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ON PROJECTIVE INVARIANCE OF MULTI-PARAMETER
BROWNIAN MOTION

SHIGEO TAKENAKA

The multi-parameter Brownian motion introduced by P. Lévy is not
only a basic random field but also gives us interesting fine probabilistic
structures as well as important properties from the view point of anal-
ysis. We shall be interested in investigation of such structures and
properties by expressing the Brownian motion in terms of the multi-
parameter white noise. The expression naturally requires basic tools
from analysis, in particular the Radon transform. While there arises
the special linear group SL(n 4 1, R), to which the Radon transform is
adapted, and the group plays an important role in observing probabilis-
tic structures of the Brownian motion. To be more interested, we can
give some deep insight to unitary representations of SL(n 4+ 1, R) through
our discussion.

Before we come to our topic, we shall have a quick review of the
one dimensional case, emphasizing the following three points:

1) The ordinary Brownian motion B(t), { € R, has an integral rep-
resentation

B(t) = f g,4/dx, where {&,4/dz} is the white noise on (R, dx) .
0

2) Using the white noise {£,4/dz} we get an isometry W(.) called the
Wiener integral from L*R,dx) into the space of random variables with
finite variance L*2) such that

W =" r@ends,

and get the Fock decomposition, where L*£) can be identified with
Exp LR, dx):
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L) = Exp LAR, dz) .

3) There exists an important group F, (isomorphic to SL(2, R)) that
expresses the projective invariance of the Brownian motion B(¢).

In this paper we shall, by generalizing them, carry out investiga-
tions in the multi-parameter case where much fine and interesting
structure is found.

Our steps are as follows. Let (E,B, ) be a measure space. In the
first place, we consider the Gaussian random measure

Z = {X(B,0); BeB,wecQ} on (E,B,p) (1.

We take a space of step functions on E to be the basic probability space
2 (§2). We assume that a group G acting on E is given and the
measure ¢ on E is quasi-invariant under the action of G. An action of
G can be lifted up on the probability space £ in such a way that

(gow)x) = w(xg) , wel.
This action induces an action on the random measure as
X(B,w) — XY(B,w) .

Let I(:) and I°C-) denote the stochastic integrals with respect to the
random measure 2 and %9 respectively. Then we get the following
relation

1/ @), ) :I(J%f(xg),w), feLXE,s) (Theorem 3).

Thus we get a unitary representation of G

U, 1@ s

on LXE,y) (but not necessarily be continuous in g) (§3).

In the next place, identify the n-dimensional Euclidean space R™ with
the #n-dimensional real projective space P” by using the homogeneous
coordinate. Let M(n) be the n-dimensional Euclidean motion group, and
set

M*(n) = {'g; g e M(n)},

where tg denotes the transposed matrix of ¢ (see the matrix form (40)
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of M(n)). Let dU be an M*(n)-invariant measure on P" and let {¢,+/dU}
be the random measure on the measure space (P*, d4).
Put

B@) =p.v. (JP"(E*) B JP"(ﬁ*) )Eﬂ/m ’

where a e R*, and P"(a*) assigns an orientation of P» — d* (a* is the
inversion of a) which is continued from the origin O of R™ through the
projection z. Then B(a) satisfies the following condition 1) and 2):

1) BO) =0,

2) B(a) — B(b) =~ N(0,||la — D|).
That is, B(a) is the Brownian motion with parameter space R” in the
sense of P. Lévy [10Db], (§4).

In the case of odd dimension n, we consider an isometric operator
R which links the space L*(R", dx) and the space L*P",d4). The opera-
tor R is defined by

f@) — RAG) = ((%)”'”’2 Lem f(x)dx)

el=1
1==5¢

z,§,9eR", peR, (§5).

Consider the following one-parameter groups of unitary operators
acting on L*R", dx):
1) Shift:

(St(t)f)(x) = f(xly cry X1 X + t9 Lipry * 0y xn) ’

(the flow of the ordinary Brownian motion).
2) Dilation:

(Dz(t)f)(x) = el/Zf(xl’ sy o etxi’ Liprr * 0y xn) .
Set

I = ()" (e B, 2R B B
X

i Xy Xy Xy X Xy

and consider

3) Sij = Ji-lSjJi, fOI‘ i:,t j,
4) Kz = Ji_‘SiJi.
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Then these one-parameter groups induce a quasi-regular representation
T, of the group SL(n + 1,R) (§6).

The measure dU is quasi-invariant under the action of SL(n + 1, R),
so that we get a unitary representation U, of SL(n + 1,R) (§3). The
relation between these two representations is given by

Uﬁ == RTOR—I ’

where ¢ is ‘g~' in the standard matrix form (40), (the main theorem).
Thus our approach may be illustrated by the following diagram:

Brownian motion White noise
l B(a) = p.v. U —f - ]mm l
Pn(a*) Pn(0¥)
Projective invariance Fundamental structure group
Il Il
F,sg SL(n +1,R)ag
1‘,9 Intertwining operator R ll]g

ch-lzRTgR_l

P. Lévy has presented in his book “Problemes concréts d’analyse
fonctionnelles” an approach to construct a theory of non-linear functional
analysis in which we can find close connections with probability theory.
While T. Hida is, in his theory “white noise analysis”, realizing the idea
of Lévy. The present work, being in line with them, aims at investiga-
tions of the multiparameter case. The author hopes that our work is a
first step to that proposed approach. In the Hida theory, the properties
1) ~ 3) of the Brownian motion B(t) play essential roles. Those prop-
erties become much complicated, but tell us interesting probabilistic
structures in our “multi-parameter white noise analysis”. Our main in-
terest is, of course, the multi-parameter theory, however we can reach
deeper understanding in the one-parameter case that can be viewed as
a special case.

The author expresses his thanks to Professor T. Hida and Professor
H. Nomoto for their suggestions and encouragements without which he
could not have accomplished this work.
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§1. Random measure

Let (E,B, ) be a o-finite measure space, where E is a set which is
to be a parameter space of random phenomena discussed in this paper,
B is a o-field of subsets of E and g is a o-finite measure defined on B.
Set B, = {BeB; uB) < oo}. It forms a sub-ring of B. Another measure
space (2,P) with P(2) = 1, that is a probability space, is provided so
that we can describe random events. A member of 2 is denoted by o
and is called a random parameter.

A Gaussian system is a collection of random variables such that
any finite linear combination of the random variables in the system is
always Gaussian in distribution. Such a system is viewed as a subset
of the Hilbert space L*(2, P) and the closed linear subspace spanned by
the system is again a Gaussian system.

We shall start with a particular Gaussian system given by the fol-
lowing :

DEFINITION 1. A Gaussian system % = {X(B,0w);BeB,wecf} is
called a Gaussian random measure if it satisfies the following conditions
1) and 2):

1) X(B,w) = N0, u(B)), for any B e B,, that is, X(B, w) is subject to
the Gaussian law N(0, x(B)) which has mean zero and variance u(B).

2) X(B, U B,,w) = X(B,,0) + X(B,, ) with probability one, for any
disjoint pair B,, B, in B,.

The conditions 1) and 2) imply that X(B,, ) and X(B,, ») in & with
B, N B, =0 are mutually independent and that X(B,,») converges to
X(B,w) for almost all », if B,C B, C .-.,| Jy B, = BeB,.

Set

Ly = {h = é s, {B:} 1s a mutually disjoint family of By, ne N, a,; R} s
i=1

where yz, denotes the caracteristic function of the set B,.

Then %, is a dense subspace of the Hilbert space L*(F, ) consisting of
square summable real functions. With each element & = 3 a5, of £,
we associate a random variable

(1) Ih,0) =Y 0,X(B;, 0) .

Then I(h,w) is a Gaussian random variable with mean zero and variance
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(2) Ed(, 0))* = 25 0By = [[h|* .

Therefore I(-) gives an isometric linear map from %, to L*Q, P), the
space of random variables with finite variance. Since %, is dense in
LXE, ), we can extend the map I(-) to an isometry from L*Z, ) into

L*Q,P). We denote I(f,w) by I f(@dX(a,w) and call it the stochastic
E

integral of f e LA(E, u) with respect to the random measure . It is more
suggestive to use the notation

(3) dX(a, ®) = &/ dpla)

with this we can regard {£,; « € E} as a system of random variables which
is independent at every point where each &, is subject to the same
probability law N(0, 1).

Let i/ be a measure which is absolutely continuous with respect to
the measure x. Denote by p the Radon-Nikodym derivative dy//dp.
Then +pys is an element of L*E,p) for BeB/ = {BeB; y/(B) < co}.
Put

(4) X'(B, ) = I(v oy, o) .

Then X'(B,») is a Gaussian random variables with variance
_ ’
EX'B,0) = [Voul = | #du = y(®),
B dy
and for any disjoint pair B, and B, of B, it holds that

X'(B, U By) = I(Wo(ys, + 1)) = IWpys) + I(Wpxs,)
= X'(By + X'(B,) .

Therefore the system 2’ = {X'(B,»); B € B/} is a Gaussian random meas-
ure on (E,B, ).

Suppose that a group G acts on E and that the measure g is invari-
ant under the action of G. In this case we call the Gaussian random
measure & on E a G-white noise (or simply a white noise). If pis quasi-
invariant we call & a G-quasi-white noise.

§2. Construction of random measure

In this section we will construct a Gaussian random measure & on
E as a function on a certain function space on E.
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I. The case where y(E) is finite

step 1°. Let 4 be the totality of non-null finite Borel partitions of
E, that is,

v={By,--,B,}, B;eB, B,’s are mutually disjoint,
(5) N ={y; ,
E = U B, y(By) > 0,n is a positive integer

and set |v] = number of elements of B-sets of v.
The notation v <’ means that v/ is a refinement of v. With this nota-
tion we can consider a directed set {4, <}. Let

denote the set of u-step functions. In an obvious manner we identify
£ with R"' and we introduce the topological o-field F* together with a
probability P"' which is subject to the |v|-dimensional normal distribu-
tion (N(0, 1)".

For any pair of partitions (v,v) with v </, we define a projection
z,, from the space £* onto £°:

(7) 20 Qi > 7 (20 Qugxs,) = (Z \/‘u((%J))>XBi ,

where v = {B;;}, v = {B;} such that B, = |, B;;

LEMMA 1. The system {(2*, ¥, P"),x,,, A} is a projective system of
probability spaces.

Proof. 1) Suppose that v <y <y” where v and v are as above and
where v/ = {By;s}, B;; = Ui Bijx- Then for any element o = 37 @iy,
we have

COEEDY & (Z @i p(&,ﬂ)xm

#(Bi)

and

(7, omy Ne") =7, (Z 2 TES (Z azjk'\/ﬂ(Bz]k)XBtj))

,U(Bz 7)

. ,U(sz)
= 2By = ﬂ(Bu)(Z @ 1B iye) “")>"B‘ '
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These show the following relation:
n-v,v”(w”” = (”v,u’ oﬂ’-»'.v”)(w””) .

2) Set A4* = {w =2 a;x5,;0,€V,;}, where V,’s are Borel subset of
R. By the definition of (£, P), {a,} and {a;;} are systems of mutually
independent random variables with the same probability law N(O,1).
Then

P(AY) = ’H] Q(a; eV,), where @ is the 1-dimensional distribution
N(,1). On the other hand we see that
vl

Vel (A — T Pl (B;;) N )
P(z1(A%) = [] P (; _ﬂ(Bi)azJeVl), and

v}l

Where Bz = U Bij-
7
Therefore
P(A*) = P'(z;1(A%) .

Thus we have
P/(B*) = P“(z;}(B*), for any Borel subset B* of £~. q.e.d.

By Bochner’s extension theorem (S. Bochner [1]) the projective
system {(2*, P*),x,,} defines a projective limit probability space. We
denote the projective limit by (2,F, P) and let

7,5 (2, P) — (2*, P)

be the canonical projection.
step 2°. Congider a random variable X* defined on £* given by

(8) 2 agyp, > X agys) = 2, \/p-t(—B:)az .
Furthermore let 7z be the dual map of =, ;
(9) (X)) = Xvorm,, .
Then, we have the following lemma.
LEMMA 2. The relation

(X)) = X,
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holds. That s, {X*, ="'} is an inductive system of random wvariables
defined on the projective system {(2*,F*, P, =, }.

Proof. Let 0" = 2 a5, be an element of 2*. Then
Xv(Z aiJXB” = Z ’\/[J(Bij)a“ .
1

On the other hand

X (S sta)) = X35 (35 0 i)

=5 wm(; J %“”) ’

and we have
X(0) = X*(x, . () . q.e.d.

Denote by X the inductive limit random variable of the inductive
system of random variables {X*,z**'} defined on 0.
step 3°. For any element B of B, denote by Proj; the projection

(10) =3 (294 Fiad Projz («”) = 3] QX B.nB
for any v > {B, B°}, and set
(11) X(B, ») = Proj; X(w) = lim X*(Proj; (r,(w)) .

v>{B,B¢}

THEOREM 1. The system of random variables {X(B,w); BeB} is a
Gaussian random measure defined on (E,B, p).

Proof. 1) Let v = {B,B°} be an element of .#". Then,

X(B, w) = Projz X(0) = X*(Proj, (o) = csv/u(B) ,

where ¢z is a standard Gaussian random variables. That is
X(B,w) ~ N(0, uB)) .

2) Take any disjoint pair (B, B,), and set v = {B,, B,, (B, U B),)°}.
Then by the definition (10), we have

X(B, U By, 0) = X*(Proj,u5, (@) = X*(Projs, () + X*(Projs, (&)
= X(B,,0) + X(B,,0) . g.e.d.
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II. The case where y(E) is infinite

Take a sequence {F;;¢=1,2,.--} of subspaces of F such that
E,CE;,uE) <o and \ ;E;=E. PutB,=B|; and g = y|z,. For
each finite measure space (F;, B;, z,), we find the inductive limit random
variable X* on £2° constructed in the steps 1° and 2° in I. Define the
projection 7, ;, § <4, which maps space 2/ onto £¢ such that

12) @' 7y (@) = @l o Xy, .
Then we get

THEOREM 2. The collection {(£7,P7),% ;} is a projective system
determining o probability space (2, P) as its projective limit. And the
system {X”', 749} is an inductive system of random variables which defines
a random variable X as its inductive limit. The system

13) % = {X(B, »w) = Proj; X(w); Be By}
18 o Gaussian random measure on (E,B, u).

The proof is obvious, since {(£7, P’),n;,} is a sequencially maximal
topological projective system of probability spaces.

In general, given a stochastic integral I(-) we can get the Fock

decomposition of the Hilbert space L*%2,P), the space of random vari-
ables with finite variance:

(14) L¥ 2, P) = Exp LAE, p)

(N. Wiener [14]). For example, the inclusion map of the element f ® g
of LXK, ) & LAE, w into L2, P) is defined as

(15) I(f®g,0) =I(f,0) X I(g,0) —{f,9),
and its norm is
(16) EA(f®g,0) =|SIlglF, - = o>

The inclusion L*(2,P) C Exp LXE, ) can be proved by using the fact
that {exp I(f,w) — 3|/ IP; f € LAE, )} is dense in L*02,P) (T. Hida [5c]
and N. Kono [8]).

§3. White noise and group action on it

Let & be a quasi-white noise on a measure space (E,B, ) on which
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a continuous group G acts, and let I(-) be the stochastic integral with
respect to the measure .

Since the probability space 2, on which the random measure & is
defined, is a space of functions on F, we can define the action G on £
in such a way that

an goow=(gow), for o= (0= ays;vet)
where gow’ = 3 a;xp,9-1-

Put

(18) X(B,0) = X(B,gow), for B in B,.
Then we can easily obtain the following proposition.

PROPOSITION 1. The system 9 = {X’”(B,w)} is & Gaussian random
measure on (B, u?), where pf(B) = w(Bg™') for BeB.

Let I(-) denote the stochastic integral with respect to the random
measure 9. Then,

LEMMA 3.
19) I'(f (@), 0) = I(f(z9), ») ,
where f e LAE, pnf).

Proof. 1t is sufficient to prove the statement in the case of a step
function ¢(x) = > a,x5,(x).
(3 aipp 0) = X 0:l(a, 0) = 3 0. X9(By, 0) = 3 0, X(By, g0 0)
=> a0, XBg o) =IC; typ,y-1 0 .

That is,
I(¢(%), w) = I($(x9), ®) . q.e.d.
On account of (19) the system of random variables 27 = {X(B, w) ; B € B,}
defined by
7o [
(20) X'B,w0) = 1,/ =Eyp, 0
dy?

is a Gaussian random measure on (¥, B, w).
Let us apply this map to the stochastic integral and the Fock decomposi-
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tion.
Set I(f,w) be the integration of f e LXK,y ) with respect to the
random measure %¢. Then we have Theorem 3.

THEOREM 3. Let f be an element of LXE, ), then

dr
> (x)f(xg),w) .

@1) I°(f (@), @) = I(

Proof. 1t is sufficient to prove the relation (21) for a step func-
tion ¢(x) = 2 ayxs,.

GG s, 0) = 2 0, X(B;, 0) = 3 a/J"(J%XBi, CU)
7

=2, “i10(<\/g7(55)(x9), w) =2, aJ"( aéjix&g_l, w)

g

:1( dﬂg—l(x)gb(xg),m). ced.
dy
We will write the equation (21) in the following convenient form:
22 [ r@ena@ = [ | @repe/ i .
B N dy

The unitary operators defined on L*E, p)

@ @),  geG,
dp

(23) W) =

is called a quasi-regular unitary representation of G on L*E), (but this
representation is not necessarily continuous).

This representation U, is lifted up to the unitary representation U,
of G on L¥2,P)

(23) Uy I(f,0) = I°(f, 0) .
We express this fact by the formula
(24) U,=ExpU,.

§4. White noise and Brownian motion

It is well known that the ordinary Brownian motion B(t), where ¢
runs over the whole real line, can be represented by an integration of
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the characteristic function yg,, with respect to the white noise {&,+/dx}
on (R, dx):

(25) B@ﬁ:ﬁ&%ﬁh

We will, in this section, extend the relation (25) to the R*-parameter case.
I. Let (M,d) be a metric space with metric d(-) and fix a point O,
call it the origin, in M.

DEFINITION 2 (P. Lévy [10b]). A Gaussian system {B(m,e);meM,
o€ 2} is called a Browntan motion with parameter space (M,d), if the
conditions 1) and 2) hold:

2n 2 B(m, w) — B(n, w) = N(0, d(m,n)) .
By the definition the covariance function is given by

EBm)Bm) = H{E|Bm)} + E|B®) — E|B(m) — B(n)[}

(28)
= }{d(m, 0) + d(n,0) — d(m,n)} .

Existence of such a Gaussian system is guaranteed by the following
theorem.

THEOREM 4 (Schonberg-Schwartz c.f. P. Lévy [10b]). A mnecessary
and sufficient condition for the existence of the Browmnian motion with
parameter space (M,d) is that for any neN and for any % of n-tuple
&= (@, 2, -, a,) of elements of M, the function Q(n,%)

@9 QB -, ) = 3. [y, 0) + d(wy, 0) — @, ©)laict;

is positive definite on R™.

Familiar examples are Brownian motions with parameter space S$™
and with parameter space R”.

II. Let P* be the n-dimensional real projective space, and let
x = (2,2, ,2%, %) be a point in P* expressed in terms of the homo-
geneous coordinate. We introduce a local coordinate = of P», which is
defined as follow:

r is a coordinate of P* — {x; 2, = 0} such that
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(30) n(x)=(_“¢,---,“’"), we P — {2, =0} .

Set & = 7~'(x), x € R*, and let * denote the inversion mapping of P*, that
is, * maps P™ onto
N = {(n — 1)-dimensional hyperplane in P} in such a way that

@) z—a*={yePr;x-ty =29 + - + T,Y, + Yo = 0}, xepr.

For convenience we introduce another coordinate system of P*. Let S~
be viewed as a two folded covering space of P». For an element x of
P, we define the polar coordinate (¢; ¢) of # in the following manner:

q € S"! is the direction of the vector (x,, ---,x,)
and
cos¢g = x/(x’ + -+ + ), 0Lg<r.
With this notation z(x) and =(x*) may be expressed in the form
32) n(x) = (¢, tan ¢) ,
and

33 r(@*) = {the hyperplane which contains a point (—gq, cot ¢)} .

and is perpendicular to the vector (—gq,cot¢)

III. We start with a simple construction of the S™-parameter
Brownian‘motion. Let O be the origin of $™ and let d, be the geodesic
metric. Associate with a point A of S* is a semi-sphere S(A) defined
by

34) S@) = {Bes; 44,8 < _g_} :
Let dS denote the uniform measure on S”, and let {¢+/dS} be a white

noise on (S*, dS). We define a random variable ES(A) for any point A
of S* as follows:

@5) Bid) = |2 [ euvasam,

where o, = dS, and define a new random variable
Sn
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(36) B(A) = B(A) — B,0) .
Then we get easily the following theorem.

THEOREM 5. The Gaussion system {BA); AcS*} is the Brownion
motion with parameter space (S*,d,).

The domain of the integral (35) never contains any set of antipodal
pairs of positive measure. So we may take a new random measure
{5'«/@5’} on P* = 8"/ ~ (where A ~ B means that A and B is an anti-
podal pair) as

= L (e — &
@7 S = 5 — &)

where M ~ M.
Then the integral (35) is expressible as

< — R
B4y =/ | SV ASTD
@5)

B \/_Z':L(J.S(A) En/aS@D — f SM\/M) )

2 S(4)y¢

The meaning of the first integral of (35’) is that the domain of integration
is P — A* and the orientation of P* — A* is given by continuation from
that of the origin O of S».

We can easily get the following symmetry of the Brownian motion
{BJ(4); A e S"} that can be described by the rotation group.

THEOREM 6. It holds that
(38) B(Ag,0) = BJ(A,g-0),
for any element g of the rotation group SO(n + 1, R).

Observe the expression (35’) restricting A to the space P* — O*, and
apply the local coordinate map. Then we can rewrite the formula (35')
in the form

(39) Bya) = \/ k23 an " ANASM) , aeR".

On

The process {Es(d); o € R*} defined by (39) is the Brownian motion
with parameter space (R",d, = m,(d,)). We want to form a Brownian
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motion with parameter space (R, ||-|) from this process B,(-) by a change
of the associated measure. We note that the Euclidean metric ||| is
invariant under the action of the Euclidean motion group M(n), while
d. is invariant under the action of SO(n + 1). We, then, observe that
a matrix representation of M(n) as follows:

M(n) = {g; 9= (*Z“'%) eSL(n + 1, R),
(40)
e SOm),ae R0 = 40, ---,0)} .

where the action by g = <£‘%) on x ¢ R" is such that
a

z9g=ah+a.

SO + 1) and M(n) have SO(n) as a common subgroup under which
both d, and ||| are invariant. We further notice that the relation (31),
a<>0*, links the parameter space of a Brownian motion and the para-
meter space of a white noise. Thus, so far as a Brownian motion de-
fined by the analogous formula (35) is invariant under the action of
M(n), the measure d4 by which the Brownian motion with parameter
space (R, |-|) is defined, has to be invariant under the action of M*(n).
In our case

M*(n) = {*g; g M)} .

By a short calculus the measure dU on P” must become the following
form on R":

“1) 7y (dU) = %dw ,
where C is a normalizing constant which is to be given in the proof of
the next theorem. For notational simplicity, we write z,(d1) simply as
d4Y again.

Set,

(42) B(a) = p.v. (I — IPn(ﬁ*))sMJd‘LT(M—) .

Pn(a*)
Then holds the next theorem.
THEOREM 7. A Process {B(a); a ¢ R*} given by the form (42) is the
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R*-parameter Brownian motion in the sense of Lévy, that is, {B(a); a € R"}
hold the conditions (26) and (27).

Proof. The domain of the integral (42) does not contain a non-trivial
dise D, with center 0 and radius e. Then

E|B@)f < fx(m)cd = Cr _‘;Zi =C1/e).

The integral (42) is therefore well defined.

By the construction of {£4/dU} the variance E|B(a) — B(b)} of the
difference is a function only of the distance between ¢ and b. It is now
enough for us to prove that the variance E|B(a) — B(b)|* is proportional
to the distance |l — b].

Take such a and b as

o = (T)Ttan‘ka707 <o+, 0) )
b = (r,rtan,,0,.-.,0).
'Then a = 7/cos ¥, b = r/cos ¢, and
a* Nb*={x= (@, - ,2,); % =7r,=1/r,x, =0}.

The solid angle of the domain limited by two coaxial cones of vertical
angle ¢ and @ + dé is proportional to df and is as large as 2Q,df. We
therefore have

23 70 Cos ¥p/cos (6—Vp
E|B@) — BO)} =-© {[° —j”}Q,daj oo dr
—-n/2 0

g rocos ¥a/cos (—va) T2

n
C /2

YoOp_y J ~al2

cos (0 — y) _ €08 (0 — V¥a) | 4p
"I cos oS Vg

1 C (" o i«
= L jtan y, — tan | x j Q, |sin6[do = [|a — b,
—~xn/2

7.0 On_1

where C is the normalizing constant such that

C z/2 .
j_m Qylsind|df =1. q.e.d.

Opn-1

We are now ready to show the symmetry of the above constructed
Brownian motion that comes from the structure of Q2-space.

THEOREM 8. For any element g of M(n), we have
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43) B(ag, ») = B(a, i) — B(O, §) .

where § is the transposed inverse matrix of g in the matrix representa-
tion (40) of M(n).

Let V(a) be the domain of the integral (41). Then we can see that

~ the collection of hyperplanes of R* which
(44) z(V(w)*) = . .
separate two point O and a

That is, our white noise representation of the R”-parameter Brownian
motion is equivalent to that of Uenuos ([16]).

§5. Radon transform and Wiener integral

In the following, the dimension » is always assumed to be odd.

DEFINITION 3. Let #(R*) be the Schwartz space of rapidly decreas-
ing real C>-functions. The Radon transform f of f in L(R") is the
function on R* X R defined by:

(45) fep = 712—5 j:, Flade *Pda , EeR, peR,
where f is the Fourier transform of f:
F@=(y)" [ r@eenda,

the bracket <{-, -> being the inner product in R".
For notational convenience, we write the Radon transform simply
as

few={  r@as.

Here is an important remark that should be emphasized. One can
see an interesting and beautiful similarity, in expression by integral,
between the Radon transform of a function on R* and the white noise
representation of R*-parameter Brownian motion through the relation

(46) a(*) = {w; <{w, & = —1}.

THEOREM 9. (U.M. l'eabdana, M. U. I'paes u H. . Bunenkun [2b]). In
case the dimension n is odd, setting m = (n — 1)/2, we have
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1

CORE [ ] feaviga i,

f,he PR, where f;,’") = (ai)mf, qeS* ! and dq is the uniform measure
D
on S™L

Proof. Notice the fact that the function F&, p) is real.

.[sn-x ,r_o fgn)(q’ p)ﬁ;m)(q’ p)dep

= [ ][ o feperda][[”_ o iGaeras|deap
= [ || @priaoios« - pdadpda

= [ [ e feoieadads = 2, . | F@iea

=2, | J@ht)dz . q.e.d.

Set

a8) R = f“’“(” o m) for R* — {0} .

Then the equation (47) is expressible as

(49) fm JF@h(x)dx = an*) (RAOERR)AY , where dY' = drdq oc dY .

THEOREM 10. The map R can be extended to an isometry between
LR, dx) and L*R™, dY).

Proof. By the equation (49") the map R is an into isometry. Let
DV be a space of all C~(R™)-functions F with compact support K, and
let Q@ be an operator on DV defined by

PO~ @w =5 —()" [ [T G

205,

X F(q,7) exp ( — 15y, q>) ~dpdq ,

where (q,7) is the polar coordinate of &. The operator @ takes values
in LXR~,dx). If F,G are in DV, then
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[ @epwaawad

_ 201_1 (21;) j . j (GO (— g™ F (g, NG(Z', ")

x exp (—2 4 B —icy,po - po)ay D U XD ggay

/'A/Z ‘Bn 1
b [ e ({1 1))

= [[Fancanag = [Feau .
zo'n—l 7

This shows that @ can be extended to an isometry from L*R",dY") into
LR, dx). For fe L*R"* dx)

QRN = 201_1 ()" [ Jo (=2 - ity )i (—im

X flaq) exp (—— —) dﬁdqdaﬂ
1

20,, 1

- Qs s,

(2 )n/ZJ‘ f(aq)a(n 1)e—i(y aq)dadq
.

That is, QR is the identity map of L*(R",dx). Hence the operator R is
an onto map. q.e.d.

We use the same symbol to express this extension of R. The next
proposition can be easily be proved.

PROPOSITION 2. For any nonzero real number a, we have

(50) Flat, ap) = Aa)f (&, D) ,
and
(51) Fim(ag, ap) = /)™ Of(E, p) .

DEFINITION 4. For any element f of L*(R", dx), the Wiener integral
of f is defined by:

2 wro=(  EI@/ITG,  acR .

PROPOSITION 3. For any f and h of L*R",dx), we have
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(53) EW(f, Wk, a)) = Jm S@)h(x)de .

The special linear group SL(n + 1, R) appears as the structure group
of the quasi-white noise by which we define the Brownian motion. We
will study this group as the symmetry group of the Wiener integral (52)
in the following two section.

§6. Infinite dimensional rotation group O~ and its finite dimensional subgroup

Let o be a real Hilbert space and 2 be a dense nuclear subspace
of s#. Consider the collection O(2) given by

(54) 0(2) = {T; orthogonal linear operator on #, T2 C 2} .

It forms a group under the usual product, indeed it is a transformation
group action on 9.

DEFINITION 5. The group O(92) is called the infinite dimensional
rotation group.

We sometime write it as O~ instead of O(2). This group O~ plays
a very important role when we discuss the so-called Fock decomposition
of the Hilbert space L*2*,P):

(14) L¥(9*,P) = Exp

where 2* is the dual space of 2 (c.f. T. Hida [5¢] and Y. Umemura [13]).
The projective limit of the finite dimensional rotation group SO(n)

(55) 0. = 1(1_12 SO) ,

is merely a small subgroup of O~. We are not concerned with this group
O~ itself, but we investigate an important subgroup of O~ which is not
contained in O...

I. The case of ordinary Brownian motion

In this subsection we summarize what is known concerning the rela-
tionship between a certain subgroup of O~ and the projective invariance
of the ordinary Brownian motion.

A finite dimensional subgroup F, of O~ comes from the Brownian
motion in the following manner. Set,
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(56) 2, ={f;[eC°R),1/x)f(]x) e C=(RH} .
Consider the following two one-paramer subgroups of O(2, N L*(R!, dx)):
S S@: Shift,
SO = flz + 1), teR,
(D) D(): Dilation (or Tension),
DON@) = e f(ev) , teR.

The infinitesimal operators correspond to the one-parameter groups (S)
and (D) are (s) and (d) respectively:

. d
©) §=—=

1 d
d =] ,
() T=3 +xdx

where [ is the identity operator on L*(R',dz). The Lie product [s,z] of
s and 7 is equal to s, so that {s,z} forms a base of a Lie algebra gen-
erated by them.

Consider the map J given by

%) J1)(@) = lf(— 1) for feD,,
X

X

and introduce the adjoint operators of s and r with respect to J:

61 Ad (D)s = (J-1sT) = ol + &
dx

and

(58) Ad (e = —7.

Then we are given a new operator

) £ =al + o+ % .
dx

Since [s,x] = 2¢ and [r,«] = £ hold, {s,r,x} is a base of a Lie algebra of
differential operators on D,. Corresponding to x we consider a new one-
parameter subgroup K(¢) of O~ such that
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B KON =SONN@ = f(z1),  ter.
1 —tx \1 —tx
Then the operator x is the infinitesimal generator of the operator (K).
The one-parameter subgroup (S), (D) and (K) give an unitary repre-
sentation T, of g SL(2, R) such that:

_ 1 ax + 7
(59) Tf@) = o 5f<ﬁx . 5),

where g = (?‘ fg) ¢ SL2, R) and f e LXR, da).

With the operators (S), (D) and (K), we can associate one-parameter
subgroups of SL(2, R) in such a manner that:

@ so=(:). p0=(50), Ko=(2 ),

In addition we have

©61) J~ (_(1’:(1)) .

By the Bochner-Minlos theorem (c.f. [2a]) one can introduce a
paobability measure P on 2,*, with respect to this probability measure

(62) B(ty ) = <X[0,t)’ w> ’ [OXS] 91*,

is a version of the ordinary Brownian motion. Then each one of the
one-parameter group (S), (D) and (K) defines a flow on (2,*, P). These
three flows, acting on 2-space, can be switched to the transformations
acting on the sample paths through the above expression (62). With
this, the projective invariance, due to P. Lévy, of the Brownian motion
can easily be interpreted (c.f. T. Hida, I. Kubo, H. Nomoto and H.
Yoshizawa [6]).

II. Let 9 C L¥R", dx) C 2* be any Gelfand triple. By the definition
of the Wiener integral (52) we get a probability space (2*, P) which is
taken to be an £Q-space for the Brownian motion with parameter space
(R []-1D-

We wish to extend the results in I to the multi-parameter cases.
As soon as we come to the higher dimensional space, say R", one meets
very much complicated structure and finds that R* would be better to
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be viewed as P* by the use of the local coordinate . Under such a
view point the relationship between the parameter space structure and
the projective invariance of the Brownian motion can be well be recog-
nized.

1°. The first problem to be discussed here is how to generalize the
operator J to the multi-parameter case. If directions in R™ are taken
into account, one is naturally led to such operators J,’s that

) Ju%%,-~,xa::( 1)”“”U(Eﬁw-~,ﬂﬁﬂj—lwﬂiu,~-,”n).

The nuclear space on which the J; act must be
(63) 2, ={f; feC(R"),J,feC(R) fori=1,...,n}.

This space 2, can be identified with the space C~(P"*) in the usual manner.
Now consider the following operators defined on 2, :

8; = ’ 74:1’ sy 1y
() o,

1 0
d = =1 + « , =1, , N
(d) T 5 + 1axi

Then their Lie products are the following:
[85,2,1=0, ifi£7.
=8, ifi=7g.
The adjoint operators of the s; with respect to J, are introduced and
are of the form

AdUDs; =@l ifi%q,

(2

©b =n+1xi1+xiixka, if t=7.
2 k=1 Ty

Define new operators

k) k= Ad (J))s; .

) 8;; = Ad (J)s; , for i =7.

The commutation relations of the operators (s), (d), (k) and (s’) immediately
prove the following.

PROPOSITION 4. The operators {s;,t;, k;, S5} generate a Lie algebra
f. isomorphic to 3l(n + 1, R).
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2°. Now we give the explicite form of one-parameter subgroups
(S), D), (K) and (S’) with infinitesimal generators (s),(d), (k) and (s)
respectively, and express them by (n + 1)-dimensional matrices as fol-

lows:

S S:(:

SN@) = f@y, -

D) Dy®:

Shift

s L1y Xy + ty Ligry *°

N ~
Sl(t) ~ | NN

"xn) ’

teR, feLl¥R"dx),

OT

Dilation
D@D )x) = e’ f(ay, - -
( 5, 0,\ .......... ,0[0)

(K) (K 8)f) (@)
1

........... ,0,] 5,)

t
X1y €Ly Xgyyy *

NERN e 5, = e~t/@*D

— e’nt/(n-ﬂ)

Li41

”xn) ’

for k+1,
for k=1.

:1—txi

K, ~ RN :\ N

f( T B 1
; 1 —tw, 1 —tw, 11—t 1 — ta}

0)
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(S/) (Szj(t)f)(x) = f(xl’ sy Tjmyy Xy + txj, Ligry o0y xn) ’ ) * .’i’
[ 1’ B R . 0/0)

0,1,0, o

o™ \:\\\\\\\

NN J
S“(t) ~ E \\\\\:\::\\

> ‘:\:;\0
NN
O, .............. y 0,‘]_ 0
0, ............... . 01
!

(1, 0’\. deces s e ,O O.‘
N N
0,1, -l
N
X A :
) SN R e
Ji= | SRS SN 1}
: SN
. AN .
. \\\ \\\,0 3
0, cvnevafuornn 50110
(0,70, =1,0,----,0l0]

Obviously (S), (D), (K) and (S8") are elements of SL(n + 1, R) and gen-
erate the entire group SL(n + 1, R). The space D, N L*R", dz) is nuclear
and is invariant under these unitary operators. Then it holds that

(65) O>DF,=SL(n +1,R),

where F', is the operator group which is generated by the operator (S),
(D), (K) and (8).

Let T, be the unitary representation of SL(n + 1, R) defined by F,.

3°. We have so far obtained a quasi-regular (continuous) unitary
representation 7', of the group SL(n + 1,R) on LXR",dx). One may
now ask probabilistic meanings of this representation T,. As we
have observed in §4, the white noise {&,4/ d4(z)} on P* is invariant under
the action of the Euclidean motion group M(n). The group M(n) is only
a subgroup of SL(n + 1, R) (see (40)) under which the relation between
x and x* (see (31)) in P™ is kept invariant. Accordingly it is natural
to consider the system {&,v/ d4} as an SL(n + 1, R)-quasi-white noise on
P*. We, therefore, consider the unitary representation U, of SL(n + 1, R)
on L*P*,dY) by using the procedure in §3. On the other hand, we
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have considered in §5 that the modified Radon transform R gives us the
relation between the quasi-white noise {£,4/d4} and the Brownian motion
{B(@)}. Combining these facts we get our main result asserting that this
operator R links these two representations T, and U, in the following
manner.

MAIN THEOREM. In the case of odd dimension
(66) RT,=U;R, for any g in SL(n + 1,R),
where § is g™ in the matrixz form (40).

That is, the modified Radon transform R is nothing but the inter-
twining operator between two representations T, and U,,_, of SL(n + 1, R).
We shall prove the main theorem in the next section.

In the one-dimensional case, the Radon transform is rather trivial,
namely

®N@ = (- -

If we consider it together with the density d4’'/dx = 1/(2), R be-
comes equal to J. Therefore it is difficult to grasp the beautiful relation
(66) in the case of the ordinary Brownian motion. Our main theorem
ties up three fact, the representation of the Brownian motion by the
integral with respect to the white noise, the Wiener integral and the
subgroup F', of O=. So it should be, the author hopes, a key point of
the theory of multi-parameter white mnoise analysis.

§7. Proof of the main theorem

Since the full group SL(rn 4 1,R) is generated by (S), (D) and (J),
it is sufficient to prove our theorem only for the subgroups (S) and (D)
and for the map (J). Observing the matrix forms of (S), (D), (K) and
(S") it is not difficult to obtain the explicit expression of the represen-
tion T, as follows:

67) (T,f)(@) = ( 1 ><n+1>/z

JS@(&g) , S e LAR", dw) ,
(9,

where &g = (%, -+, 2,,1) o9 and (%g); is the i-th coordinate of the vector
Zg. By the definition of U, in (23), a short calculation shows that
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r (n+1)/2 -
(68) Uh)(x) = (W) h(=(%g)) , h e LAR", dY') ,
where 7 = (22 + .-+ 4+ x,9)"? and
(69) 7 = ((x(@P)> + -+ + @(@gNH .
Set

@0 RNHEp) = (b%)’"f(s, p), EcR,peR,m=(n—1)2.

Then we have
7D Rf() = (Bf)g, —1/7), neR”,

where ¢ = (¢q,, - - -, q,) is the direction of » and r is the length of 7, that
is, (¢; ) is the polar coordinate of 7.
For simplicity we shall prove the theorem in the case 7 = 1.

(S) Shift. For any element f of L*R",dx),
Tsl(z)f(xn ) xn) = f(xl + t; xz; ctty xn)dx
and

(BT 50 )E D) = (i) [ @it b w)da

0
( > f{h(ﬂv1+t)+5222+"'+6nwn>=1’

- (%)m Le Ty=p—£1t J(@dz
= @RNEp — &b .

=

S(@)dx

@ mtm

Therefore, we have

(RT s, ) = (BTs,, )a, —1/7) = (Bf)(a, (—1/7) — a;t)
= (R = Uz, RO ,

where A means ‘A~ in the matrix form of M(n) (see (40)),

,79:< /i , 72 e, On )
149t 149t 1+ 9t

and

https://doi.org/10.1017/5002776300002256X Published online by Cambridge University Press


https://doi.org/10.1017/S002776300002256X

BROWNIAN MOTION 117

1,0,...,0] ¢
0,1,0,-,0 0

S =|: ol =50"
0 ,0,110

(0,0,---,011)
(D) For any element f of L*R",dx), we have

(T, ) @) = e f(e'w,, Xy -+ 5 &4) s
and

BooE = (5)" [ e, - ade

(z,:= e'x,; the notation y:= 2z means that we change the variable z of

the integral into y)

= (55) | F@)dn = e RN e G b 1 Em D) -
ap (§1e=bm1+ oot oo+ EnPnd=D

Therefore,

(RTp,)() = e ™(Bf) g6, o + -y @y —1/7)

= - 1 )" R0
gfe™™ + ¢+ - + gt

e r (n+1)/2
—e /<Iln"|—|> RIGY) ,

where 7? = (€7, 75 -+ +,9,).  Since

( e-nt/m+D | 0,---,0
0,

D) = l

et/(n+1)In
0
where I, in the (n,n)-identity matrix,

70 = et o), that s, ()" = (L)
7] (d
Thus we have

RTp, = Up, R .
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(/) We note that

a2 (T.)@ = (5-1)("””7(—1 B, ), feLiRda),

b b
r % Z,

2 2 (n+1)/4 1
o)) = (F 220 (LB T
7 ? 1+7722+"’+7n2 N N U

F e L*(R", dY’)

(13
and
BP0 = o [ (—ia) Flags -, ag e da

V2r

where z(jJ) =7 = (—=1/(rq), &2/ -+, 2./90). Put 7" =]y |, then the
polar coordinate of the vector ' is (—1/('rq), ¢./("'qD), - -+, 4./ (" q) ; 7).

Therefore,
(U,,EF)()
= (.__]:T)m-u——l_——— Jvm (—’l:a)mﬁ(— el , a,qz IR a,q" )e’ia/r'da
qr Ver J-- rg, ', r'q,
(e:= a/(q)
(74) 1 \»+1 1 o0 ~ o X
= (—‘T) ——:——j (—ir’qloe)"‘F<——,aqz, . -,aqn)e“q'(r’ql)da
q.r V2r J-w r
=L " ipmi(—2 taqs
= o J_m( ia) F( el Ly ,aqn)e de .
On the other hand
(T, F)E, )
= (l)"'“ H (l)"‘“F(-l, % x_) exp (i@, &a — iap)dade
2 X, x, X &y

(@y1= 2/ Tyy ++ oy By 1= By [ X))

= (l)m+1f (xl)m—lF(_l’ Lgy * v vy xn)
2n x,

X exp [(x.&, + v (@6, + -+ + X&))a — tapldrda

(@:= 2,0)

- (oA e

X exp [ia<fl + X5 4 o+ X5 — %—)]dmda{

1
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{(Z+F is the Fourier transform of F with respect to the variables x,,
<, %, and zi= —1/x)

- 2%: j j (_xll)m(%m(xl; aly - - -, af,) exp [ia(E, + pa)lde,de .

Hence we obtain

(RT,F)E, )
= 1 ) "l — 1 K 1 M e s
= 57-[” (tax,) ( E) (F1F)(®,; absyy - - -, ak,)
X exp [ia(&, + x.p)ldx,da

- %I(—ia)”‘ﬁ(ap, by, -, af et da .

Finaly we have

(75)

(RT,F)() = 7;:” | (—ia)”‘ﬁ'(—%, aty - ) e

Thus comparing (75) with (74), we have

(76)

I%TYJ1 - UJIR .

Noting that fl = J,, we complete the proof of the main theorem.
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