THE ARENS IRREGULARITY OF AN EXTREMAL ALGEBRA

by M. J. CRABB and C. M. MCGREGOR

(Received 25th August 1992)

A class of extremal Banach algebras has Arens irregular multiplication.

1991 Mathematics subject classification (1985 Revision): 46J35.

For any compact convex set $K \subset \mathbb{C}$ there is a unital Banach algebra Ea(K) generated by an element h in which every polynomial in h attains its maximum norm over all Banach algebras subject to its numerical range V(h) being contained in K, [1, 2]. In [3] we showed that Ea(K) does not have Arens regular multiplication when K is a line segment. Here we extend this to any other case, where a different argument is required.

Proposition. If K has non-empty interior, then Ea(K) is Arens irregular.

Proof. We use Pym's criterion [4] that it is enough to find bounded sequences a_n , b_n in Ea(K) and a bounded linear functional ϕ such that the two repeated limits of $\phi(a_m b_n)$ exist and differ.

First assume that $K = \overline{D}(0, \tau)$, where $\tau = 4/e$. As in [2], any entire function f such that $f(z)e^{-\tau|z|}$ is bounded on \mathbb{C} gives a ϕ in Ea(K)' by $\phi(e^{zh}) = f(z)$ ($z \in \mathbb{C}$). Define an entire function f by

$$f(z) = 4z^2 \prod_{p=1}^{\infty} \left[1 - \left(\frac{z}{2^p} \right)^{2^p} \right],$$

and put

$$g_n(z) = 4z^2 \prod_{p=1}^n \left(\frac{z}{2^p}\right)^{2^p} = \left(\frac{z}{2^{n-1}}\right)^{2^{n+1}} \quad (n \in \mathbb{N}).$$

Then

139

$$(-1)^{n} \frac{f(z)}{g_{n}(z)} = \prod_{1}^{n-1} \left[1 - \left(\frac{2^{p}}{z}\right)^{2^{p}} \right] \cdot \left(1 - \left(\frac{2^{n}}{z}\right)^{2^{n}} \right)$$
$$\times \left(1 - \left(\frac{z}{2^{n+1}}\right)^{2^{n+1}} \right) \cdot \prod_{n+2}^{\infty} \left[1 - \left(\frac{z}{2^{p}}\right)^{2^{p}} \right]$$
$$= A_{n}(z)B_{n}(z)C_{n}(z), \text{ say.}$$
(1)

Put $D_n = \{z \in \mathbb{C} : 2^n \le |z| \le 2^{n+1}\}$. Then $A_n(z) \to 1$ as $n \to \infty$ uniformly on D_n , since

$$\sum_{1}^{n-1} \left| \frac{2^{p}}{z} \right|^{2^{p}} \leq \sum_{1}^{n-1} 2^{(p-n)2^{p}} \leq (n-1)2^{2(1-n)} \to 0.$$

Further, $C_n(z) \rightarrow 1$ uniformly on D_n , since

$$\sum_{n+2}^{\infty} 2^{(n+1-p)2^p} \to 0.$$

Since also $|B_n(z)| \leq 4(z \in D_n)$, we have $|f/g_n| < 5$ on D_n for all large enough *n*. Together with the fact that $g_n(r)e^{-\tau r} \leq 1(r>0)$, this gives that $f(z)e^{-\tau |z|}$ is bounded on \mathbb{C} . Thus f defines ϕ in Ea(K)' as described.

With some fixed $\alpha \in \mathbb{R}$, put $r_n = 2^{n-1}e + \alpha(n \in \mathbb{N})$. Then $r_n \in D_n$ for all large $n, B_n(r_n) \to 1$, and (1) gives that $(-1)^n f(r_n)/g_n(r_n) \to 1$.

Also, $\log[g_n(r_n)e^{-\tau r_n}] = 2^{n+1}\log(e+2^{1-n}\alpha) - 4r_n/e = 2^{n+1}\log(1+2^{1-n}\alpha/e) - 4\alpha/e \to 0$ as $n \to \infty$. Hence $g_n(r_n)e^{-\tau r_n} \to 1$, and

$$(-1)^n f(r_n) e^{-\tau r_n} \to 1 \text{ as } n \to \infty.$$
⁽²⁾

Now for $n \in \mathbb{N}$ put $\alpha_n = 2^{2n}e$, $\beta_n = 2^{2n-1}e$, and $a_n = e^{\alpha_n(h-\tau)}$, $b_n = e^{\beta_n(h-\tau)}$. Then a_n , $b_n \in Ea(K)$ with $||a_n|| = ||b_n|| = 1$, and $\phi(a_m b_n) = f(\alpha_m + \beta_n) e^{-\tau(\alpha_m + \beta_n)}$. Since $\alpha_m + \beta_n = 2^{2n-1}e + \alpha_m$ can be taken as r_{2n} in (2), we have $\lim_{n \to \infty} \phi(a_m b_n) = 1$. With *n* fixed, $\alpha_m + \beta_n$ can be taken as r_{2m+1} , and (2) gives $\lim_{m \to \infty} \phi(a_m b_n) = -1$. Thus the repeated limits of $\phi(a_m b_n)$ differ, and Ea(K) is Arens irregular.

Given any compact convex $K \subset \mathbb{C}$, by replacing K by $\alpha K + \beta$ for suitable α , $\beta \in \mathbb{C}$ we can assume that $\overline{D}(0,\tau) \subseteq K$ and $\operatorname{Re} K \leq \tau$. Then we can construct ϕ , a_n , b_n in exactly the same way to complete the proof; for since $||e^{zh}|| = \max\{|e^{\lambda z}|: \lambda \in K\}$ we still have $||a_n|| = ||b_n|| = 1$ and $\phi \in Ea(K)'$.

REFERENCES

1. B. BOLLOBAS, The numerical range in Banach algebras and complex functions of exponential type, Bull, London Math. Soc. 3 (1971), 27-33.

2. M. J. CRABB, J. DUNCAN and C. M. McGREGOR, Some extremal problems in the theory of numerical ranges, Acta Math. 128 (1972), 23-42.

3. M. J. CRABB and C. M. McGREGOR, Interpolation and inequalities for functions of exponential type: the Arens irregularity of an extremal algebra, *Glasgow Math. J.*, to appear.

4. J. S. PYM, The convolution of functionals on spaces of bounded functions, Proc. London Math. Soc. (3) 15 (1965), 84-104.

DEPARTMENT OF MATHEMATICS University of Glasgow University Gardens Glasgow G12 8QW