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1. Introduction. If the Sturm-Liouville eigenvalue
problem

(1.1) (py")' + (a+xg)y =0, y(a) = y(b) = 0,

is first approached from the standpoint of differential equations
theory - as opposed, say, to the calculus of variations, or the
theory of integral equations - the extremal properties of the
eigenvalues seem to be generally regarded as lying beyond the
scope of the theory. Thus, neither in the standard work of
Bocher [1], nor in the recent work of Coddington and Levinson
2] is any mention made of this topic. Collatz [3, 166-8]
gives an elementary proof of the minimum property of the least
positive eigenvalue of (1.1), and a brief indication of how this
argument can be extended to the higher eigenvalues. The pur-
pose of this paper is to consolidate this elementary approach,
and to extend it to cover the singular cases where either the
interval is infinite, or one or more of the coefficients are
singular at the end-points.

2. The principal integral inequality. The extremal

properties of the eigenvalues of the Sturm-Liouville equation
can all be based on the following theorem.

THEOREM 2.1. Let p(x) and G(x) be continuous, and
p(x) > 0 for a<x<b. Suppose the self-adjoint equation

(2.1) (py") + Gy =0

has a solution y(x) # 0 on a<x<b, and that
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(2.2) (x-a)y'(x)/y(x) = O(1) as x—>a+, (b-x)y*(x)/y(x)=0(l)asx->b-.
If both of the conditions

(2.3); p(x) = O(x-a) or p(x) Axp'l(t)dt = O(x-a) as x-»a+,

b
(2.3)2 p(x) = O(b-x) or p(x) / .p‘l(t)dt = O(b-x) as x—»b-,
x

hold, then

b! b
(2.4) T, piop / G(x)u2(x)dx é/ p(x)u'%(x)dx
a' a

holds for any function u(x) whose derivative is (absolutely)
integrable on a € x <b, and for which

St
(2.5) u(a) = u(b) = 0, pu'“dx < o,
a

Before proving the theorem, we point out that it is valid
if a or b, or both, are infinite, provided the order conditions
are modified to read

x ey (x)/y(x) = O{1) as |x| — o,
and x
p(x) = O(x) or p(x)/ p"l(t)dt = O(x) as x—=>- o,
-
with a.similar condition at b, if b is infinite. In the case that
a is finite, the first of conditions .(2.2) will be assured if y(x)

is continuous ona=xs<b, and if limx_’a_‘,y'(x) exists.

To prove the theorem, set h = y'/y, and note that h(x)
satisfies the Riccati equation

(2.6) (ph)' = - G - phé, a<x<b.

Now for any a', b' with a <a'<« b'« b, consider the integral

bl
A' p(u' - hu)2dx

(2.7) I(a',b?) =
b! b! b!
= / pu‘zdx - 2/ phuu'dx+/ phzuzdx,
al al a!'
where u(x) is any admissible function, i.e., any function satisfy-
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ing the hypotheses following (2.4). These integrals all exist
since p(x) and h(x) are continuous ona'< x<b'. Also, since
p(x)> 0 ona<x<b, it follows that

(2.8) I{(a',b') >0 unless u'(x)= h(x)u(x), a'<xsb',

that is, unless u(x)=cy(x) ona'< x<b'. Moreover if I(a',b') >0
for any fixed a',b', then we clearly have

limat 52, b'—sb La',b) >0,

(possibly + »). Integrating by parts the second term in the
above expansion of I(a',b'), and making use of (2.6), (2.7), we

obtain
b! b! b!
I(a',b') = / pu'dx - / Gu?dx - phu?
a' a' at
Hence
b! b! b!
2 128 - 2
(2.9) /a' Gu“dx QA' pu'?dx - phu® | o,

where equality holds if, and only if, u(x)= cy(x).

We shall now prove that
(2.10)  lima'_, 5 phu? = 0, and limp1 _, phu’ = 0 .
We deal with the case a'—» a, the other proof being identical.
If the first of conditions (2.3); holds, then using this and (2.2)
we obtain

for x near a+, so that (2.10) follows from (2.5). -1f the second
of conditions (2. 3); holds, we use the fact that

a(x) = '/axu‘(t)dt.

Hence,

X
lu(x)] < A lw| dc=/ax(p%|u-|).(p'%)dt

< (/a"pu-zdt)%(f:p-ldt)%,
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SO

X
u(x) < k3(x) / p-lat,
a

where k3(x)— 0 as x = a+ by the second of conditions (2.5).
Thus, using (2.3)] we obtain

|phu?| < kikgks(x) ,
so (2.10) also follows in this case.

Using (2.10), the inequality (2.4) now follows from (2.9)
on letting a'— a and b'—b. By the remarks following (2. 8),
equality can hold in (2.4) only if u(x) =cy(x). However, cy(x)
may not be admissible.

COROLLARY 2.1.1. Equality holds in (2.4) if, and only
if, u(x) = cy(x), where c = 0 unless y'(x) is absolutely integrable
onas< x =< b, and

b
(2.11) y(a) = y(b) = 0, / py'%dx < .
a

COROLLARY 2.1.2. If either y(x) is admissible, or if
G(x) = 0 (but G# 0), and y(x) is continuous on a < x < b with
y(a) = y(b), and either )

b! b

(2.12) py'zdx = ™, or py‘zdx = &,
a al

and

(2.13) limy 4 |PYYY < o, limy o1 [PYY'] < o,

then the inequality (2.4) is best possible in the sense that the
unit constant on the right side of (2.4) cannot be replaced by
any smaller factor.

The corollary is obviously valid if y(x) is admissible;
hence we suppose G(x)= 0, y(a) = y(b), and

1
/b PY‘ZdX= &,
a

as well as the conditions (2.13). In this case, let u(x) be

defined by
0, asx =<a',
u(x) = ¢ y(x)-y(a'), a'e x <b',
0, b'=sx <b,
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where a! and b' will be assigned later, and in such a way that
y(a') = y(b'). This u(x) is an admissible function, and using
(2.9) and (2.1) we have

b b! 5
/;l Guldx = A. G [y(x)-y(a")] “dx

b! b! b! 2
/, Gy2dx - 2y(a') -/' Gydx + y2(a') . ot G4dx
a a
a

b! b! b! . b!
/| py'zdx - phy2 Ia' + 2y(a') ._/a' (py") dx + yz(a‘)./;' szx .

Hence,

b b b!
Guldx > py'2dx - pyy' + 2y(a') (py")
a a' al

b A
= / pu'2dx - p(a')y(a')y'(a') - p(b")y(b")y'(b") + 2y(a') p(b")y'(b).
a

i

b!

a!l

Given & (0 < § < 1), this last expression will exceed

b2
(1- 8&) a pu'“dx, provided

b!
SA, py'2dx > p(a')y(a')y'(a') + p(b")y(b")y'(b') - 2y(a')p(b')y'(b").

We will shortly show that, given a' sufficiently close to a, there
exists b'< b such that y(a') = y(b'). Assuming this for now, our
result will be proved if we can choose a' so that

bt
5A, py'2dx > p(a')y(a')y'(a) - p(b')y(b")y'(b).
Now, the right side of this inequality does not exceed
|p(al)y(@y'(a)l + |p(d")y(b)y'(bY)]

which, according to (2.13), remains finite as a' —+a. Since the
left side diverges to +®» as a'— a, the result follows.

It remains only to prove the assertion relating to
y(a') = y(b'). Since y(x) is continuous ona < x < b, and y'(x)
exists ona < x <b, with y(a) = y(b), it follows that there exists
o , a <a < bsuchthat y'(x) = 0. Moreover, assuming
y(x) >0 on a < x < b, it follows from the fact that G(x) > 0 that
we have
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y(x)30 for a<x<ca, y'(x)=20 for a<x <b.

By the first of conditions (2.12), we cannot have y(x)=y(« ) for
'x near a, so that y(x) is strictly increasing fora<x<a + € .,
Hence, if a <a'<a +¢ we have y(a) <y(a') < y(e« ). It then
follows from y(«x ) >y(a') > y(b) that there exists b' on x<x<b
with y(b') = y(a').

A similar proof shows that the corollary is valid when
the second of conditions (2.12) holds.

Before leaving this section, we want to point out that
hypotheses (2.2), (2.3) could be discarded provided the class
of admissible functions for (2.4) satisfied the following condi-
tions:

u(x) e C, a<x <b;

u'2(x) is integrable for every interval [a',b'] < (a,b);

(2.14)

limy _, a4 phu? = limy ,p. phu?

/bpu'zdx < ®.
a

For this class of admissible functions, (2.4) wvould be a strict
inequality unless u(x) = cy(x), where c = 0 unless

< ©;

b
(2.15)  limy _, a4 PYY' = lim, _,_ pyy', and / py'édx < o.
a

Moreover, corollary 2.1.2 remains valid for the admissible
class (2.14).

3. Extremal Properties. We consider the Sturm-
Liouville problem

(3.1) (py") '+ (@+ X gy = 0, y(a) = y(b) = 0,

where we assume that p, q, g are continuous for

a<x<b (- ®<a<b s, and p(x) > 0 ona <x<b. Throughout
this section we shall assume the existence of a sequence

A s A 2+ «+. of eigenvalues of (3.1), and a corresponding
sequence y), yp, ... of eigenfunctions, each of which has only
a finite number of zeros on a< x <b. The simple boundary
conditions of (3.1) may often be replaced by less stringent
conditions (which we shall note later in connection with some
singular problems).
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THEOREM 3.1. Suppose that p(x) satisfies conditions
(2.3), that the eigenfunctions y,(x) of (3.1) satisfy condition
(2.2) and that y}(x) is absolutely integrable on a< x<b, with

b
A py{lzdx < o, If lm# An’ then

Proof. Using the fact that y,, y, satisfy (3.1) for

A = )‘m’ A o respectively, we obtain

b bt bt
(3.2) (ln - xm) A' gYnYm9x = yu(Pyy) la‘ = Ym(PYyn) al
in the usual way. We now prove, more or less as in Theorem
2.1, that
(3.3) limg1 5 5 P(a')yn(a')yyp(a’) = 0,

with a corresponding result as b'— b, whence the desired con-
clusion will follow from (3.2).

The proof of (3.3) makes essential use of the boundary
conditions yp(a) = yp(b) = 0, as well as conditions (2.2) and
(2.3). On the other hand, the orthogonality conclusion of the
theorem follows from (3.2) even if some or all of these con-
ditions are not satisfied, provided

(3.4) limy  a+ P(Yn¥in-YmYn) = imy b P(Yn¥in-YmYh) = 0.
THEOREM 3.2. Letp, q, g, Yns A, satisfy the

hypotheses assumed in the preceding theorem. Suppose y, has

consecutive zeros at Xos K] eves Xpiqo where

a=Xp<Xj) < ee. <Xpy] =b. Letu(x) be any function satisfying

the conditions:

() u'(x) is absolutely integrable on a «x < b;

(B)ulxs) =0, Ocisktl;

b b
(3) / pu'zdx < o™, / |qluddx < ®,0 </b guldx < .
a a a

Then

b b b
(3.5) Ap < (/a pu'dx - '/; qu‘?'dx)/./a guldx.
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Moreover, equality can hold in (3.5) only if
(3.6) u(x) = cjyn(x), x_]ex<x, leicktl,

To prove this result, we will apply theorem 2.1 to the
successive subintervals x;_j < x <xj. By our assumptions, the
hypotheses of this theorem are satisfied at x, = a and xp,) = b.
At an interior x;j, (2.2) is also satisfied since y}(x;) exists.
(cf. the remark preceding the proof of theorem 2.1.) More-
over, since p(x) is continuous and positive at an interior Xi-1»
we have

0<kj_j <p(x)<Kj_

in a neighbourhood of %;.1. Hence

S | x .1
p(x) p-lt)at < K 3 / k{1pdt = O(x-x;_1).
Xj-1 Xj.1

Similarly, p(x) satisfies the second of conditions (2. 3)2 at xj.

Since u(x) also satisfies all the hypotheses of theorem 2.1
on the subintervals %;_] = x «x;, we have

- x-
/xl {q+ A _g} uldx 5/ ' pu'2dx, 1s<is<k+l.
X

i-1 Xj-1

By Corollary 2.1.1 the equality sign holds here only if (3.6) is
satisfied.

In accordance with the remarks concerning (2.14), (2.15)
we may drop the boundary conditions yp(a) = yu(b) = 0, as well
as the conditions (2.2) and (2. 3) for yp(x) and p(x) respectively,
provided the class of admissible functions u(x) satisfy the
following conditions:

u(x) € C, a<x<b;

u‘z(x) is integrable for every interval [a',b] < (a,b);

(3.7) limy _y a4 PYhyR u? = limy _, b= py;lyaluz =05

u(xj) = 0, 1=i<k;

b b
/ putldx < =, / lqlufdx < ®, 0 </bgu2dx < ®,
a a a
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For the class of admissible functions satisfying (3.7), equality
can hold in (3.5) only if u(x) satisfies (3.6) where c] = Ck+1 = 0
unless

(3.8) 1irnx__>a+ PYnYp = limy _, po pyny;1 =0,

An example of a singular problem which is included in
this latter formulation is the Legendre equation

{(1-x%)y'} '+ Ay =0, y(21) bounded,

with eigenvalues ln = n(n+l), n = 0, and corresponding
eigenfunctions Pp(x) having n zeros on -1 <x <1. In this case,
the third of conditions (3.7) is satisfied if u(x) is bounded near
x = +1, while condition (3.8) is also satisfied. Here our con-
clusion is that if u(x) is any admissible function (in particular,
u(x) should be bounded near x = %1, and u(x) should vanish
where Pp(x) = 0), then

1 1
n(n+1) s/l(l-xz)u'zd::%/luzdx,

equality holding only if u(x) is a (piecewise) multiple of P, (x)
on the subintervals between successive zeros of P,(x).

THEOREM 3.3. Under the preceding hypotheses on
P, 9, g, and on the eigenfunctions yn(x) corresponding to the
eigenvalue A n ©f (3.1), suppose in addition, that
A <Ay <caii<A <A 1< ..., and that y (x) bas ky < n-1
zeros on the open interval a <x <b. Finally, we assume that

b b 2. b 2 .
Pyi“dx < o, / laly§dx < o, 0 </ gyldx<oo, l<i=<n.
a. a a

Let U(x) be any function satisfying the hypotheses (x ), (y) of
theorem 3.2, as well as the orthogonality conditions

b
(3.9) / gyjUdx=0, i=1, 2, ..., n-1,
a

Then

b b
(3.10) A < (/pr‘de - / qUde) // gU2dx for n » 2.
a a a

Moreover, equality holds in (3.10) if, and only if
U(x) = cyn(x), a sx=b.
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We begin the proof by constructing a function u(x) which
satisfies the hypotheses of theorem 3.2. To this end, set

(3.11) ux) = ’:;11 ciy;(x) - Ux).

Suppose the zeros of y (x) are a = x <X} < ... < xp<Xp,]~b,
where k «n-1. Since u(a) = u(b) = 0 for any c;, u(x) will satisfy
(@) if and only if the ¢j can be chosen so that

n-1
(3.12) o) evilx) = UG, G=1,2, ..., ke

If all U(xj) = 0, we may take all ¢; = 0; in this case (3.10) is a
consequence of theorem 3.2. Hence we may assume that
(3.12) is a2 pon-homogeneous system. We defer until later

the proof that this system has a (necessarily non-trivial) solu-
tion.

With u(x) - assumed defined by (3.11), (3.12) - satisfying
(@ ), we observe that condition («x ) of theorem 3.2 is also
satisfied by u(x) in virtue of our hypotheses concerning the
yi(x). It remains to verify ( y); in doing so we shall note
certain auxiliary results. From (3.11) we have

b n-1 b b
/ pu'zdx=z 1 czi / pyiz'dx+ / pU‘de+
a a a
b ] 1
+22, i#j CiC; _/a PY; v dx
n-1 b
-2 G /a pU'yldx.

However,
b! b! b!
tvidx = pyly. - (pyi)td
'/;' PYIYJOX = PYgY; |, _/; yj(py])tdx
b! b!
= py]!.yj + {q + Aig} yiyjdx.
a! a'

As a' ->a and b' — b, the right side of this equation tends to

b
/ qyjyjdx by theorem 3.1 and equation (3.3). This latter
a

integral exists as is easily seen by the Cauchy-Schwarz
inequality. Thus we have

68

https://doi.org/10.4153/CMB-1960-010-3 Published online by Cambridge University Press


https://doi.org/10.4153/CMB-1960-010-3

b b L
(3.13) / pyyidx = / ayyyydx, i# )
a a

Similarly, using (3.9) we obtain

b b
(3.14) / pU'yjdx = / qUy;dx, l<i<n-1,
a a

(Here we used the conditions U(a) = U(b) = 0.) We now have

b
/ pu‘zdx
a
n-1 b b b
i 3 [ Poytaxs [ pu . v
(3.15) 1 1/, pyj“dx + N pU'“dx + Zzi#j CiC; aqyldex

n-1 b
-2 Z 1 Si / qUy;dx < oo,
a

A similar expansion together with several applications of the
Cauchy-Schwarz inequality also gives

b
A Iqluzdx < .
Note that

b
/abpu'zdx - / quzdx
a
(3.16)

- b ' b
- {/ pyizdx-/ qyzdx} A pU'de-/; qUde.

Finally, applying theorem 3.1 and (3.9), we obtain
b b
(3.17) / guldx = 11 2 f gy2dx+ / gU%dx,
a a

and hence

L)
0 < agudx<0t>.

by our hypotheses on U and the yj.

It now follows from theorem 3.2, (3.16), (3.17) that

/ PYi 12dx - / qyzdx / pU‘de- /qude
a

n-1 b . b
1 c"; /;. gyzidx+ /; gUde
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On the other hand, theorem 3.2 also gives

/abPYizdx - / bqyzldx =% /bgyzidx, l<i<n-1,
. a : a

so that
n-1y 2 b 2 b_ 2 b_ 2
Z )‘ici . gyidx+ / pU'4dx - / qU4dx
1 a a a

Zn-ll czi /bgyzidx+ /bgUde
a a

n-1
Z ! MA; + N

Zn;lAi'PD

where all A;> 0, D >0. Using the fact that A; - ln< 0, and
that at least one A; > 0 (in the case we are considering), this
inequality implies that

Ay <N/D
proving (3.10) with strict inequality.

We now prove that the non-homogeneous system (3.12)
has & solution. The matrix of coefficients of these equations
is the k X (n-1) matrix A with elements ajj given by

ajj = vilx).

If r(A) = k, the system has a solution. Suppose r(A) = r< k.
Then any (r+1) columns of A are linearly dependent, and there
are constants €}, ..., Cpy] DOt all zero such that

r+l .
> 1 Civilxy) = 0, lejsk.
r+1
Define v(x) = Zi:lciyi(x)' Then v(a) = v(x;) = ... = v(xk)
= v(b) = 0. As in'the details following equation (3.12), one sees

that v(x) is an admissible function for the minimum problem
(3.5) so that

b b b
2 24+ =
Kn < ( /a pv'édx - A qv dx) //; gucdx = Q.
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On the other hand, we now show that, in fact,

XlsQ skr“s).k <xn;

so that r(A) = k follows from this contradiction. To see this
one shows, precisely as in equations (3.13) - (3.17), that

Zr+1 2 A / gyzdx/ZHl 2 gyzdx

- T ek

b
where d; = Aj /Zr-lil Aj’ AiA= czi ./a gyzidx, so that all d; =2 0,

and STl =1,

By hypothesis,

Q

xlelisxr+1, l=sis<r+l,
whence

Zr+1d1 < Zr+1 A. d < lr+lzr~;1di= Ar-l-l'

establishing our contradiction.

It only remains to discuss the possibility of equality in
(3.10). We have shown this can only occur when U(x) also
satisfies condition ( # ) of ‘theorem 3.2. By this same theorem,
equality can then hold in (3.10) only if

(3.18) U(x) = cjyp(x), x5 1<x<x, 1siskt+l,

We now show that the only such U(x) which also satisfy conditions
(3.9) have all ¢; equal. This will complete the proof of our
theorem. Suppose then that U(x) satisfies both (3.18) and (3.9).
Then

k+1 X )
i=1C€i / t ngYndX= 0, l1<jsn-1.
%i-1

b k+1 / %i
y.dx = . s2y..dx = 0,
/a gYJYn i=1 xi-l gYJYn

by theorem 3.1. Multiplying the last equation by ¢) and sub-
stracting from each of the preceding equations gives

Now,
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(3.19) KL (eimcy) /x‘ gY¥ndx = 0, 1<jsn-l.
Xi-1 ‘

Since k £ n-1, this system of n-1 equations has only the trivial
solution cj-c] = 0, unless the determinant of coefficients of
the first k equations is zero. However, if this determinant
were zero there would exist constants 2y, e.es @y, not all
zero, such that

: '/Xi yodx = 0, 2<i i:l

j=laJ xi.-lgy‘]yn x =0, =i<k+l,
. k c e .

Setting u(x) = E j:lajyj(x)’ this implies

(3.20) /"1 gypudx = 0, 2<€is<ktl
X.
i-1

b b
Hence we have / gypudx = 0, and since / gypudx = 0 by
X1 a

Theorem 3.1, we also have

*1
(3.21) / gypudx = 0.
a

According to (3.20) and (3.21) we now have

(3.22) /Xigynudx= 0, l€icktl.
a

Now, as in theorem 3.1, we have

x5 .
- py:)y:'.1 = ()‘n"KJ) /x:lgyny.]'dx, l1<jsk, l=<isk+l.
a

a

Using (3. 3) this reduces to

X
- Py p () ys(xp) /(A= A) = /a lganjdx'

Multiply this equation by a; and sum over 1l < j<k to obtain

X
- Pg)yh(x) Zjﬁlajyj(xi)/(ln - 33) =/ gypudx = 0, lsis<k+l,
a

by (3.22). However, for leisk, we have p(x;) >0, yp(x) # 0,
hence
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k

3.2 . V. . - . = 1

(3.23) j=1 aJYJ(xl)/(kn 1J) 0, l<isk

By hypothesis, not all aj/(}\n- Aj) are zero, and hence the deter-
minant |yj(xi)| = 0. But this is impossible since we have already

established that r(“yj(xi)”) = k.
As before, the boundary conditions yj(a) = yj(b) =0 may
be omitted, as well as condition (2.2) for y;(x), 1< j <n, and

conditions (2. 3) for p(x), provided the yj(x) satisfy the remain-
ing hypotheses of Theorem 3.3, together with the conditions

1.2

(3.24) limy _, o4 PYhYL V5 = limx_*b_py}ly;lly% =0, lejen-1,

(3.25) lim, _)a+py{yj = limy _, b_py{yj =0, 1l«i, jen.

In this case, the minimum property (3.10) holds for the class
of functions U(x) satisfying the conditions (cf. (3.7)):

U(x) ¢ C, a «x<b;
U'%(x) is integrable for every interval [a', b'] < (a,b);
limy _, o4 PYhYR U2 = limy , b- Pyhyn UZ = 0;

(3.26) ( limy _, o4 PYjU = limy 5 1, PYjU = O

' b
/ gijdxzo, l<j<sn-1;
a

b g2 b 1y P o2
/ pUt4dx < o, |q|U%dx <@, 0« gU4dx<w.
a a a

For this class of admissible functions, equality holds in (3.10)
if, and only if, U(x) = cyn(x).

The Legendre eigenvalue problem, as stated previously,
satisfies hypotheses (3.24), (3.25), and again the limit condi-
tions of (3.26) are satisfied if U(x) is bounded near x = %1.

Hence we conclude that if U(x) is any (suitably integrable)
function, continuous and bounded on -1 <x <1, such that

1
/IPJ(X)U(X)dX= 0, Osjsn-l,
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then

1 1
n(n+1) < /_1(1-x2)u'2dx //IUde,

equality holding only if U(x) = cPy(x).

As a second singular problem, this time on an infinite
interval, we consider the Hermite equation

(e-xzyl)‘ + )\.e'xzy =0, - LX< ,

with boundary condition y = O I1x1K) as |x|—> ®, for some k > 0.
Here the eigenvalues are Ay = 2(n-1), n=1, 2, ..., with
corresponding eigenfunctions the Hermite polynomials y, = Hy . 1(x)
having n-1 zeros on -w<x<w . Conditions (3.24), (3.25) are
clearly satisfied, as are the pertinent conditions of (3.26) for
functions U(x) satisfying the boundary conditions noted above.

For a final example, consider the equation

y'+ {XA-(m2-Hx-2ly=0, y(0) =y(1) =0, (m=1).

[

The eigenvalues are given [4, p. 325] by Ap = krzl, n=1,2, ...,
where kp is the nth positive zero of the Bessel function Jp(x).
The corresponding eigenfunction is y, = x2J, (k%) with n-1

zeros on 0 <x <1, In this case the boundary conditions are
satisfied by all y,, as indeed are all the hypotheses of theorem
3.3. We conclude that

] 1
K2 < U2dx + [ Y(m2- Hx-2u2dx U2dx
n 0 0 4 0

11
whenever A x'z'Jm(kix)U(x)dx =0fori=1, 2, ..., n-1,
equality holding only if U = X%Jm(knx).

4. Maximum-minimum properties of the eigenvalues.
Theorem 3.2 requires a precise knowledge of the zeros of the
nth eigenfunction yn,(x). If, however, we assume that the Ai
and y; satisfy the additional hypotheses of theorem 3.3, we

may avoid this requirement as we now show. Let

K = {u(x)| u(x) has no more than (n-1) zeros on a < x<b;

n
u(a) = u(b) = 01,

4
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‘Kn(u) = {v(x)]v satisfies (« ), (y) of theorem 3.2;

=0ifu=0}.
Set
(4.1) dn(u) = infy ¢ X_(u) | (/bpv|zdx - /bqudx)//bgvzdx}.
Thenl) : : :
(4.2) . Ap=supy K, 9na).

To prove this result, we note that since y, is assumed to
have k<n-1 zeros ona <x <b, we have

(4‘ 3) ln = dn(Yn) < supu € 'f(ndn(u)r

by theorem 3.2. To prove the opposite inequality, let u ¢ -“(n'
and suppose the zeros of u are a, x'l, x‘z, eee, X% b, where

« = n-1, We now construct a function v € '}{n(u) whose Rayleigh
quotient appearing in (4.1) does not exceed A,. This will prove
dn(u) =, for all u € X, whence the opposite inequality to
(4.3) follows. In fact, it suffices to take

v(x) = Z? ciyi(x).

As in the proof of theorem 3.3, v E‘an(u) if the cj (not all zero)
can be chosen so that

Zi:l Ciyi(x5)= 0, lej =x(=n-1),
Such a solution always exists for this homogeneous system.

But then, precisely as in the case of the function v(x) of
theorem 3.3, it follows that

b b
e ([ roten - [wise) | [tes <
a a a

completing the proof of (4.2).

1) This result is attributed by R. Courant [4, p. 463, footnote]
to K. Hohenemser.

15
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A second maximum-minimum characterization of -)‘n is
due to R. Courant (4, p. 406] . We formulate it as follows:
Let £ be the class of all (n-1)-tuples {vi(x)s evey vao1(x))

b
of functions such that / gvzidx< o, l<xis<n-1, Let
a
J:D(vl, cees Vpo1) = {u(x) | u satisfies (« ), (y) of theorem 3.2;

u(a) = u(b) = 0;

/abguvidx =0, l=isn-1},

and set

(4.4) dp(V]s «-» Vn-1)

b b b
=~ 23~ 2 2
= 1nfu ‘{n(vl' cees Vn-l){(./; pulsdx /a qu Cl:;)/‘/;1 gu dx} .

Then

{4.5) A = SUP(vy, ..., vp.1)eLn dp(vys «oes Vpoi)e
For, by theorem 3.3 we have dp(yj, «v.s Yp_1) = Xn,

so that

Ay < SUP(y, . .., vy ) edy SalVIs sees Vao1)

Now for any (Vy, eees Vo _ ye £, , define the function
Yy V) n-1 n
n
ux) = 3~ &y;(x),

where the c; are any non-trivial solution of the n-1 homogeneous
equations

b b
/ guvjdx = Zizl 4 / gvjyydx =0, 1 «j<n-1.
a a

Then u ¢ fn(vl, «ees Vp.1), and as before d (vy, ..., vy 1)<y,
completing the proof of (4.5).
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