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Abstract. In this paper we shall show that Weyl’s theorem holds for class A(k)
operators T where k ≥ 1, via its hyponormal transform T̂ . Next we shall prove some
applications of Weyl’s theorem on class A(k) operators.
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1. Preliminaries. Let H be a complex Hilbert space and B(H) the algebra of
all bounded linear operators on H. An operator T ∈ B(H) has a unique polar
decomposition T = U|T |, where |T | = (T∗T)

1
2 and U is the suitable partial isometry

satisfying KerU = Ker(T) = Ker(|T |) and Ker(U∗) = Ker(T∗).
An operator T ∈ B(H) is said to be hyponormal if T∗T ≥ TT∗, where T∗ is the

adjoint of T . As a generalisation of hyponormal operators, p-hyponormal and log
hyponormal operators have been introduced in [2] and [13], respectively. An operator
T is said to be p-hyponormal if (T∗T)p ≥ (TT∗)p for a positive number p and log-
hyponormal if T is invertible and log(T∗T) ≥ log(TT∗). Furuta et al. [13] defined a
new class of operators; namely class A(k), where k > 0. T belongs to class A(k) if
(T∗|T |2kT)

1
k+1 ≥ |T |2, where k > 0. A class A(1) operator T is known as a class A

operator and satisfies an operator inequality |T2| ≥ |T |2. As a generalisation of class
A(k) operators, Fujii et al. [12] introduced class A(s, t) operators. For positive numbers
s and t, T belongs to class A(s, t) if (|T∗|t|T |2s|T∗|t) t

s+t ≥ |T∗|2t. It has been shown
that a class A(k, 1) operator is a class A(k) operator [22]. Since many properties of
hyponormal operators are known, by giving a hyponormal transform from a class
A(k) operator T to a hyponormal operator T̂ , we can study the properties of T via T̂
[18].

The following inclusion relation holds among these operators.

{hyponormal} ⊂ {p − hyponormal, 0 < p < 1} [17]
⊂ {classA(s, t), s, t ∈ (0, 1]} [12]
⊂ {classA} [17]
⊂ {classA(k), k ≥ 1} [13]

Now T ∈ B(H) is called a Fredholm operator if TH is closed and both KerT
and KerT∗ are finite dimensional. For any Fredholm operator T , there corresponds
an integer called the index of T denoted by ind(T) = dimKerT − dimKerT∗.
Let F0 denote the class of all Fredholm operators in B(H) with index 0. Then
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w(T) = {λ ∈ C : T − λ /∈ F0} is called the Weyl spectrum of T . We denote the spectrum,
the point spectrum, the normal point spectrum, the approximate point spectrum, the
normal approximate point spectrum and the set of all isolated eigenvalues of finite
multiplicity by σ (T), σp(T), σnp(T), σa(T),σna(T), and π00(T), respectively.

Weyl’s theorem. According to Coburn [7], Weyl’s theorem holds for T if
σ (T)\w(T) =π00(T).

In general, Weyl’s theorem does not hold for all operators. Some examples are
given below.

THEOREM R1 [7]. If T is hyponormal, then w(T) consists of all points in σ (T) except
the isolated eigenvalues of finite multiplicity.

THEOREM R2 [4]. Let T be a p-hyponormal operator on H, where 0 < p < 1. Then
Weyl’s theorem holds for T.

THEOREM R3 [20]. If T belongs to class A and KerT |[TH] ={0}, then Weyl‘s theorem
holds for T.

Figure 1. Operators satisfying Weyl’s theorem.
(References are shown within parentheses.)

Figure 1 shows the inclusion relation between operators that satisfy Weyl’s
theorem.

In [18] [Theorems 6 and 7, Corollaries 3 and 5], we have proved that if a class A(k)
operator T with k > 1 satisfies the Limit Condition, then (i)σa(T) = σna(T) = σna(T̂),
(ii) σp(T) = σnp(T) = σp(T̂) and (iii) σ (T) = σ (T̂) hold. However, these results hold for
class A(1) operators without any such condition [5, Theorem 2 and Corollary 5]. Since
we need these results to prove Weyl’s theorem, we first prove Weyl’s theorem for class
A(1) operators (class A operators) without Limit Condition, as a particular case and
then for class A(k) operators k > 1 with Limit Condition, as a general one.

2. Weyl’s theorem for class A operators. The main result of the paper follows.

THEOREM 1. Weyl’s theorem holds for class A operators.
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We say that T ∈ B(H) is isoloid if every isolated point of σ (T) is in the point
spectrum of T [3]. Also if every restriction T |M to its reducing subspace M is isoloid,
then we say that T satisfies the condition (α′′′) [3]. We say that T is reduction isoloid if
it satisfies the condition (α′′′).

We need the following propositions to prove Theorem 1.

PROPOSITION 1 [Berberian [3]]. If T ∈ B(H) satisfies the condition (α′′′) and if every
finite dimensional eigenspace of T reduces T, then Weyl’s theorem holds for T.

PROPOSITION 2 [Hansen’s inequality [16]]. If A ≥ B ≥ 0, then (B∗AB)δ ≥ B∗AδB, for
all δ ∈ (0, 1].

PROPOSITION 3 [21]. If T is a class A operator and M is an invariant subspace of T,
then T |M is also a class A operator.

PROPOSITION 4 [18]. If T = U|T | is the polar decomposition of a class A(k) operator,

where k ≥ 1, then T̂ = WU
∣∣|T |kT

∣∣ 1
k+1 is hyponormal, and |T ||T∗| = W ||T ||T∗|| is the

polar decomposition.

PROPOSITION 5 [5, Theorem 2]. If T is a class A operator, then σ (T) = σ (T̂).

PROPOSITION 6 [5, Corollary 5]. If T is a class A operator, then σp(T) = σp(T̂).

LEMMA 1. Let T be a class A operator. Then λ ∈ σ (T) is an isolated point ⇐⇒ λ is
an isolated point of σ (T̂).

Proof. λ ∈ σ (T) is an isolated point
⇐⇒ ∃ a neighbourhood V of λ such that (V ∩ σ (T)) − {λ} =φ

⇐⇒ (V ∩ σ (T̂)) − {λ} =φ by Proposition 5
⇐⇒ λ is an isolated point of σ (T̂). �

LEMMA 2. If T is a class A operator and λ is a complex number, then (T − λ)x = 0
implies that (T − λ)∗x = 0, where x ∈ H.

Proof. We have (T − λ)x = 0. By Proposition 6, (T̂ − λ)x = 0. Since T̂
is hyponormal, (T̂ − λ)∗x = 0 and hence (|T̂ |2 − |λ|2)x = 0. By Proposition 4,
T̂ = WU|T2| 1

2 and (T̂)∗ = |T2| 1
2 (WU)∗. We obtain |T̂ |2 = |T2| and (|T2| − |λ|2)x = 0.

That is (T∗)2T2x = |λ|4x. Since, by hypothesis, T2x = λ2x, we have (T∗)2x = (λ)2x. It
follows that (T − λ)∗x = 0. �

LEMMA 3. If T is a class A operator, then T is isoloid and satisfies the condition
(α′′′).

Proof. Let λ be an isolated point of σ (T). Then the range of the Riesz projection
E = 1

2π i

∫
∂D(zI − T)−1dz is a closed invariant subspace for T and σ (T |EH) = {λ}. Here

D is a closed ball with center λ such that σ (T)
⋂

D = {λ} and ∂D is the boundary of D
described once counterclockwise. By Lemma 1, λ is an isolated point of σ (T̂). Since T̂
is hyponormal, and hence isoloid, λ is in the point spectrum of T̂ . By Proposition 6,
σp(T) = σp(T̂) and this implies that λ ∈ σp(T). Therefore T is isoloid. By Propo-
sition 3, T |EH is a class A operator and hence isoloid. Therefore T satisfies the (α′′′)
condition. �

Proof of Theorem 1. If T is a class A operator, then by Lemma 2 every finite
dimensional eigenspace of T is a reducing subspace of T . Also T satisfies the (α′′′)
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condition by Lemma 3 and hence, according to Berberian’s result (Proposition 1),
Weyl’s theorem holds for class A operators. Hence the proof is complete. �

3. Weyl’s theorem for class A(k) operators, where k > 1. The main result of this
section is as follows.

THEOREM 2. Let T be a class A(k) operator and T̂ its hyponormal operator transform
such that for each λ ∈ σa(T) and a corresponding sequence {yn} of unit vectors, T̂ satisfies
the condition lim n→∞ ‖|T̂ |2yn‖ = |λ|2. Then Weyl’s theorem holds for T.

Limit Condition [18]. For each λ ∈ σa(T) and a corresponding sequence {yn} of
unit vectors, T̂ satisfies the condition limn→∞ ‖|T̂ |2yn‖ = |λ|2 where T is a class A(k)
operator, k > 1 and T̂ is its hyponormal operator transform. �

The following Propositions will be used to prove Theorem 2.

PROPOSITION 7 [18, Theorem 6, Corollaries 3 and 5]. Let T be a class A(k) operator.
Suppose that {yn} is a sequence of unit vectors in H such that (T − λ)yn → 0 and
‖|T̂ |2yn‖ − |λ|2 → 0 as n → ∞. Then lim n→∞(T − λ)∗yn = 0 and σna(T) = σna(T̂).

PROPOSITION 8 [18, Theorem 7]. Let T be a class A(k) operator. Suppose that λ ∈
σa(T) and {yn} is a corresponding sequence of unit vectors such that ‖|T̂ |2yn‖ − |λ|2 −→ 0
as n −→ ∞. Then σ (T) = σ (T̂).

LEMMA 4. Let T be a class A(k) operator such that the Limit Condition is satisfied.
Then λ ∈ σ (T) is an isolated point ⇐⇒ λ is an isolated point of σ (T̂).

Proof. λ ∈ σ (T) is an isolated point
⇐⇒ ∃ a neighbourhood V of λ such that (V ∩ σ (T)) − {λ}=∅
⇐⇒ (V ∩ σ (T̂)) − {λ}=∅ by Proposition 8
⇐⇒ λ is an isolated point of σ (T̂). �

LEMMA 5. If T is a class A(k) operator, where k > 1 and M is an invariant subspace
of T, then T |M is also a class A(k) operator.

Proof. Let
(

A B
0 C

)
on H = M ⊕ M⊥ and P the projection onto M. Then we have

P{(T∗|T |2kT)
1

k+1 − (T∗T)}P ≥ 0. By Hansen’s inequality, we see that

A∗A = P(T∗T)P ≤ P(T∗|T |2kT)
1

k+1 P ≤ (PT∗|T |2kTP)
1

k+1 = (A∗|A|2kA)
1

k+1 .

It follows that A is a class A(k) operator. That is, T |M is a class A(k) operator. �
LEMMA 6. Let T be a class A(k) operator and T̂ its hyponormal transform such that

the Limit Condition is satisfied. Then the eigenspace of T reduces T.

Proof. We have σp(T) = σp(T̂), by Proposition 7. That is (T − λ)x = 0 implies that
(T̂ − λ)x = 0. Since T̂ is hyponormal (T̂ − λ)∗x = 0. We shall show that (T − λ)∗x = 0.
When λ = 0, we have ‖Tx‖= 0. Since T is a class A(k) operator, we have ‖T∗x‖ ≤ ‖Tx‖
and so ‖T∗x‖= 0.

On the other hand, when λ �= 0 we have (T̂ − λ)x = 0 and (T̂ − λ)∗x = 0, so that

(|T̂ |2 − |λ|2)x = 0 and (|(T̂)∗|2 − |λ|2)x = 0. (1)
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Since

|T̂ |2 = ∣∣|T |kT
∣∣ 2

k+1 = (T∗|T |2kT)
1

k+1

and

|(T̂)∗|2 = ∣∣T∗|T |k∣∣ 2
k+1 = (|T |k|T∗|2|T |k)

1
k+1 ,

we obtain from (1) that

((T∗|T |2kT)
1

k+1 − |λ|2)x= 0 and
(
(|T |k|T∗|2|T |k)

1
k+1 − |λ|2)x = 0. (2)

Since T belongs to class A(k),

(T∗|T |2kT)
1

k+1 ≥ |T |2 ≥ (|T |k|T∗|2|T |k)
1

k+1

and hence, by (2), we have

((|T |2 − |λ|2)x, x) = 0. (3)

Also,
∥∥[

(T∗|T |2kT)
1

k+1 − |T |2] 1
2 x

∥∥2 = ([
(T∗|T |2kT)

1
k+1 − |λ|2]x, x

) − ([|T |2 − |λ|2]x, x.).

It follows from (2) and (3) that ‖[(T∗|T |2kT)
1

k+1 − |T |2]
1
2 x‖2 = 0.

Consequently we obtain

(|T |2 − |λ|2)x = [|T |2 − (T∗|T |2kT)1/k+1]x + [
(T∗|T |2kT)1/k+1 − |λ|2]x = 0.

That is (T∗T − λλ)x = 0. Since (T − λ)x = 0, we have (T − λ)∗λx = 0 and λ �= 0 implies
(T − λ)∗x = 0. This shows that every finite dimensional eigenspace of T is invariant
under T and T∗ and hence the proof is complete. �

LEMMA 7. If T is a class A(k) operator satisfying the Limit Condition, then T is
isoloid and satisfies the condition (α′′′).

Proof. Let λ be an isolated point of σ (T). Then the range of the Riesz projection
E = 1

2π i

∫
∂D(zI − T)−1dz is a closed invariant subspace for T and σ (T |EH) = {λ}. Here

D is a closed ball with center λ that satisfies σ (T)
⋂

D = {λ} and ∂D is the boundary
of D described once counterclockwise.

By Lemma 4, λ is an isolated point of σ (T̂). Since T̂ is hyponormal and hence
isoloid, λ is in the point spectrum of T̂ . By Proposition 7, σp(T) = σp(T̂) and this implies
that λ ∈ σp(T). Therefore T is isoloid. By Lemma 5, T |EH is a class A(k) operator and
hence isoloid. Therefore T satisfies the (α′′′) condition. �

Proof of Theorem 2. If T is a class A(k) operator, then by Lemma 6 every finite
dimensional eigenspace of T is a reducing subspace of T . Also T satisfies the (α′′′)
condition by Lemma 7 and hence, according to Berberian’s result (Proposition 1),
Weyl’s theorem holds for a class A(k) operator T . �

4. Applications of Weyl’s theorem on class A(k) operators.

DEFINITION 4.1. An operator T ∈ B(H) is said to be normaloid if r(T) = ‖T‖ and
transaloid if (T − λ) is normaloid for any λ in C, where r(T) = sup {|λ| : λ ∈ σ (T)} is
the spectral radius of T .
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THEOREM 3. Let T be a class A(k) operator and T̂ its hyponormal operator transform
such that the Limit Condition is satisfied.Then the following properties hold.

(i) w(T) =w(T̂).
(ii) If iso σ (T) =φ, then σ (T) = w(T) = σ (T̂) = w(T̂), where iso σ (T) is the set of

all isolated points in σ (T).
(iii) If w(T) ={0}, then T is compact and normal.
(iv) If π00(T) =∅, then T is extremally noncompact.
(v) r((T − λ)−1) = r((T̂ − λ)−1) = ‖(T̂ − λ)−1‖.

(vi) p(w(T)) =w(p(T)), for every polynomial p.
(vii) Weyl’s theorem holds for f (T), for every f ∈ H(σ (T)), where H(σ (T)) is the

space of functions analytic in an open neighbourhood of σ (T).

Proof. (i) By Proposition 8, σ (T) = σ (T̂) and, by Lemma 4, π00(T) = π00(T̂). Since
Weyl’s theorem holds for T , w(T) = σ (T) − π00(T) = σ (T̂) − π00(T̂) = w(T̂).

(ii) Assume that iso σ (T) =∅. By Proposition 8, σ (T) = σ (T̂) and hence we have
iso σ (T) = iso σ (T̂). Since T is reduced by each of its finite dimensional eigenspaces we
have σ (T) = w(T) [15, Corollary 1.3]. Since T̂ is hyponormal, σ (T̂) = w(T̂). It follows
that σ (T) =w(T)= σ (T̂) = w(T̂).

(iii) Since Weyl’s theorem holds for T , by Theorem 2, and w(T) ={0}, by
assumption and by Proposition 7, every non-zero point of σ (T) is an isolated normal
eigenvalue with finite dimensional eigenspace which reduces T . Hence σ (T)\w(T) is a
finite set or a countably infinite set whose only accumulation point is 0.

Let σ (T)\w(T) ={λn} with |λ1| ≥ |λ2| ≥ |λ3| ≥ . . . ≥ 0 and let En be the orthogonal
projection onto Ker(T − λn). Then TEn = EnT = λnEn and EnEm = 0 if n �= m. Put
E = ⊕n En. Then T = ⊕n λnEn � T |(1−E)H and σ (T |(1−E)H) = {0}. Since EH is a
reducing subspace of T , T |(1−E)H also belongs to class A(k). It is known that every
classA(k) operator is normaloid. Since σ (T |(1−E)H) = {0} we have T |(1−E)H) = 0. Hence
T = ⊕ λnEn is normal. The compactness of T follows from the finiteness or the
countability of {λn}n satisfying |λn| ↓ 0 and each En is a finite rank projection.

(iv) [15, Corollary 1.7] says that if T ∈ B(H) is normaloid and π00(T) =∅ then T
is extremally noncompact. Since a class A(k) operator is normaloid and by assumption
π00(T) =∅, T is extremally noncompact.

(v)

r((T − λ)−1) = sup|σ ((T − λ)−1)|for any λ /∈ σ (T)

= sup
1

|σ (T − λ)| (λ /∈ σ (T))

= sup
1

|σ (T) − λ| (λ /∈ σ (T))

= sup
1

|σ (T̂) − λ| (λ /∈ σ (T))

= sup
1

|σ (T̂ − λ)| (λ /∈ σ (T))

= sup|σ ((T̂ − λ)−1)| (λ /∈ σ (T))

= r((T̂ − λ)−1) (λ /∈ σ (T))

= ‖(T̂ − λ)−1‖.
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(vi) [15, Corollary 1.5 ] says that if T ∈ B(H) is reduced by each of its finite-
dimensional eigenspaces, then (p(w(T)) =w(p(T)) for every polynomial p. Hence, by
Lemma 6, the result follows.

(vii) According to [8, Theorem 2.5], suppose that T ∈ B(H) has SVEP and is
transaloid, then Weyl’s theorem holds for f (T), for every f ∈ H(σ (T)). We shall show
that a class A(k) operator is transaloid. It is well known that a hyponormal operator
is transaloid and hence T̂ is transaloid. That is, T̂ − λ is normaloid and hence

r(T − λ) = sup {|λ| : λ ∈ σ (T − λ)}
= sup {|λ| : λ ∈ σ (T) − λ}
= sup{|λ| : λ ∈ σ (T̂) − λ}
= sup{|λ| : λ ∈ σ (T̂ − λ)}
= r(T̂ − λ) = ‖T̂ − λ‖
= ‖T − λ‖ since ‖T̂‖ = ‖T‖ [18, Corollary 8].

This shows that T − λ is normaloid and hence T is transaloid. Also T has the
SVEP [18, Theorem 11]. Therefore Weyl’s theorem holds for f (T), for every f ∈
H(σ (T)).
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