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1. Introduction. If the Sturm-Liouville eigenvalue 
problem 

(1.1) (py')' + (q + \ g ) y = 0, y(a) = y(b) = 0, 

i s first approached from the standpoint of differential equations 
theory - as opposed, say, to the calculus of variat ions, or the 
theory of integral equations - the extremal propert ies of the 
eigenvalues seem to be generally regarded as lying beyond the 
scope of the theory. Thus, neither in the standard work of 
Bûcher [l] , nor in the recent work of Coddington and Levinson 
[2] is any mention made of this topic. Collatz £3, 166-8] 

gives an elementary proof of the minimum property of the least 
positive eigenvalue of (1.1), and a brief indication of how this 
argument can be extended to the higher eigenvalues. The pur­
pose of this paper is to consolidate this elementary approach, 
and to extend it to cover the singular cases where either the 
interval is infinite, or one or more of the coefficients a re 
singular at the end-points. 

2. The principal integral inequality. The extremal 
propert ies of the eigenvalues of the Sturm-Liouville equation 
can all be based on the following theorem. 

THEOREM 2. 1. Let p(x) and G(x) be continuous, and 
p(x) > 0 for a < x c b . Suppose the self-adjoint equation 

(2.1) (py»)1 + Gy = 0 

has a solution y(x) £ 0 on a<x<b, and that 
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(2.2) (x-a)y!(x)/y(x) = O(l) as x-*a+, (b-x)y»(x)/y(x) = 0(l)asx-»b-

If both of the conditions 

(2.3)! p(x) = O(x-a) or p(x) fXp'l(t)dt = O(x-a) as x-*a+, 

(2.3)2 p(x) = O(b-x) or p(x) f p-^tjdt = O(b-x) as x-*b-, 
J x 

hold, then 

(2.4) TIHa ,^a > b , ^ b J G(x)u2(x)dx * / p(x)u'2(x)dx 

holds for any function u(x) whose derivative is (absolutely) 
integrable o n a ^ x ^ b , and for which 

(Z.5) u(a) - u(b) = 0, J pu,2dx < 00. 

Before proving the theorem, we point out that it is valid 
if a or b, or both, are infinite, provided the order conditions 
are modified to read 

x-y'fxj/.yfx) = O(l) as |x | -» 'oo f 

and , x 

p(x) = O(x) or p(x) / p"1(t)dt = O(x) as x«->- » , 
y-oo 

with a.similar condition at b, if b is infinite. In the case that 
a is finite, the first of conditions (2.2) will be assured if y(x) 
is continuous o n a ^ x $ b , and if limx a+y!(x) exists. 

To prove the theorem, set h = yf/y» and note that h(x) 
satisfies the Riccati equation 

(2.6) (ph)1 = - G - ph2, a<x-cb. 

Now for any a1, b1 with a < a!< b ! <b, consider the integral 

(2.7) KaSb») = / p(u' - hu)2dx 
-/a1 

/ pul2dx - 2 / phuu!dx + / ph u dx, 
7a1 y a1 Va1 

where u(x) is any admissible function. i .e . , any function satisfy -
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ing the hypotheses following (2.4). These integrals all exist 
since p(x) and h(x) are continuous o n a ' c x ^ b ' , Also, since 
p(x) > 0 o n a < x < b , it follows that 

(2.8) l(a ! ,b !)>0 unless u«(x) = h(x)u(x), a U x s b 1 , 

that is , unless u(x) ̂  cy(x) o n a U x é b 1 , Moreover if I(a' ,b!) > 0 
for any fixed a ! ,b ! , then we clearly have 

l im a i_^ a > b ! -*b Ita1»^1) > ° » 

(possibly + oo ). Integrating by parts the second term in the 
above expansion of I(a', b1), and making use of (2.6), (2.7), -we 
obtain 

fhx [ b 1 Ih1 

Ka'.b1) = / pul2dx - / Gu2dx - phu2 

7a' A ' 

J x Gu2dx ^ J y pu,2dx - phu2 

Hence 

(2.9) 

where equality holds if, and only if, u(x) == cy(x). 

We shall now prove that 

(2.10) l i m ^ . ^ a phu2 = 0, and lim^i _^^ phu2 = 0 . 

We deal with the case a1—> a, the other proof being identical. 
If the first of conditions (2.3)^ holds, then using this and (2.2) 
we obtain 

| phu2] ^ k-j^u2 

for x near a+, so that (2. 10) follows from (2. 5). If the second 
of conditions (2. 3)\ holds, we use the fact that 

u(x) = /*Xu'(t)dt. 

Hence, 

| u(x)| ^ J* | u'| dt = /*{& Wl I )• (P"2)dt 

* ( f%**dt)l ( ^ X p - 1 d t ) i , 
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SO / * x 

u2(x)*c k3(x) J p'ldt , 

where k3(x)~> 0 as x—*a+ by the second of conditions (2 .5) , 
Thus, using (2.3)\ we obtain 

|phu2 | ^ k i k ^ x ) , 

so (2. 10) also follows in this ca se . 

Using (2.10), the inequality (2.4) now follows from (2.9) 
on letting a1 —> a and b1—-*-b. By the r e m a r k s following (2.8) , 
equality can hold in (2.4) only if u(x) ==cy(x). However, cy(x) 
may not be admiss ib le . 

COROLLARY 2 . 1 . 1 . Equality holds in (2.4) if, and only 
if, u(x) s cy(x), where c = 0 unless y !(x) i s absolutely integrable 
on a ^ x ^ b , and 

(2.11) y (a )=y(b) = 0, / py s 2dx «<co9 

J a 
COROLLARY 2 . 1 . 2 . If either y(x) i s admiss ib le , or if 

G(x) 2* 0 (but G é 0) , and y(x) is continuous on a ^ x ^ b with 
y(a) = y(b), and either 

(2.12) / py , 2dx = GO, or / py l 2 dx = oo, 
Va 7a1 

and 

(2.13) ï ï m x ^ a [ p y y ! i < oo , ÏÏmx ^ b |pyy ! | <. GO, 

then the inequality (2.4) i s best possible in the sense that the 
unit constant on the right side of (2.4) cannot be replaced by 
any smal ler factor• 

The corol lary is obviously valid if y(x) is admissible ; 
hence we suppose G(x) ^ 0, y(a) = y(b), and 

/ p y ^ d x = oc , 

as well as the conditions (2.13). In this case , let u(x) be 
defined by 

u(x) = { y(x)-y(a !), a ' ^ x ^ b 1 , 

0, b ^ x s b , 
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where a1 and b1 will be assigned la ter , and in such a way that 
y(a l) = y(b !). This u(x) is an admissible function, and using 
(2.9) and (2.1) we have 

f b1 ^ b 1 

y a I Gu2dx = y a ! G[y(x)-y(a«)] 2dx 

Gy2dx - 2y(a!) . ' x Gydx +'y2<af) . / f G2dx 

ya 1 

Hence, 

py 
§2dx - phy2 b1 A b ' , -

, + 2y(a') . / , (py1) dx+y 2 (a«) 
a1 J a ! /.r G2dx 

b 7 f b ' •> 
Gu^dx > / py'^dx - pyy' 

a / a ' 

b* 
+ 2y(a!) (py1) 

la! 

b1 

a1 
/ Gu2dx > / 

J a y a 

= / pu l 2dx - p(a ,)y(a !)y ,(a l)-p(b ,)y(b l)y ,(b t) + 2y(a I)p(b l)y f(b ,). 

Given S (0 < S < 1), this last expression will exceed 

c f h ? (1~ k) / pu'^dx, provided 

W py l 2dx > p(a t)y(a l)y !(a ,) + p(bMy(b1)y ,(b l)-2y(a !)p(b ,)y l(b l). 

We will shortly show that, given a1 sufficiently close to a, there 
exists b ' < b such that y(a') = y(b'). Assuming this for now, our 
result will be proved if we can choose a1 so that 

à / py | Zdx ^ p ( a l ) y ( a ! ) y l ( a l ) - p ^ ^ y ^ ^ y H b 1 ) . 
J a! 

Now, the right side of this inequality does not exceed 

|p(a î)y(a ,)y î(a«)| + |p(b«)y(b')y'(b')| 

which, according to (2. 13), remains finite as a1 —* a. Since the 
left side diverges to +oo as a1—> a, the resul t follows. 

It remains only to prove the asser t ion relating to 
y(a l) = y(b'). Since y(x) is continuous on a ^ x ^ b , and y!(x) 
exists on a <± x < b , with y(a) = y(b), it follows that there exists 
oc , a < oc < b such that yl(oc ) = 0. Moreover, assuming 
y(x) >0 o n a < x < b , it follows from the fact that G(x) > 0 that 
we have 
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y!(x) > 0 for a < x ^ a , y !(x)£;0 f o r * < x - c b . 

By the first of conditions (2.12), we cannot have y(x) = y( « ) for 
x near a, so that y(x) is s t r ict ly increasing for a < x < a + £ . 
Hence, if a < a1 < a + £ we have y(a) <y(a !) < y( oc ) . It then 
follows from y( * ) >y(a f) > y(b) that there exists b1 on <*<c x < b 
with y(b») = y(a f) . 

A s imilar proof shows that the corol lary is valid when 
the second of conditions (2. 12) holds . 

Before leaving this section, we want to point out that 
hypotheses (2.2) , (2.3) could be discarded provided the c lass 
of admissible functions for (2.4) satisfied the following condi­
tions: 

u(x) t C, a <-x <h; 

(2. 14) 
u^(x) is integrable for every interval [ a f , b ! ] c (a,b); 

l i m x _^ a + phu2 = l i m x «^fc. phu2 <. oo; 

b 

/ . 
pu'^dx < <x> 

a 

Fo r this c lass of admissible functions, (2.4) v/ould be a s t r ic t 
inequality unless u(x) HE cy(x), where c = 0 unless 

(2.15) l i m x _ ^ a + pyy1 = U n ^ ^ ^ Pyy1* and / py l 2 dx < oo. 

Moreover , corollary 2. 1.2 remains valid for the admissible 
c lass (2.14). 

3. Ex t remal P r o p e r t i e s . We consider the Sturm-
Liiouville problem 

(3.1) (py ,) , '+ (q + *g)y = 0, y (a )=y(b ) = 0, 

where we assume that p , q, g a re continuous for 
a < x -̂  b (- oo^ a < b ^ &>), and p(x) > 0 on a < x < b . Throughout 
this section we shall assume the existence of a sequence 
X j , / l £ , . . . of eigenvalues of (3. 1), and a corresponding 
sequence yj , y£ > . • . of eigenfunctions , each of which has only 
a finite number of zeros on a< x < b . The simple boundary 
conditions of (3. 1) may often be replaced by less stringent 
conditions (which we shall note la ter in connection with some 
singular problems) . 
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THEOREM 3 . 1 . Suppose that p(x) sat i s f ies conditions 
( 2 . 3 ) , that the eigenfunctions yn(x) of (3 .1) satisfy condition 
(2 .2) and that y^C*) * s absolutely integrable o n a ^ x ^ b , with 

pyj^dx < CD. If X m t \ n , then i: 
/ . a

b gy m yn d x - °-
a 

Proof. Using the fact that y m > y n satisfy (3 .1) for 
X = A t n , À n r e spec t ive ly , we obtain 

r b ' |b« lb' 
(3.2) (\n - Xm) J^ gynymdx = y^py^) ] a , -ym(pyn) | a , 

in the usual way. We now prove , more or l e s s as in Theorem 
2 . 1 , that 

(3 .3) l i m a i _ + a p f a M y n ^ y m f a ' ) = 0, 

with a corresponding resul t as b*—» b, # whence the des ired con­
c lus ion wi l l follow from ( 3 . 2 ) . 

The proof of (3 .3) makes essent ia l use of the boundary 
conditions yn(a) = yn(b) = 0, as wel l as conditions (2 .2) and 
( 2 . 3 ) . On the other hand, the orthogonality conclusion of the 
theorem fol lows from (3 .2) even if some or al l of these con­
ditions are not sat is f ied, provided 

(3 .4) l i m x _» a + pfrnyJn-ymyy = H m x ^ b . P^nYm-Vinyli) = °* 

THEOREM 3 . 2 . Let p, q, g, y n , A n , sat isfy the 
hypotheses a s s u m e d in the preceding theorem. Suppose y n has 
consecut ive z e r o s at x 0 , x^, . , . , x ^ ^ , where 
a = XQ < Xi < . . . <. y^+i = b . Let u(x) be any function satisfying 
the conditions: 

( u ) u'(x) i s absolutely integrable o n a ^ x i b ; 

( p ) u(xi) = 0, 0 « i * k + l ; 

( y ) / pu , 2 dx < oot I |q |u 2 dx <r co, 0 < / gu2dx <c oo 

Then 

(3 .5) X n ^ ( y ^ p u ^ d x - J q u 2 d x ) / y a gu*dx. 
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Moreover , equality can hold in (3,5) only if 

(3.6) u(x) s Ciyn(x), x j . ^ x c x j , U i ^ k + 1 , 

To prove this resu l t , we will apply theorem 2.1 to the 
successive subintervals x^ . j < x < X | . By our assumptions , the 
hypotheses of this theorem a re satisfied at xQ = a and x^+i = k. 
At an in ter ior x^, (2.2) is also satisfied since yn(xi) ex i s t s , 
(cf. the r emark preceding the proof of theorem 2 .1 . ) More ­
over , since p(x) is continuous and positive at an inter ior X£„i, 
we have 

in a neighbourhood of x ^ ^ . Hence 

p(x) / * * p -^ t j d t ^ K i ^ i / % kr}1dt = 0 ( x - x i . 1 ) . 

Similar ly, p(x) satisfies the second of conditions (2.3)2 a t x i s 

Since u(x) also satisfies all the hypotheses of theorem 2, 1 
on the subintervals X£„j ^ x ^ x ^ , we have 

/ X i { q + ^ g } u2dx ^ f X l pu l 2dx, l * i * k + l . 

By Corollary 2 . 1 . 1 the equality sign holds here only if (3.6) i s 
satisfied. 

In accordance with the r e m a r k s concerning (2.14), (2. 15) 
we may drop the boundary conditions yn(a) = yn(b) = 0, a s well 
as the conditions (2.2) and (2.3) for yn(x) and p(x) respect ively , 
provided the c lass of admissible functions u(x) satisfy the 
following conditions: 

f u(x) € C, a < x<> b; 

u l 2(x) is integrable for every interval [a f ,b ! ] a (a,b); 

I (3.7) 1 H m x ^ a + PynYn^ 2 = l i m x - * b - py^Yn1"2 = 0; 

u(x£) = 0, 1 «si *g,k; 

/ . 
pu1 dx < oo , / " b | q | u 2 d x < oo, 0 <• P , z dx < oo, 0 <• / gu^dx < oo. 
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For the class of admissible functions satisfying (3.7), equality-
can hold in (3.5) only if u(x) satisfies (3*6) where c^ = c^+i = 0 
unless 

(3.8) l i m x _> a+ PYnY'n = K _> b . pyny^ = 0. 

An example of a singular problem which is included in 
this lat ter formulation is the Legendre equation 

f ( l - x 2 ) y , } , + Xy = 0, y(±i) bounded, 

with eigenvalues X = n(n+l), n > 0, and corresponding 
ei g enf unctions Pn(x) having n zeros on - 1 < X < 1 . In this case , 
the third of conditions (3.7) is satisfied if u(x) i s bounded near 
x = ±1, while condition (3.8) is also satisfied. Here our con­
clusion is that if u(x) is any admissible function (in par t icular , 
u(x) should be bounded near x = ±1, and u(x) should vanish 
where Pn(x) = 0), then 

n(n+l) ^ / ( l -x 2 )u l 2 dx /7 u2dx , 

equality holding only if u(x) i s a (piecewise) multiple of Pn(x) 
on the subintervals between successive zeros of P n (x) . 

THEOREM 3 . 3 . Under the preceding hypotheses on 
P> q> g> and on the eig enf unctions yn(x) corresponding to the 
eigenvalue X n of (3. 1), suppose in addition, that 
X -, < X~ < • • • < X n < X » i < . . . » and that yn(x) has 1^ $. n-1 
zeros on the open interval a <x <.b. Finally, we assume that 

/ Py| dx < co, / |q|y2dx < co, 0 < / gy^dx < oo, 1 ^ i ^ n . 

L.et U(x) be any function satisfying the hypotheses (c* ), ( *v ) of 
theorem 3.2 , as well as the orthogonality conditions 

(3.9) / gy £ Udx=0 , i = 1, 2, . . . , n - l . 

Then 

(3.10) X n * ( i b pU , 2 dx - / qU2dx) If g U 2 d x f o r n > 2 . 

Moreover , equality holds in (3 .10) if, and only if 
U(x) 5= cyn(x), a ^ x s k b . 
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We begin the proof by constructing a function u(x) which 
satisfies the hypotheses of theorem 3 .2 . To this end, set 

(3.11) 
n -1 u(x) = £ * I i ciYi(x) - u<x>-

Suppose the zeros of yn(x) a r e a = x Q < x^ -c . . . -c x^«< xk-f 1 = k> 
where k ^ n - 1 . Since u(a) = u(b) = 0 for any cis u(x) will satisfy 
( G ) if and only if the c^ can be chosen so that 

(3.12) T^ll ciyi{ xJ} = U ( x j ) j J = 1, 2, . . . , k. 

If al l U(XJ) = 0, we may take all c^ = 0; in this case (3. 10) is a 
consequence of theorem 3.2 . Hence we may assume that 
(3. 12) is a non-homogeneous sys tem. We defer until later 
the proof that this system has a (necessari ly non-trivial) solu­
tion. 

With u(x) - assumed defined by (3.11), (3.12) - satisfying 
(6 ), we observe that condition ( oc ) of theorem 3.2 is also 
satisfied by u(x) in vir tue of our hypotheses concerning the 
y^(x). It remains to verify ( -y ); in doing so we shall note 
certain auxiliary r e s u l t s . F r o m (3 . 11) we have 

/ pu t Zdx = ]T n " c? f pyiZdx+ / pU lZdx + 

*Zi *j c i c J 

,_, n-1 2 Z ! ci 
However, 

f py ly j d x = py-Yj 

s pyiyj 

y a p y i y j 
dx 

pU!y!dx. 

yj(pyi)'dx 

/

b1 

(q + ^ g } y iy j d x -

As a1 —=• a and b ! —>b, the right side of this equation tends to 
r b 

/ qy iy j d x by theorem 3.1 and equation (3.3)* This la t ter 

integral exists as i s easily seen by the Cauchy-Schwarz 
inequality. Thus we have 
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(3. 13) f bpy]yjdx = /^qy.y^dx, i / j . 

Similarly, using (3.9) we obtain 

(3.14) / pU'y{dx = / qUy^x, l * i ^ n - l . 

(Here we used the conditions U(a) = U(b) = 0,) We now have 

/ a
b p u ' 2 d x 

(3.15) = Y^'\ c2i / a PYi2dx+ J pU' 2 dx+ zZiftCiCjf qyiYjdx 

v n - l fh 
- 2 L i c i / qU^dx < 00. 

A similar expansion together with several applications of the 
Cauchy-Schwarz inequality also gives 

y"a
b|q|u2dx <. oo* 

Note that 

(3.16) 

/ pu , 2dx - / qu2dx 

= Z n\ c\ f/a pyi2dx - y a ^ i d x ] + ^ Pu , 2 d xv bqIj2dx* 
Finally, applying theorem 3.1 and (3.9), we obtain 

(3.17) y rbgu2dx= 2 n i l c i / gyid x + /bgU2dx, 

and hence 

0 < / gu^dx < oo , 
J a 

by our hypotheses on U and the y^. 

It now follows from theorem 3.2, (3.16), (3.17) that 

n-1 ^ f Tb 

*n * 

Z n î *\{f^ py i 2 dx- ^ b q y ^ d x J + / b p U l 2 d x - J^h qU2dx 

Z n i c i A gyidx + / gu2dx 
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On the other hand, theorem 3.2 also gives 

/ py!2dx - / qy2dx = Xj / gyjdx, U i s n - 1 , 

so that 

Xn <. 

Tni\c\ ./a
bgyidx+ ya

b
Pu,2dx- y v 2 d 3 

Z n ' 1
1 - i / a V i d x + / a V 2 d x 

where all A ^ 0, D ^ 0 . Using the fact that X̂  - X,n< 0, and 
that at least one Aĵ  > 0 (in the case we a re considering), this 
inequality implies that 

X n < N/D 

proving (3. 10) with s t r ic t inequality. 

We now prove that the non-homogeneous system (3. 12) 
has a solution. The ma t r ix of coefficients of these equations 
is the k x (n-1) mat r ix A with elements an given by 

a V Yjfxi), 

If r(A) = k, the system has a solution. Suppose r(A) = r < k. 
Then any (r+1) columns of A are l inearly dependent, and there 
a re constants c^, . • . , c r + l n o t a ^ z e r o such that 

X! i=i c iyi tx j ) = °» 1 ^ j * k . 

Define v(x) = 2_ i - i c iYi( x ) • Then v(a) = v(xx) = . . . = v(xk) 
= v(b) = 0. As in'the details following equation (3. 12), one sees 
that v(x) is an admissible function for the minimum problem 
(3.5) so that 

Xn ^ ( / pv t 2 dx - / qv2dx) / / gu2dx = Q. 
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On the other hand, we now show that, in fact, 

X 1 * Q * X r + l * X k * X n : 

so that r(A) = k follows from this contradiction. To see this 
one shows, precisely as in equations (3. 13) - (3.17), that 

where dj = Ai / T*rt Aj, Â  = c? / gy^dx, so that all d| ^ 0, 

and Z r î X di = *• 
By hypothesis, 

X x ^ XL ^ X r + x , 1 *s i ^ r+1, 
whence 

establishing our contradiction. 

It only remains to discuss the possibility of equality in 
(3. 10). We have shown this can only occur when U(x) also 
satisfies condition ( (3 ) of theorem 3.2. By this same theorem, 
equality can then hold in (3. 10) only if 

(3.18) U(x) s C£yn(x), x i - 1 ^ x ^ x i , l ^ i ^ k + 1 . 

We now show that the only such U(x) which also satisfy conditions 
(3.9) have all ĉ  equal. This will complete the proof of our 
theorem. Suppose then that U(x) satisfies both (3, 18) and (3.9). 
Then 

dx =0, l ^ j ^ n - 1 , 

Now j 

Z i t l c i / X i gyjyn
d 

yrb T^k+1 f x i 

a iyjYndx =L.i=lJ gYjYn^ = °> 

Iby theorem 3. 1. Multiplying the last equation by c^ and sub-
stractingfrom each of the preceding equations gives 
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(3.19) Z i t i< c i - C i> /"** gyjy n
d x=°. i* - j*n- i . 

Since k « n - 1 , this system of n-1 equations has only the t r ivia l 
solution c^-c^ as 0, unless the determinant of coefficients of 
the f irst k equations i s z e ro . However, if this determinant 
were zero there would exist constants a^, • . . , a^, not all 
ze ro , such that 

T-* k f x i 
^ i = l a j 7 x g y j Y n d x = 0 ' 2 * i « k + l . 

J ' i -1 
Setting u(x) = ^ _ i = i aiYi(x)^ this implies 

(3.20) f *i gynudx = 0, 2<£ i*k+l 

^ x i - l 
fb f b 

Hence we have / gy_udx = 0, and since / gynudx = 0 by 
^ x l 7 a 

Theorem 3 . 1 , we also have 

(3.21) / X l g y n u d x = 0. 

According to (3.20) and (3.21) we now have 

(3.22) / X i g y n u d x = 0, 1 < i * k + l . 

Now, as in theorem 3 . 1 , we have 

PYjY'n = (* n -^ j ) / gynYjd x ' l ^ j ^ k , U i ^ k + l , 

Using (3 . 3) this reduces to 

f x i 
- v(^i)Yx

n(^i)Yj(^i)/(^n-^j) = J gy n y j d x -

Multiply this equation by a- and sum over 1 ^ j ^ k to obtain 

— k f^ 
- P( x i )y n ( x i )Z^j=l a jy j ( x i ) / ( X n " Xj) -J g y n ^ d x = °* U U k + l , 

by (3.22). However, for l ^ i ^ k , we have p(x^) > 0 , y^tx^) f 0, 
hence 
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<3-23> Z j = l ajyj(xi)/<Xn - *j> = °» l « ** k 

By hypothesis, not all a^/(7ln- Xj) a re ze ro , and hence the de te r ­
minant |yj(xj_)| = 0. But this is impossible since we have already 
established that rdlyWx^ll ) = k. 

As before, the boundary conditions y;(a) = y^(b) = 0 may 
be omitted, as well as condition (2.2) for y;(x), 1^ j ^ n, and 
conditions (2, 3) for p(x), provided the yj(x) satisfy the remain­
ing hypotheses of Theorem 3 . 3 , together with the conditions 

(3.24) l i m x ^ a + py^y^Yj = l i m x - > b - PYnYn^j = °» 1 « J « * - 1 . 

(3. 25) l i t r^ _^a+py{yj = l i m x _^ b-Py}yj = °» 1 * i , j « n. 

In this case , the minimum property (3. 10) holds for the class 
of functions U(x) satisfying the conditions (cf. (3.7)): 

fu(x) c C, a <x< b; 

U l2(x) is integrable for every interval [a1 , b1] <z (a,b); 

l im v _ a J . VYnYn1^2 = l i m x — b - p y i y ^ U 2 = 0; a+ 

(3.26) ( l i m x ^ a + pyjU = l i m x ^ b . pyjU = 0; 

b 
gyjUdx = 0 , 1 * j $ n - l ; 

j pU l 2dx <oo, j |q |U 2 dx<oo, 0 < / gU2dx< 

For this class of admissible functions, equality holds in (3.10) 
if, and only if, U(x) s cyn(x). 

The Legendre eigenvalue problem, as stated previously, 
satisfies hypotheses (3.24), (3.25), and again the limit condi­
tions of (3.26) a re satisfied if U(x) is bounded near x = ± 1 . 
Hence we conclude that if U(x) is any (suitably integrable) 
function, continuous and bounded on -1 < x < 1 , such that 

1 

/ . Pj(x)U(x)dx = 0, 0 « j « n - l , 
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then 

n(xri-l) « / ( l -x 2 )U l 2 dx / / U2dx , 

equality holding only if U(x) s cP n (x) . 

As a second singular problem, this t ime on an infinite 
interval, we consider the Hermite equation 

( e " x y ' ) ' + Xe" x y = 0, - » < x <oo , 

with boundary condition y = 0( Ixl^) as | x: |—> oo , for some k > 0. 
Here the eigenvalues a re Xn = 2 (n- l ) , n = 1, 2, . . . , with 
corresponding eigenfunctions the Hermite polynomials y n = Hnn.i(x) 
having n-1 zeros on -oo< x<a> . Conditions (3.24), (3.25) a re 
clearly satisfied, as a re the pertinent conditions of (3.26) for 
functions U(x) satisfying the boundary conditions noted above. 

F o r a final example, consider the equation 

y» + { X - ( m 2 - £ ) x - 2 l y = 0, y(0) = y(l) = 0, ( m > i ) . 

The eigenvalues a re given [4, p . 325] by Xn = k n , n = 1, 2, . • „ , 
where k n is the nth positive zero of the Bessel function J m ( x ) . 
The corresponding eigenfunction is y n = x"2J"m(knx) with n-1 
zeros o n 0 < x < l , In this case the boundary conditions are 
satisfied by all y n , as indeed a re all the hypotheses of theorem 
3 . 3 , We conclude that 

k n ^ f f U l 2 d x + A 1 ( m 2 - | ) x - ^ U 2 d x ] / / U2dx 

f\ i 
whenever / x^J (k-x)U(x)dx = 0 for i = 1, 2, a 9 6 , n - 1 , 

JO m l 

equality holding only if U = xXJ rn(knx)9 

4. Maximum-minimum proper t ies of the eigenvalues . 
Theorem 3.2 requi res a prec ise knowledge of the zeros of the 
n th eigenfunction yn(x) . If, however, we assume that the A^ 
and y^ satisfy the additional hypotheses of theorem 3 ,3 , we 
may avoid this requirement as we now show, Let 

~fin = {u(x) | u(x) has no more than (n-1) ze ros o n a < x < b ; 

u(a) = u(b) = o } , 
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#n(u) = {v(x)|v satisfies (u ), ( y ) of theorem 3.2; 

v = 0 if u = 0 } . 

Set 

(4.1) dn(u) = infv e #n(u) f (/V'^dx - ^ V2**) / /"V^dx }. 

Then1) 

(4.2) X^= supu € ^ n d n (u ) . 

To prove this result, we note that since yn is assumed to 
have k « n-1 zeros on a <x <b, we have 

(4- 3) * n =
 dn(Yn) * suPu € *n

dn(u)> 

by theorem 3.2. To prove the opposite inequality, let u 6 # n , 
and suppose the zeros of u are a, xl , xl , . . . , xj,,, b, where 
ec ̂  n-1. We now construct a function v e "# (u) whose Rayleigh 
quotient appearing in (4.1) does not exceed X r. This will prove 
dn(u) * ̂ n ^ o r a ^ a é "̂ n» w ^ e n c e the opposite inequality to 
(4.3) follows. In fact, it suffices to take 

v(x) = Y.I ciYi(x)-

As in the proof of theorem 3.3, v e"#n(u) if the ĉ  (not all zero) 
can be chosen so that 

^Li=i c iyi(x j*= °« l é J * * ( ^ n - 1 ) ' 

Such a solution always exists for this homogeneous system. 
But then, precisely as in the case of the function v(x) of 
theorem 3.3, it follows that 

X, £ ( I pvl2dx - / qv2dx) / / gv2dx < Xn, 

completing the proof of (4.2). 

1) This result is attributed by R. Courant [4, p. 463, footnote] 
to K. Hohenemser. 
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A second maximum-minimum characterization of Xn is 
due to R. Courant [4, p. 406] . We formulate it as follows: 
Let £n be the class of all (n-l)-tuples {vj(x), • • . , vn_i(x)} 

of functions such that / gv?dx< oo , 1 ̂  i ^n-1* Let 
J a. l 

^n(vl> . • . , vn_^)= ^u(x) | u satisfies ( * ), ( y ) of theorem 3.2; 

u(a) = u(b) = 0; 

/ guv^xsO, l ^ i s n - l } , 

and set 

(4.4) dn(v!, • . . , vn . i ) 

s i n W n ( v l f .... vn.1)((X
bpU,2dX" f*^Zd*)/f*gXlZdA-

Then 

(4.5) Xn= sup ( v i ^n.i)^ndn^V "•' vn-l)« 

For, by theorem 3.3 we have dn(y^, . . . , yn_i) ~ ^n' 
so that 

K *8 UP(v1 , . . . . v ^ j ) . ^ ^ ^ ' • • " vn-l>-

Now for any (vp . . . , vn_j) £ £n, define the function 

u(x) * Y+i ciYi(x)» 

where the ĉ  are any non-trivial solution of the n-1 homogeneous 
equations 

J guVjdx= Xi=ici J& gvjyidx= o. i « j *n- l . 

T h e n u t / n ( v i , . . . . vn_i), and as before dn(vi, . . . . vn_1)&ln , 
completing the proof of (4.5). 
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