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ZIEBUR'S MATRIX EQUATION FOR POPULATION GROWTH
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Abstract

The paper examines a matrix equation given by Ziebur [6] for the growth of a population
in which the birth-rate and death-rate are age-dependent. For convenience the population
was sub-divided into four age groups, with the same birth-rate and death-rate for
individuals in a particular group, and the matrix equation relates the numbers in each
sub-division in consecutive years. This avoids delay terms and makes it easier to modify
the growth equation but it is shown that the form suggested by Ziebur for the transition
matrix leads to some difficulties.

1. Introduction

In discussing population growth, mathematical models which allow for the age
structure of the population have been used for some time [4, 5]. This approach
was stimulated by two papers by Leslie [2, 3] who set up a matrix equation for the
number of females in a population whose fertility rate and mortality rate varied
with age. Lefkovitch [1] examined the practical problem of applying these ideas to
data from laboratory experiments on a population of beetles where the age of
each beetle could not be established precisely but different stages of development
could be recognised. More recently, Ziebur [6] has shown how equations of this
type can be modified to include other effects, such as the effect of growth to a
limit and the effect of harvesting. To illustrate these ideas he considered a
population which could be divided into four age classes, with uniform birth and
death rates in each class, and put forward a matrix equation to relate the number
in each class in consecutive years. The purpose of the present paper is to examine
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[21 Matrix equation for population growth 221

this basic equation and see what consequences it entails, since it involves an
assumption about the distribution among the age groups within each of the four
classes.

Section 2 specifies the model in more detail and introduces the notation that is
employed. It also indicates which terms in the basic equation are of special
interest in the later discussion. In section 3, a number of equations are established
which are valid in the general case and in section 4 they are compared with the
matrix equation proposed by Ziebur. It appears from this that Ziebur's equation
imposes severe restrictions on the parameters and on the type of solution
available.

2. Notation and basic matrix equation

To simplify comparison we shall follow Ziebur's model, although with some
minor differences in notation. We can take the basic unit of time as a year in the
discussion, and speak of population changes from one year to another, without
worrying about the possibility that some other unit of time might be more
appropriate for certain populations. Let

x(j> n) ~ number of individuals in class j in year n, (2.1)
with j = 1,2,3,4. Class 1 consists of individuals in the age group (0, rj, Class 2
corresponds to the age group (rl,rl + r2), class 3 to the age group (rY + r2, rx +
r2 + r3) and Class 4 to the age group (rt + r2 + r3, oo). The annual birth and
death rates are taken as uniform in each class, with b and dy as the appropriate
rates for Class j . Following Ziebur, we take b} > 0 and 0 < d} < 1 for each j , so
that the population fades away rather than dying at a fixed age. If x(n) denotes
the vector {x(l, n), x(2, n), x(3, n), x(4, n)}, then Ziebur's basic equation is that

x(n + l) = Lx(n), (2.2)
where L is a 4 X 4 matrix given by

</,) + *, b2 b3 b.

0 (\-d1)/ri ( l - lAsXl-rfs) 0

0 0 (1 - «/3)A3 1 - d4

"(2.3)
If we write

B(n + 1) = M(l» ") + b2x{2, n) + b3x(3, n) + b4x(4, n), (2.4)
then B(n + 1) is the number of individuals born during year n, which is the same
as the number in the age group (0,1) for year « + 1. (It is assumed here that the
census for year n + 1 is taken at the beginning of the year, that is at the end of
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year n.) Thus we have

x(\,n + 1) = B(n + 1) +(1 - djxfan) - ( l / r ^ l - dx)x{\,n) (2.5)

and we can interpret (1 — dx)x{\, n) as the number of individuals from Class 1
who survive to the end of year n, while the last term represents the number
transferred from Class 1 to Class 2 at the end of year n. This implies that the
number in the age group (rt - 1, rx) at the beginning of year n was (l/r1)x(l, n),
with the survivors counted in age group (r1; rx + 1) in the census for year n + 1.
There is no difficulty about this if rl = 1 but if rx = 2 we immediately have equal
numbers in age groups (0,1) and (1,2) at the beginning of year n. [We have
(l /2)x(l , n) in age group (1,2), so we must have (l/2)x(l, n) in age group (0,1).]
This holds for all values of n, which means that we have a restriction on the
population. Indeed it can be deduced that B(n + 1) < B(n), which is a strong
restriction, but we shall return to this later.

What happens for rx > 3? Are the individuals in Class 1 uniformly distributed
over the age groups (0,1), (1,2),..., {rx - 1, rx)? Perhaps not, since (l/rr)x(l, n)
is only an average over the different age groups for year n, so it would be possible
to have this number in age group (rx — \,rx) without having a uniform distribu-
tion. Yet this formula has to hold for all values of n and we can anticipate that
this will bring in relationships between the numbers in different one-year inter-
vals.

A similar problem arises with the number of individuals transferred from Class
2 to Class 3 and from Class 3 to Class 4 at the end of year n. These numbers are

(l/r2)(l-d2)x(2,n) and (l/r3)(l - d3)x(3, «),

respectively, as can be seen from equations (2.2) and (2.3). This means that at the
beginning of year n there were

(i) (l/r2)x(2, n) individuals in the age group (r1 + r2 — 1, rx + r2),
(ii) (l/r3)x(3, n) individuals in the age group (rx + r2 + r3 — 1, rx + r2 + r3).

We can guess that these expressions will raise questions similar to those that came
up in the previous paragraph.

3. Equations relating x{j,n) to B(n)

To look at these problems in a different way, let us start with B(n) individuals
in the age group (0,1) in year n. This produces

(1 — dl)B(n) in age group (1,2) in year n + 1

(1 - rfx) B(n) in age group (2,3) in year n + 2

(1 - dx)
ri B(n) in age group (rx - 1, rx) in year n + rx - 1.
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[41 Matrix equation for population growth 223

It follows that (for n = 0 , 1 , 2 , . . . )

+ ( 1 - d 1 ) r ' ~ 2 B ( n + 1 ) + ••• B ( n + rx - l )

= L B(k)(l - dl)"
+ri'k~\ (3.1)

k = n

If we extend the argument above we get

(1 - dl)
r>B(n) in age group (rx, rx + l) in year n + rx;

(1 - d2)(l — dl)
riB(n) in age group (rx + 1, rx + 2) in year « + rx + 1;

(1 - d2)'
2 (1 - rf1)

rifi(n) in age group (rx + r2 — 1, /-j + r2) in year
« + rt + r 2 - 1;

and consequently

x(2,n +rx +r2-l) = (1 - dx)
ri £ 5(A:)(1 - rf2)"

 + r2"*"1. (3.2)

A similar extension of the argument gives

x(3, n + rx + r2 + r3 — 1) = (1 — d^^^l — d2)'
2 £ -®(^)(l "" ̂ 3)" ^

(3.3)

For x(4,«) we have to count over an infinite sequence of one-year intervals
and this puts a strain on the notation. We can get round this by postulating that
in year zero there were

5(0) individuals in the age group (0,1);
(1 - d j )5 ( - l ) individuals in the age group (1,2);

(1 - dx) B(-2) individuals in the age group (2,3);

(1 - d^B^r^ individuals in the age group (rx, rx + 1);

(1 - d2)(l — dl)
riB(-rl — 1) individuals in the age group (rx + 1 ,^ + 2);

(1 - d3)(l - d2)
r2{\ - dxy

iB(-rx - r2 - 1) individuals in the age group

(rx + r2 + \,rx + r2 + 2);

and so on. This defines B(-n) and allows us to write

x(4,n + rx + r2 + r3)

= {\ - dxy\\ - d2y{\ - d3y t B(k)(i-d,y-k. (3.4)
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From equation (3.1)

x(l,n + rx + 1)-(1 - dl)x(l,n + rx)
n + r, + 1

L - E {*(*)(! -d,)"^1-"} (3.5)
£ = n + 2 k = n + lj

= B{n + rx + 1) - ( 1 - dx)
riB(n + 1).

Similarly, it can be shown that

x(2, n + rx + r2 + l) - ( 1 - </2)x(2,« + /"! + r2)

n + r2+ 1) - ( 1 - d2pB(n + 1)}, ( ' j

- (1 - rf3)x(3,« + rx + r2 + r3)

= (i - d , r { \ -d2y>{B(n + r3 + 1 ) - a -</3r*(« +1)}, ' j

x(4,n + r, + r2 + r3 + 1 ) - ( l - J4)x(4,« + ^ + /-2 + r3)

= (l-diy'(l-d2r(l-d3PB(n + l). l • '

If we write
4

P(n) = E ^(7 ' ") = t o t a l population in year n, (3-9)
7 = 1

4

^K") = E djx(j> n) = number of deaths in year n, (3.10)
y=i

equations (3.5), (3.6), (3.7) and (3.8) can be used together to give

P(n + rx + r2 + r3 + 1) - P(n + rx + r2 + r3)

= B(n + rY + r2 + r3 + l) - D(n + rx + r2 + r3)

or, replacing n + rl + r2 + r3 by m,
P(m + 1) = P(m) + B(m + 1)- D(m). (3.11)

This serves as a check since it gives the obvious result that the increase in
population size from year m to year m + 1 equals the excess of births over deaths
in year m.

4. Effect of Ziebur's form for L

The equations in section 3 show that the x(j,n) can be related to the sequence
{B(n)} and it should be noted that these equations do not depend on the form
for L. However, using equation (2.3) introduces additional constraints on {B(n)}
and it is these additional constraints that we want to examine. We saw that if we
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start with B(n) individuals in the age group (0,1) in year n there will be
(1 - d^Bin) individuals in the age group (rx, rx + 1) in year n + rv These are
the individuals transferred from Class 1 to Class 2 at the end of year n + rx — 1,
so with Ziebur's form for L we must have

(1 - d.Y'Bin) = ( l / r , ) ( l - dMl,» + ! - ! - 1), (4.1)

that is

JC(1, n + rx - 1) = rx(l - d^B^n). (4.2)

As noted before, there is no problem when rx = 1 for in this case x(l, n) = B(n)
and there is only one year group involved. (This could be appropriate, for
example, in populations where the mortality rate is exceptionally high in the first
year and has to be considered separately.) For rx - 2, equations (4.2) and (3.1)
give

x(l,n + 1) = 2(1 -dl)B(n) = B(n + 1) +(1 - dx)B{n)

and hence

B{n + \)={\-dx)B(n). (4.3)

This checks with an earlier comment that the number of individuals in age group
(0,1), namely B(n + 1), is equal to the number in age group (1,2), which is
(1 - dx)B(n). Also, equation (4.3) gives B(n) = B(0)(l - dY)" as its solution.
Since 0 < 1 - dx < 1, we see that B(n + 1) < B(n) and B(n) decreases ex-
ponentially as n increases.

For rx > 3, we can combine equation (4.2) with equation (3.1) to obtain

r 1 ( l - ^ 1 ) r ' - 1 B ( « ) = ' I + i : * ( * ) ( ! - * i ) ' I + r i ' *~ 1 , (4-4)
k = n

which is a linear equation for B(n), with constant coefficients. If we look for a
solution of the form B(n) = Ap", with p # 0, then p must be a root of the
polynomial equation

'i = "L pm(i - d.r = i < , (4.5)
m=0 m=0

where ax = p/( l - dx). Clearly, ax = 1 is a solution of this equation, with
p = 1 - dx as the corresponding value of p. Thus we again get B(n) =
(1 — di)"B{0) as a possible solution and this gives a situation where x(l,n) is
divided equally among the age groups (0,1), (1,2),..., (r, - 1,^), with B(n)
decreasing exponentially as n increases. In this case x(l, n) = rlB(n), so x(l, n)
also decreases exponentially as n increases.

The remaining roots of equation (4.5) come from G(av rx) = 0, where

m-\ (4-6)
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226 A. Brown (7 |

and we can say right away that this equation has no positive roots. It can also be
shown that there are no roots with modulus less than 1. To see this, consider the
right-hand side of equation (4.5) when \ax\ = R, with 0 < R < 1. Then

\l + ax + ax + • •• +o1
f '~1 |< 1 + R + R2 + •• • +Rr'~l < rx,

so equation (4.5) has no roots with \ax\ < 1. When \ax\ = R, with R = 1,

| 1 + a x + a t + ••• + o 1
r ' ~ 1 | < 1 + R + R 2 + ••• + R r ' ~ l = r x ,

but the equality only holds when ax = 1, which is not a root of G(ax,rx) = 0.
Thus \ax\ > 1 for each root of G(ax, rx) = 0.

This means that p = 1 — dx is the solution for p with the smallest modulus, so
if we write down the general solution for B(n) from equation (4.4) the term
involving (1 — dx)" will not be the dominant term (in general) for large values of
n. It would be possible to choose the initial conditions so that B(n) = A{\ - dx)"
is the only term in the solution but any disturbance or perturbation would bring
in other terms which eventually dominate the solution. The dominant term would
then correspond to a real value of ax, with ax < - 1 , or to a pair of complex
conjugate values of ox and in either case B(n) would have negative values for
some n, which does not make sense in the biological problem.

Similar difficulties arise if we consider the number of individuals transferred
from Class 2 to Class 3. If we start with B{n) individuals in the age group (0,1) in
year n, then there will be (1 — dx)

ri{\ — d2)
r2B(n) individuals in the age group

(rx + r2, rx + r2 + 1) in year n + rx + r2 and these are the individuals transferred
from Class 2 to Class 3 at the end of year n + rx + r2 - 1. With Ziebur's form for
L the number transferred is (l/r2)(l - d2)x(2, n + rx + r2 — 1), so we must have

r2(l - dx)
ri(l - d2)

ri~lB{n) = x(2, n + rx + r2 - 1). (4.7)
As before, there is no problem if r2 = 1 and if r2 = 2 there must be equal
numbers in age groups (rx, rx + 1) and (rx + 1, rx + 2), with B(n + 1) =
(1 — d2)B{n). We note that this equation is not consistent with B(n + 1) =
(1 — dx)B(n) unless dx = d2. For c2 > 3 we can combine equations (3.2) and
(4.7) to give

or

r2(l - ^ r - ^ W = "+E B{k)(\-d2)"^-k-\ (4.8)
k~n

This again gives a linear equation for B(n), with constant coefficients, and indeed
equation (4.8) is identical with equation (4.4) except that r2 replaces rx and d2

replaces dx. If r2 = rx and d2 = dx we get the same equation as before but in
general the two equations will be incompatible.

https://doi.org/10.1017/S0334270000005312 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000005312


[ 81 Matrix equation for population growth 227

We can discuss the transfer of individuals from Class 3 to Class 4 in the same
way. For r3 > 3, Ziebur's form for L leads to the equation

r3(l - d3r-lB{n) = "+E lB(k)(l - d,)"^-"'1 (4.9)
k = n

and this is also identical with equation (4.4) except that r3 replaces rx and d3

replaces dx. We can look for a solution for equation (4.9) in the same way as
before but in general equations (4.4), (4.8) and (4.9) will be incompatible. The
obvious exception is when dx — d2 = d3 and rx = r2 = r3 but this places a severe
restriction on the parameters of the problem.

5. Conclusion

Using equations (2.2) and (2.3) as the basic relations for population growth
offers a number of advantages and Ziebur exploits them with ingenuity in the
later developments in his paper, where he modifies the equations, gives explicit
forms of solution and discusses the behaviour of the solution for large values of n.
He also uses L in going from the difference equation to a corresponding
differential equation and in turn modifying the differential equation. However,
section 4 shows that his form for L entails a number of difficulties. Equations
(3.5) to (3.8) could be used instead, with B(n + 1) expressed in terms of \(n)
from equation (2.4), but these equations involve delay terms and are less conveni-
ent to use. For example, equation (3.5) can be written as

Increase in Class 1 from year n + rx to year n + rx + 1

= x(l, n + rx + 1) - x(l, n + rx)

= B(n + ri + l) -dxx(l,n + rx) - ( l - dx)
r'B(n + 1)

= (births in year n + rx) — (deaths in Class 1 in year

77 + 7-j) — (number transferred to Class 2 at end of

year n + rx)

and the last of these is the delay term since it involves x(n), the population vector
rx years earlier.

Similarly, equation (3.6) can be thought of as

Increase in Class 2 from year n + rx + r2 to year n + rx + r2 + 1
= (number transferred from Class 1) - (number transferred to

Class 3) - (deaths in Class 2).
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Here there are two delay terms on the right-hand side, since the first transfer term
involves \(n + r2), a delay of r1 years, and the second transfer term involves
x(«), a delay of r, + r2 years. Equation (3.7) also involves two transfer terms,
with a delay of rl + r2 years in one case and rl + r2 + r3 years in the other case,
while equation (3.8) has a single delay term, with a delay of rl + r2 + r3 years.
Ziebur avoids these delay terms by using

(i)( l /r!)x(l ,« + /-j) instead of (1 - ^1)r'~1£(n + 1),
(ii)(l/r2)jc(2,n + rx + r2) instead of (1 - ^)r>(l - d2)

r^lB{n + 1),
( i i i ) ( l / r 3 )x(3, n + rx + r2 + r3) instead of (1 - d^il - d2)

r*
•(1 - d3y>-lB(n + 1).
Although the appearance of the delay terms is logical, Ziebur's paper shows that
there would be considerable advantages if the delay terms could be replaced by a
suitable approximation to give a growth equation of the same form as equation
(2.2). The approximation suggested by Ziebur produces difficulties but possibly
an alternative can be found.
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