . . . , f (x●)) ⋅U ,

ψ( f , a) = V∗
⋅ diag ( a(θ1)

∼t1 , . . . , a(θ p)
∼tp , f (y1), f (y2), . . . , f (y●●)) ⋅ V .

where f ∈ A, x1 , x2 , . . . , y1 , y2 , ⋅ ⋅ ⋅ ∈∐l
i=1(0, 1)i .

From condition (i) and Lemma 2.4, for each i ∈ {1, 2, . . . , l}, there exists X i ⊂

Sp ϕ∩(0, 1)i , X′
i ⊂ Spψ∩(0, 1)i with X i ⊃ Sp ϕ∩[η1 , 1−η1]i , X′

i ⊃ Spψ∩[η1 , 1−η1]i
such that X i and X′

i can be paired to within 2η1 one by one. Denote the one to one
correspondence by π∶X i → X′

i .
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To deûne ϕ′, change all the elements xk ∈ (0, η1)i/X i to 0i ∼ {θ∼α i1
1 , . . . , θ∼α i p

p }

and xk ∈ (1 − η1 , 1)i/X i to 1i ∼ {θ∼β i11 , . . . , θ∼β i pp }, and ûnally, change all the xk ∈

X i to π(xk) ∈ X′
i . To deûne ψ′, change all the elements yk ∈ (0, η1)i/X′

i to 0i ∼

{θ∼α i1
1 , . . . , θ∼α i p

p } and yk ∈ (1 − η1 , 1)i/X′
i to 1i ∼ {θ∼β i11 , . . . , θ∼β i pp }. _en we have

Sp ϕ′ ∩ (0, 1)i = Spψ′ ∩ (0, 1)i

for all i = 1, 2, . . . , l .
Since 2η1 < η = 1

2mn , then for each [0, 1]i , there exist integers a i , b i with 1 < a i <

a i + 2 ≤ b i < m1 such that

Sp ϕ ∩ (a iη1 , b iη1)i = Spψ ∩ (a iη1 , b iη1)i = ∅.

_en for X j = {θ j} and Wj ≜ ∐{i∣α i j /=0}[0, a iη1]i ∪∐{i∣β i j /=0}[b iη1 , 1]i , we can
deûne h j corresponding to X j and Wj in H(η1), then ϕ(h j),ψ(h j) are projections
and

ϕ(h j) = ϕ′(h j), ψ(h j) = ψ′(h j), ∥ϕ(h j) − ψ(h j)∥ < 1,

for each j = 1, 2, . . . , p, this fact means that

Sp ϕ′ ∩ Sp(F1) = Spψ′ ∩ Sp(F1).

Now we have Sp ϕ′ = Spψ′.
For each xk ∈ Sp ϕ ∩ (0, 1)i , deûne a continuous map

γk ∶ [0, 1
3 ] Ð→

l
∐

i=1
[0, 1]i

with the following properties:

γk(0) = xk ;(i)

γk(
1
3) =

⎧
⎪⎪⎪⎪
⎨
⎪⎪⎪⎪
⎩

0i if xk ∈ (0, η1)i/X i ,
π(xk) if xk ∈ X i ,
1i if xk ∈ (1 − η1 , 1)i/X i ;

(ii)

Iγk = B4η1(xk) = {x ∈
l
∐

i=1
[0, 1]i ;dist(x , xk) ≤ 4η1} .(iii)

Deûne ϕt on [0, 1
3 ] by

ϕt( f ) = U∗
⋅ diag ( a(θ1)

∼s1 , . . . , a(θ p)
∼sp , f (γ1(x)), f (γ2(x)), . . . , f (γ●(x))) ⋅U .

_en ϕ 1
3
= ϕ′ and

∥ϕ(h) − ϕ′(h)∥ <
ε′

8
, ∀ h ∈ H(η) ∪ H̃(η).

Similarly, for each yk ∈ Spψ ∩ (0, 1)i , deûne a continuous map

γ′k ∶ [
2
3
, 1] Ð→

l
∐

i=1
[0, 1]i
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with the following properties:

γ′k(
2
3
) =

⎧
⎪⎪⎪⎪
⎨
⎪⎪⎪⎪
⎩

0i if yk ∈ (0, η1)i/X′
i ,

yk if yk ∈ X′
i ,

1i if yk ∈ (1 − η1 , 1)i/X′
i ;

(i)

γ′k(1) = yk ;(ii)

Iγ′k = B4η1(yk) = { y ∈
l
∐

i=1
[0, 1]i ;dist(y, yk) ≤ 4η1} .(iii)

Deûne ϕt on [
2
3 , 1] by

ϕt( f ) = V∗
⋅ diag ( a(θ1)

∼t1 , . . . , a(θ p)
∼tp , f (γ′1(y)), f (γ

′
2(y)), . . . , f (γ

′
●●(y))) ⋅ V .

_en ϕ 2
3
= ψ′, and

∥ψ(h) − ψ′(h)∥ <
ε′

8
, ∀h ∈ H(η) ∪ H̃(η).

∥ϕ′(h) − ψ′(h)∥ <
ε′

8
+

ε′

8
+

ε′

8
<

ε′

2
, ∀h ∈ H(η) ∪ H̃(η).

Apply Lemma 3.4; then there is a continuous path of homomorphisms ϕt ∶A → B,
t ∈ [

1
3 ,

2
3 ], such that ϕ 1

3
= ϕ′, ϕ 2

3
= ψ′ and

∥ϕt( f ) − ϕ′( f )∥ <
ε
2
, ∀ f ∈ F .

Now we have a continuous path of homomorphisms ϕt ∶A → B such that ϕ0 = ϕ,
ϕ1 = ψ and ∥ϕt( f ) − ϕ( f )∥ < ε for all f ∈ F, t ∈ [0, 1].
From property (iii) of γk and γ′k , for any y ∈ (Sp ϕ ∪ Spψ) ∩∐l

i=1(0, 1)i , we have

B4η1(y) ⊂ ⋃

t∈[0,1]
Sp ϕt .

where B4η1(y) = {x ∈∐l
i=1[0, 1]i ∶ dist(x , y) ≤ 4η1}.

_eorem 3.6 Let A, B ∈ C, let F ⊂ A be a ûnite subset, let Y ⊂ Sp(B) be a closed
subset, and let G ⊂ B∣Y be a ûnite subset. Let ϕ∶A → B∣Y be a unital injective homo-
morphism; then for any ε > 0, there exist a closed subset Z ⊂ Y and a unital injective
homomorphism ψ∶A→ B∣Z such that
(i) ∥ϕ( f ) − ψ( f )∥ < ε, ∀ f ∈ F;
(ii) G ⊂ε B∣Z ∈ C.

Proof Set n = L(B), choose ε′ , η, η1 as in Lemma 3.5; then there exists δ > 0 such
that for any dist(y, y′) < δ, we have the following:

∥ϕy(h) − ϕy′(h)∥ < 1 ∀h ∈ H(η1),

∥ϕy(h) − ϕy′(h)∥ <
ε′

8
∀h ∈ H(η) ∪ H̃(η),

∥g(y) − g(y′)∥ < ε ∀g ∈ G .
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Applying Lemma 3.3, we can obtain a closed subset Z and a surjectivemap ρ∶Y → Z
such that G ⊂ε B∣Z ∈ C.

We will deûne an injective homomorphism ψ∶A→ B∣Z as follows.
Recall the construction of Ŷ and P(Z) in 3.1. Let P(Z) = {z1 , z2 , . . .} be the points

corresponding to the ûnite points {y1 , y2 , . . .} = Ŷ . Deûne
ψzk( f ) = ψρ(yk)( f ) = ϕyk( f ), ∀ f ∈ A, zk ∈ {z1 , z2 , . . .}.

For each adjacent pair {(ys , i), (yt , i)}, if (ys , yt)i ∩ Y has at most countably many
points, then (zs , zt)i∩Z = ∅, andwe do not need to deûneψ on (zs , zt)i , if (ys , yt)i∩

Y has uncountablemany points, thenwe have dist((ys , i), (yt , i)) < δ and [zs , zt]i ⊂
Z. _en by Lemma 3.5, we can deûne ψ on [zs , zt]i and

∥ψz( f ) − ϕ(ys , i)( f )∥ < ε, ∀ f ∈ F , ∀ z ∈ [zs , zt]i .

Applying the above procedure to all adjacent pairs in Ŷ , we can deûne ψ on each
[zs , zt]i ⊂ Z piece by piece, then we obtain ψ on Z ∩∐l

i=1[0, 1]i . For each θ j ∈ Z ∩
Sp(F1), deûne ψθ j( f ) = ϕθ j( f ) for all θ j ∈ Y ∩ Sp(F1). _en we have deûned ψ on Z
and ψ satisûes property (i).

To prove ψ is injective,we only need to verify that Spψ = ⋃z∈Z Spψz = Sp(A). _e
proof is similar to the corresponding part of [10].

Write A = ⊕
m
k=1 Ak with all Ak minimal. _en Sp(A) = ∐m

k=1 Sp(Ak). Deûne an
index set Λ ⊂ {1, 2, . . . ,m} such that Ak is a ûnite dimensionalC∗-algebra if and only
if k ∈ Λ. For k ∈ Λ, ϕ∣Ak /= 0 means that Sp(Ak) ⊂ Sp ϕ, by the deûnition of ψ, we
have ψ∣Ak /= 0, then Sp(Ak) ⊂ Spψ.
Consider Ã = Ã(F̃1 , F̃2 , φ̃0 , φ̃1) = ⊕k∉Λ Ak . We deûne two sets Y ′ ,Y ′′

⊂ Y , for
each adjacentpair {(ys , i), (yt , i)}. If (ys , yt)i∩Y has atmost countablymanypoints,
let (ys , yt)i ∩Y ⊂ Y ′. If (ys , yt)i ∩Y has uncountablymany points, let [ys , yt]i ∩Y ⊂

Y ′′. _en we have Y ′
∩ Y ′′

= ∅ and Y ′
∪ Y ′′

= Y ∩∐
l
i=1[0, 1]i . Note that Y ′ has at

most countably many points.
For any point x0 ∈ ∐

l
i=1(0, 1)i and Bη1(x0) = {x ∈ Sp(Ã) ∶ dist(x , x0) ≤ η1},

Bη1(x0)∩(⋃y∈Y ′ Sp ϕy) have atmost countablymany points. Following the injectivity
of ϕ, we have

Bη1(x0) ⊂ Sp ϕ = ⋃

y∈Y ′′
Sp ϕy ∪ ⋃

y∈Y ′
Sp ϕy ∪ ⋃

y∈Y∩Sp(F̃1)

Sp ϕy .

_en the set⋃y∈Y ′′ Sp ϕy∩Bη1(x0)has uncountablymanypoints. Recall the deûnition
of Y ′′; there is at least one adjacent pair {(ys , i), (yt , i)} such that [ys , yt]i ∩ Y has
uncountably many points. _en we have ψ deûned on [zs , zt]i ⊂ Z.
Choose

x1 ∈ ⋃

y∈[ys ,y t]i∩Y ′′
Sp ϕy ∩ Bη1(x0);

then there exists x2 ∈ Sp ϕ(ys , i) such that dist(x1 , x2) ≤ 2η1. We have
dist(x0 , x2) ≤ dist(x0 , x1) + dist(x1 , x2) ≤ 3η1 < 4η1 .

By Lemma 3.5, we will have

x0 ∈ B4η1(x2) ⊂ ⋃

z∈[zs ,z t]i

Spψz .
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_is means that∐l
i=1(0, 1)i ⊂ Spψ.

Note that, if we choose x0 such that x0 ∈∐l
i=1(0, η1)i ∪ (η1 , 1)i , then we will have

0i , 1i ∈ Spψ for all i ∈ {1, 2, . . . , l}, this means that Sp(F̃1) ⊂ Spψ.
Now we have

Spψ = ⋃

z∈Z
Spψz = Sp(Ã) ∪ ∐

k∈Λ
Sp(Ak) = Sp(A).

_is ends the proof of the injectivity of ψ.

Remark 3.7 _eorem 3.6 still holds if we let ϕ be non-unital, then the homomor-
phism ψ will also be non-unital.

Proof of [10,_eorem 3.1] Let Ãn = ϕn ,∞(An), n = 1, 2, . . . . _en we can write
A = limn→∞(Ãn , ϕ̃n ,m), where the homomorphism ϕ̃n ,m are induced by ϕn ,m , and
they are injective.

Let εn = 1
2n , {x i}

∞
i=1 be a dense subset of A. Wewill construct an injective inductive

limit B1 → B2 → ⋅ ⋅ ⋅ as follows.
Consider G1 = x1 ⊂ A. _ere is an Ã i1 , and a ûnite subset G̃1 ⊂ Ã i1 such that

G1 ⊂ ε1
2
G̃ i1 .

For G̃1 ⊂ Ã i1 , apply Lemma 3.3; there exists a sub-algebra B1 ⊂ Ã i1 such that B1 ∈ C

and G̃1 ⊂ ε1
2
B̃1. _is give us an injective homomorphism B1 ↪ Ã i1 . Let {b1 j}∞j=1 be a

dense subset of B1. Set F̃1 = {b11} ⊂ B1 and G2 = {x1 , x2} ⊂ A. _ere exist Ã i2 , i2 > i1
and a ûnite subset G̃2 ⊂ Ã i2 such that G2 ⊂ ε2

2
G̃2. Apply_eorem 3.6 and Remark 3.7

to F̃1 ⊂ B1, G̃2 ⊂ Ã i2 , and the injectivemap B1 ↪ Ã i1 → Ã i2 ; there exist a sub-algebra
B2 ⊂ Ã i2 and an injective homomorphismψ1,2∶B1 → B2 such that G̃2 ⊂ ε2

2
B̃2 and such

that the diagram

Ã i1
ϕ̃ i1 , i2 // Ã i2

B − 1

OO

ϕ̃ i1 , i2 // B2

OO

almost commutes on F̃1 to within ε1. Let {b2 j}
∞
j=1 be a dense subset of B2. Choose

F̃2 = {b21 , b22} ∪ {ψ1,2(b11),ψ1,2(b12)}, G3 = {x2 , x2 , x3}

in the place of F̃1 andG2 respectively, and repeat the above construction to obtain Ã i3 ,
B3 ⊂ Ã i3 and an injective map ψ2,3∶B2 → B3 (using ε2 and ε3 in place of ε1 and ε2,
respectively).
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In general, we can construct the diagram

Ã i1
ϕ̃ i1 , i2 // Ã i2

ϕ̃ i2 , i3 // Ã i3
// ⋅ ⋅ ⋅ Ã ik

// ⋅ ⋅ ⋅

B1

OO

ψ1,2 // B2

OO

ψ2,3 // B3

OO

// ⋅ ⋅ ⋅ Bk

OO

// ⋅ ⋅ ⋅

with the following properties:
(i) _e homomorphism ψk ,k+1 are injective;
(ii) For each k, Gk = {x1 , x2 , . . . , xk} ⊂εk ϕ̃ ik ,∞(Bk), where Bk is considered to be

a sub-algebra of Ã ik ;
(iii) _e diagram

Ã ik

ϕ̃ ik , ik+1// Ã ik+1

Bk

OO

ψk ,k+1 // Bk+1

OO

almost commutes on F̃k = {b i j ; 1 ≤ i ≤ k, 1 ≤ j ≤ k} to within εk , where {b i j}
∞
j=1 is a

dense subset of B i .
_en by [3, 2.3 and 2.4], the above diagram deûnes a homomorphism from B =

lim
Ð→

(Bn ,ψn ,m) to A = lim
Ð→

(Ãn , ϕ̃n ,m). It is routine to check that the homomorphism
is in fact an isomorphism. _is concludes the proof.
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