CONDITIONALLY CONVERGENT SPECTRAL **EXPANSIONS**

D. R. SMART

(received 11 September 1959, revised 11 January 1960)

We will consider a reflexive Banach space \mathfrak{B} , with real or complex scalars, and a bounded operator in \mathfrak{B} with a real spectrum.

A self-adjoint (i.e. Hermitian) operator T in a finite-dimensional vector space \mathfrak{B} has a complete set of eigenvectors; writing $E(\tau)$ for the orthogonal projection onto the subspace spanned by eigenvectors of eigenvalues in τ , T can be expressed as

(1)
$$T = \int \lambda E(d\lambda).$$

For each set of real numbers τ ,

We have

a projection $E(\tau)$ exists. $||E(\tau)|| < K$ ector x, $E(\tau) = \lim_{t \to \infty} E(\tau_t) = \sum_{i=1}^{t} E(\tau_i) = \sum_{i=1}^$ (2)

and for any vector x,

$$E(\tau)x = \lim E(\tau_n)x$$
,

if τ_n is a sequence of sets expanding to τ . If the spectrum of T is $\sigma(T)$ the spectrum of T in $E(\tau)$ is

(3)
$$\sigma(T; E(\tau)\mathfrak{B}) = \sigma(T) \cap \tau.$$

These, and related facts, are well known, or are obvious consequences of well-known results. They have been generalised to self-adjoint operators in Hilbert space (6), in which setting they constitute the "Spectral Theorem". In this case some proofs (see e.g. (11)) use the fact that, for all real polynomials ϕ ,

(4)
$$||p(T)|| \leq \sup_{\lambda \in \sigma(T)} |p(\lambda)|,$$

which is easily proved. The inequalities (4) and

(5)
$$||p(T)|| \leq K \sup |p(\lambda)|$$

have been investigated, for any operator in a Banach space ((7), (3)). It

appears that, if we require (2) to hold for Borel sets τ_n , τ , then (1) and (2) are equivalent to (5).

In the spaces L^p $(1 < \phi < \infty; \phi \neq 2)$ the most important operators those integral and differential operators, which, in L^2 , would be self-adjoint — tend to have eigenfunction expansions which converge (12, §§ 7.3, 12.42), (2), (9), (10)), but only conditionally (12, § 9.5). This corresponds to the statement that $E(\tau)$ should exist, and (2) hold, when τ and τ_n are *intervals* on the real line. Taking (2) in this sense, the object of the present paper is to *investigate the equivalence of* (1) and (2) to the inequality

$$(6) ||p(T)|| \leq K |p|,$$

where

(7)
$$\| p \| = \sup_{\lambda \in J} |p(\lambda)| + \operatorname{var}_{J} p(\lambda).$$

((6) should hold for some closed real interval J, some $K < \infty$, and all real polynomials p. If this is so, J contains $\sigma(T)$.) Actually, starting from (6), I fail ¹ to prove (1) but obtain the weaker result (3), together with the existence of

(8)
$$S = \int \lambda E(d\lambda).$$

I prove that S - T is generalised nilpotent, and zero in some special cases; I can probably ¹ prove that $(S - T)^2 = 0$ and that

(9)
$$||(S-T)E([c, d])|| \leq K(d-c) \quad (-\infty < c < d < \infty)$$

but the question whether S = T in general remains open.

Of course, the constants K in (2), (6) and (9) may differ.

The argument from (1) and (2) to (6) is fairly trivial (see § 5) so that the following theorem should be regarded as the main result. (For notation, see § 1).

THEOREM A. If T is well-bounded then for any real number μ there is a unique bounded projection P_{μ} such that

- (i) $P_{\mu} \cap \cap T$;
- (ii) $P_{\mu}(\mathfrak{B})$ is the space of eigenvectors of μ .

In the space $\mathfrak{G} = (I - P_{\mu})\mathfrak{B}$ there is a unique bounded projection F_{μ} such that

(iii) $F_{\mu} \cap \cap (T; \mathfrak{C});$

(iv)
$$\sigma(T; F_{\mu} \mathfrak{C}) \subseteq (-\infty, \mu] \cap \sigma(T)$$

(v)
$$\sigma(T; (I - F_{\mu})\mathfrak{C}) \subseteq [\mu, \infty) \cap \sigma(T).$$

¹ Dr. Ringrose disposes of these difficulties in the following paper.

Writing G_{μ} for the projection $F_{\mu}(I - P_{\mu})$ and E_{μ} for the projection $G_{\mu} + P_{\mu}$ we have

(vi) $||P_{\mu}|| \leq 3K$, $||G_{\mu}|| \leq 2K$, $||E_{\mu}|| \leq 2K$, where K is the constant of (6).

- (vii) $E_{\nu}G_{\mu} = E_{\nu}E_{\mu} = E_{\nu}$ ($\nu < \mu$);
- (viii) $\lim_{\nu \to \mu \to 0} E_{\nu} x = G_{\mu} x \quad (x \in \mathfrak{B});$
 - (ix) $\lim_{\nu\to\mu+0} E_{\nu}(x) = E_{\mu}x \quad (x \in \mathfrak{B});$

(x) $E_{\lambda} = 0 (\lambda < a)$; $E_{\lambda} = I(\lambda \ge b)$, where J = [a, b] is the interval mentioned in (7).

The Spectral Theorem is deduced from Theorem A in § 6. Unfortunately, this case (where T is self-adjoint) is the only one in which I can verify (6) directly.

1. Notation

The word "operator" means "linear operator", wherever it appears.

My only non-standard notation: T is well-bounded if (6) is satisfied (for some real interval J, some number $K < \infty$, and all real polynomials p).

For most of our terminology and notation and for facts which we take for granted the reader can consult any text on functional analysis; for example (10).

The following remarks may help the reader: ϕ denotes the empty set, [a, b] a closed interval; $T \cap S$ means that T and S commute (in an obvious sense, since all our operators are bounded), $T \cap \cap S$ means that T commutes with every bounded operator which commutes with S; if A and B are subsets of a Banach space I write A + B for the set of vectors a + b ($a \in A, b \in B$); for any operator E, EB denotes the range of E (thus if E is a projection, (I - E)B is the nullspace of E); the adjoint T* of T can be defined by the equation

$$(Tx, y) = (x, T^*y)$$
 $(x \in \mathfrak{B}, y \in \mathfrak{B}^*)$

(note that using the alternative definition would not affect our arguments); $\int f(\lambda)E(d\lambda)$ means the same as $\int f(\lambda)dE_{\lambda}$; for a sequence of operators T_n and a limit operator T, we say that $T_n \to T$ strongly if $T_n x \to T x$ for all $x \in \mathfrak{B}$; $\sigma(T)$, the spectrum of T, is the set of scalars λ for which $T - \lambda I$ fails to have an inverse (in the algebra of bounded linear operators on \mathfrak{B} to \mathfrak{B}); if $p(\lambda) = a_0 + a_1\lambda + \cdots + a_n\lambda^n$ is a polynomial we write $p(T) = a_0I + a_1T + \cdots + a_nT^n$.

2. Operational Calculus

The following result is our basic tool.

LEMMA 2.1. Let T be well-bounded. Then the correspondence

$$p(\lambda) \to p(T)$$

can be extended (in a unique way) from the set of polynomials to the set of all absolutely continuous real functions, with (6) remaining true. For the extended correspondence we have

- (i) $p(\lambda)q(\lambda) \rightarrow p(T)q(T)$
- (ii) $c p(\lambda) \rightarrow c p(T)$
- (iii) $p(\lambda) + q(\lambda) \rightarrow p(T) + q(T)$
- (iv) $p(T^*) = (p(T))^*$
- (v) $p(T) \cap T$.

PROOF. If p is absolutely continuous, choose (by approximating to p', in L'_1 , by a polynomial), polynomials p_n such that $|p_n - p| \to 0$. Then

$$||p_n(T) - p_m(T)|| \leq K |p_n - p_m| \to 0 \text{ as } m, n \to \infty,$$

so that $p_n(T)$ converges in operator norm to an operator (independent of the choice of p_n) which will be called p(T). Clearly (6) is true. Since (i) to (v) are true for polynomials p they must also, for reasons of continuity, be true for absolutely continuous functions.

We can now clarify the role of the interval J, by showing that J contains the spectrum of T. In fact, if $\nu \notin J$, the function $(\lambda - \nu)^{-1}$ is absolutely continuous over J; this function thus corresponds to some operator which, by (i), must be the inverse of $T - \nu I$.

Let μ be any real number. Write P (or Q) for the class of real functions, each of which is absolutely continuous and is zero throughout some neighbourhood of $[\mu, \infty)$ (or of $(-\infty, \mu]$). We will consider the subspace \mathfrak{B}_{μ} (or \mathfrak{B}'_{μ}) (not in general closed) composed of elements p(T)x ($x \in \mathfrak{B}, p \in P$) (or q(T)x ($x \in \mathfrak{B}, q \in Q$)).

Diagram 1

 $(p \in P) \qquad (q \in Q) \qquad q(\lambda)$ $\mu \qquad \mu \qquad \mu$ LEMMA 2.2. \mathfrak{B}_{μ} is a subspace.

PROOF. If $p, r \in P$ we can find $s \in P$ such that

 $s(\lambda)p(\lambda) \equiv p(\lambda), \qquad s(\lambda)r(\lambda) \equiv r(\lambda).$

Thus

[5]

$$p(T)x + r(T)y = s(T)(p(T)x + r(T)y) \in \mathfrak{B}_{\mu}.$$

Also $k(p(T)x) = (kp(T))x \in \mathfrak{B}_{\mu}$, for any real number k.

LEMMA 2.3. \mathfrak{B}'_{μ} is a subspace.

PROOF. Similar to Lemma 2.2.

LEMMA 2.4. \mathfrak{B}_{μ} and \mathfrak{B}'_{μ} are disjoint.

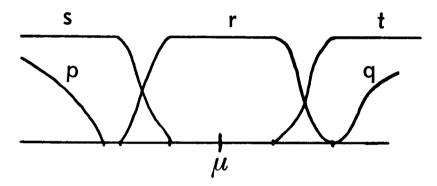
PROOF. Let $p \in P$, $q \in Q$ and suppose that

$$z = \phi(T)x = q(T)y.$$

We can choose absolutely continuous functions r, s, t such that $s \in P$, $t \in Q$,

$$p(\lambda)r(\lambda) \equiv q(\lambda)r(\lambda) \equiv 0,$$

 $s(\lambda) + r(\lambda) + t(\lambda) \equiv 1.$



Clearly

Thus

 $s(\lambda)q(\lambda) \equiv t(\lambda)p(\lambda) \equiv 0.$

$$z = s(T)z + r(T)z + t(T)z$$

= $s(T)q(T)y + r(T)q(T)y + t(T)p(T)x$
= 0.

LEMMA 2.5. If x is an eigenvector of μ , if $p \in P$ and $q \in Q$, then $\phi(T)x = q(T)x = 0.$

PROOF. If $Tx = \mu x$, then the formula

 $r(T)x = r(\mu)x$

is true for all polynomials r and hence, by Lemma 2.1, for all absolutely continuous functions. Thus

$$p(T)x = p(\mu)x = 0 \qquad (p \ \epsilon \ P)$$
$$q(T)x = q(\mu)x = 0 \qquad (q \ \epsilon \ Q).$$

LEMMA 2.6. Suppose that x = u + v + w where $u \in \mathfrak{B}_{\mu}$, v is an eigenvector of μ , and $w \in \mathfrak{B}'_{\mu}$. Then

- (i) $||u|| \leq 2K||x||$
- (ii) $||u + v|| \leq 2K||x||$
- (iii) $||w|| \leq 2K||x||$
- (iv) $||v|| \leq 3K||x||$

PROOF. (i) For an absolutely continuous function p equal to 1 from $-\infty$ almost to μ , then decreasing to 0 and remaining 0 in $[\mu, \infty)$, we have

$$p(T)u = u$$
, $p(T)v = p(T)w = 0$, $\sup |p(\lambda)| = \operatorname{var} p(\lambda) = 1$,

so that

$$||u|| = ||p(T)x|| \le K |p| \cdot ||x|| = 2K ||x||.$$

(ii) Similar; p should equal 1 in $(-\infty, \mu]$ and decrease to 0 just to the right of μ .

(iii) Similar; p should be zero in $(-\infty, \mu]$ and increase to 1 just to the right of μ .

(iv) Similar; p should equal 1 at μ and decrease to 0 on either side of μ .

I must thank Dr. Ringrose for drawing my attention to the need for the following lemma, and for giving a proof of it. (In the complex case it can be avoided by using $(\lambda - \mu + i)^{-1}$ in place of $((\lambda - \mu)^2 + 1)^{-1}$ in the proof of Theorem A.)

LEMMA 2.7. If
$$(T - \mu I)^2 x = 0$$
 then $(T - \mu I)x = 0$.

PROOF. If $(T - \mu I)^2 x = 0$ then for any k > 0,

$$(I + k(T - \mu I)^2)x = x$$

so that

$$(I + k(T - \mu I)^2)^{-1}x = x.$$

Thus

$$\begin{split} |(T - \mu I)x|| &= ||(T - \mu I)(I + k(T - \mu I)^2)^{-1}x|| \\ &\leq K ||x|| \cdot ||(\lambda - \mu)(1 + k(\lambda - \mu)^2)^{-1}|| \\ &\leq K ||x|| \cdot \frac{5}{2}k^{-\frac{1}{2}}. \end{split}$$

As k can be taken arbitrarily large, $(T - \mu I)x = 0$.

3. We will prove the following special case of Theorem A.

THEOREM B. If T is a well-bounded linear operator in a Banach space \mathfrak{B} , and μ is real and not an eigenvalue of T*, then there is a unique bounded projection F_{μ} such that

- (i) $F_{\mu} \cap \cap T$;
- (ii) $\sigma(T; F_{\mu}\mathfrak{B}) \subseteq (-\infty, \mu] \cap \sigma(T);$
- (iii) $\sigma(T; (I F_{\mu})\mathfrak{B}) \subseteq [\mu, \infty) \cap \sigma(T).$

REMARK. In (ii) or (iii) the difference of the two sides is at most the single point μ .

REMARK. The ergodic theorem (used as in Lemma 4.1) shows that μ will be an eigenvalue of T if and only if it is an eigenvalue of T^* .

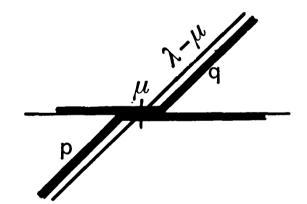
LEMMA 3.1. Under the conditions of Theorem B, $\mathfrak{B}_{\mu} + \mathfrak{B}'_{\mu}$ is dense in \mathfrak{B} . PROOF. Suppose $y \perp \mathfrak{B}_{\mu} + \mathfrak{B}'_{\mu}$. Then for $p \in P$, $q \in Q$, $x \in \mathfrak{B}$,

$$(p(T^*)y, x) = (y, p(T)x) = 0$$

 $(q(T^*)y, x) = (y, q(T)x) = 0.$

Thus $[p(T^*) + q(T^*)]y = 0$. Now choose $p \in P$, $q \in Q$ so that $|p(\lambda) + q(\lambda) - (\lambda - \mu)| < \varepsilon$.

Diagram 3



We obtain

$$||(T^* - \mu I)y|| < \varepsilon K ||y||,$$

so that $T^*y = \mu y$. Thus y = 0, since μ is not an eigenvalue of T^* .

DEFINITION OF F_{μ} . If $x \in \mathfrak{B}_{\mu} + \mathfrak{B}'_{\mu}$ we can express x as x = y + z with $y = p(T)u \in \mathfrak{B}_{\mu}$, $z = q(T)w \in \mathfrak{B}'_{\mu}$. By Lemma 2.4, y and z are uniquely determined, although $p \in P$ and $q \in Q$ are not unique. Define

$$F_{\mu}x=y.$$

Thus (if $s \in P$ is chosen so that $s(\lambda)p(\lambda) \equiv p(\lambda)$ and |s| = 2),

$$||F_{\mu}x|| = ||p(T)u|| = ||s(T)p(T)u + s(T)q(T)w||$$

= ||s(T)x||
 $\leq 2K||x||.$

Similarly,

$$||(I - F_{\mu})x|| = ||z|| \leq 2K||x||.$$

Thus F_{μ} , defined as a bounded linear operator on a dense subspace of \mathfrak{B} , can be uniquely extended to the whole of \mathfrak{B} by continuity. Clearly, the range of F_{μ} is the closure of \mathfrak{B}_{μ} and the nullspace of F_{μ} is the closure of \mathfrak{B}'_{μ} .

We can now prove that F_{μ} has properties (i) to (iii) but its uniqueness will only be proved at the end of § 4.

PROOF OF (i). Let S be any bounded linear operator commuting with T. Then for any polynomials p, q (and hence for absolutely continuous functions p, q) we have

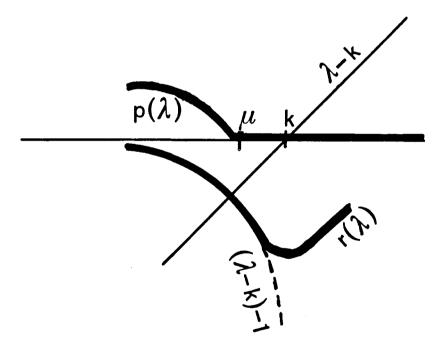
$$Sp(T)z \equiv p(T)Sz$$
, $Sq(T)z \equiv q(T)Sz$.

Thus $SF_{\mu} = F_{\mu}S$ on the dense subspace $\mathfrak{B}_{\mu} + \mathfrak{B}'_{\mu}$ and so, by continuity, S commutes with F_{μ} .

PROOF OF (ii). If $\kappa > \mu$, we can choose an absolutely continuous function $r(\lambda)$ such that

$$r(\lambda)(\lambda-\kappa)p(\lambda)\equiv p(\lambda) \qquad (p \in P).$$

Diagram 4



Thus for $x \in \mathfrak{B}_{\mu}$, x = p(T)y, $x = p(T)y = r(T)(T - \kappa I)p(T)y$ $= r(T)(T - \kappa I)x$ $= (T - \kappa I)r(T)x$.

Thus r(T) is the inverse of $T - \kappa I$ in \mathfrak{B}_{μ} , and hence (both operators being bounded) in the closure of \mathfrak{B}_{μ} , which is $F_{\mu}\mathfrak{B}$. Thus $\sigma(T; F_{\mu}\mathfrak{B})$ lies in $(-\infty, \mu]$ and it obviously lies in $\sigma(T)$.

PROOF OF (iii). Similar.

4. Proof of Theorem A

Construction of P_{μ} . Let $p(\lambda) = ((\lambda - \mu)^2 + 1)^{-1}$ so that

$$\phi(T) = ((T - \mu I)^2 + I)^{-1}.$$

By Lemma 2.7, the subspace \mathfrak{B}_{e} of eigenvectors of μ for T is the subspace of eigenvectors of 1 for p(T). Also

$$[(p(\lambda))^n] \leq 3,$$

so that

$$||(p(T))^n|| \leq 3K \qquad (n \geq 1)$$

By the ergodic theorem (4) the operator P_{μ} given by

 $P_{\mu}x = \lim q_n(T)x \qquad (x \in \mathfrak{B})$

(where

(4.1)
$$q_n(\lambda) = \frac{1}{n} \left(1 + p(\lambda) + \cdots + p((\lambda))^{n-1}\right)$$

is a bounded projection onto \mathfrak{B}_{e} . Clearly P_{μ} commutes with all bounded operators which commute with T. This proves (i) and (ii).

LEMMA 4.1. The restriction T_0 of T to $(I - P_{\mu})\mathfrak{B}$ is well-bounded and has the additional property that μ is not an eigenvalue of T_0 or of the operator T_0^* in $((I - P_{\mu})\mathfrak{B})^*$.

PROOF. By the argument above,

$$P_{\mu 0} = \lim q_n(T_0)$$

projects onto the space of eigenvectors of T_0 , i.e. onto the zero subspace of

$$\mathfrak{G} = (I - P_{\mu})\mathfrak{B}.$$

Thus $P_{\mu 0} = 0$, so that

$$0 = (P_{\mu 0})^* = \lim q_n(T_0)^* = \lim q_n(T_0^*),$$

and the range of this projection, which is the eigenspace of μ for T_0^* , must be the zero subspace. This proves the lemma.

Thus in \mathfrak{C} we can use Theorem *B*. This proves (iii) to (v). We now wish to show that it is indifferent whether we regard \mathfrak{B}_{μ} and \mathfrak{B}'_{μ} as subspaces of \mathfrak{B} or as subspaces of \mathfrak{C} .

LEMMA 4.2.

$$\{ p(T)x : x \in \mathfrak{B}, \ p \in P \} = \{ p(T)x : x \in \mathfrak{C}, \ p \in P \} = \mathfrak{B}_{\mu}$$
$$\{ q(T)x : x \in \mathfrak{B}, \ q \in Q \} = \{ q(T)x : x \in \mathfrak{C}, \ q \in Q \} = \mathfrak{B}'_{\mu}$$

PROOF. This follows directly from Lemma 2.5.

PROOF OF (vi). We know now (Lemmas 3.1 and 4.1) that: a dense set \mathfrak{B}_a of vectors of \mathfrak{B} can be written in the form

(4.2)
$$x = u + v + w \quad (u \in \mathfrak{B}_{\mu}, v \in P_{\mu}\mathfrak{B}, w \in \mathfrak{B}'_{\mu}).$$

For such an x, $||E_{\mu}x|| = ||u + v|| \leq 2K||x||$, by Lemma 2.6. Thus $||E_{\mu}|| \leq 2K$ and similar results hold for the other projections.

PROOF OF (vii). To show that $E_{\nu}G_{\mu} = E_{\nu}E_{\mu}$, I will show that $E_{\nu}P_{\mu} = 0$. Since the projections E_{ν} and P_{μ} commute, their product is a projection, which obviously commutes with T. To show that this projection is zero, it is enough to show that $\sigma = \sigma(T; E_{\nu}P_{\mu}\mathfrak{B})$ is the empty set. In fact, σ is a subset both of $\sigma(T; E_{\nu}\mathfrak{B})$ and of $\sigma(T; P_{\mu}\mathfrak{B})$. Thus σ is a subset of $(-\infty, \nu]\theta \cap \theta\{\mu\}$, which is the empty set.

To establish the equality of the projections $E_{\nu}G_{\mu}$ and E_{ν} , which commute with each other, it will be sufficient to show that they have the same range. Obviously, $E_{\nu}G_{\mu}\mathfrak{B}\subseteq E_{\nu}\mathfrak{B}$ so it will be enough to show that $E_{\nu}G_{\mu}\mathfrak{B}\supseteq E_{\nu}\mathfrak{B}$; and for this it is sufficient to show that

$$G_{\mu}\mathfrak{B}\supseteq E_{\nu}\mathfrak{B}.$$

In fact, $P_{\nu}\mathfrak{B} + \mathfrak{B}_{\nu}$ is dense in $E_{\nu}\mathfrak{B}$ and $\mathfrak{B}_{\nu} \subseteq \mathfrak{B}_{\mu}$ so it will be enough to show that $P_{\nu}\mathfrak{B} \subseteq \mathfrak{B}_{\mu}$. Let $x \in P_{\nu}\mathfrak{B}$. Then $x = \lim q_n(T)x$ where $q_n(\lambda)$ is defined by (4.1) (with ν in place of μ). Choose an absolutely continuous function $r(\lambda)$ which equals 1 on some neighbourhood of ν and vanishes on some neighbourhood of $[\mu, \infty)$. Then $|r(\lambda)q_n(\lambda) - q_n(\lambda)| \to 0$ so that

$$x = \lim r(T)q_n(T)x = r(T) \lim q_n(T)x = r(T)x \in \mathfrak{B}_{\mu}.$$

PROOF OF (viii). For $x \in \mathfrak{B}_d$, we can write x in the form (4.2). By the definition of \mathfrak{B}_{μ} , $u \in \mathfrak{B}_{\nu}$ for all ν sufficiently close to μ . Thus $E_{\nu}x = u = G_{\mu}x$. Since $||E_{\nu}|| < 2K$, $||G_{\mu}|| < 2K$ and $E_{\nu}x \to G_{\mu}x$ for x in the dense subset \mathfrak{B}_d , we have $E_{\nu}x \to G_{\mu}x$ for all $x \in \mathfrak{B}$.

PROOF OF (ix). Similar to (viii).

PROOF OF (x). Since $\alpha \notin J$, $\alpha \notin \sigma(T)$; thus $P_{\alpha} = 0$ so we have $\mathfrak{B} = \mathfrak{C}$, $E_{\alpha} = F_{\alpha}$. By (iv),

$$\sigma(T; E_{\alpha}\mathfrak{B}) = \phi \qquad (\alpha < a),$$

so that $E_{\alpha}\mathfrak{B} = \{0\}$, $E_{\alpha} = 0$ ($\alpha < a$). Similarly, $I - E_{\beta} = 0$ if $\beta > b$. Thus the required results follow from (viii) and (ix).

UNIQUENESS OF P_{μ} . Let P be a bounded projection onto the eigenspace of μ such that P commutes with T. Then P commutes with P_{μ} so that for all $x \in \mathfrak{B}$, $Px = P_{\mu}Px = PP_{\mu}x = P_{\mu}x$.

UNIQUENESS OF F_{μ} . Let a bounded projection Π have the properties (iii), (iv) and (v) of F_{μ} . By Lemma 4.1 we need only consider the special

case of Theorem B. Then $\mathfrak{B} = \mathfrak{C}$ so that Π and F_{μ} are operators in \mathfrak{B} , commuting with T and with each other. Thus $(I - \Pi)F_{\mu}$ is a projection and

$$\sigma(T; I - \Pi) F_{\mu} \mathfrak{B}) \subseteq \sigma(T; (I - \Pi) \mathfrak{B}) \cap \sigma(T; F_{\mu} \mathfrak{B})$$
$$\subseteq (-\infty, \mu] \cap [\mu, \infty) = {\mu}.$$

The Corollary to Theorem E below (which could be proved at this stage) shows that, in $(I - \Pi)F_{\mu}\mathfrak{B}$, T equals μI . Since μ has no eigenvectors this means that $(I - \Pi)F_{\mu}\mathfrak{B} = \{0\}$. Because F_{μ} and Π are projections, this implies

 $F_{\mu}\mathfrak{B}\subseteq \Pi\mathfrak{B}.$

Similarly we see that $F_{\mu}\mathfrak{B} \supseteq \Pi\mathfrak{B}$. Thus $F_{\mu}\mathfrak{B} = \Pi\mathfrak{B}$ and similarly, $(I - F_{\mu})\mathfrak{B} = (I - \Pi)\mathfrak{B}$. Thus $F_{\mu} = \Pi$.

This completes the proof of Theorems A and B.

5. The Scalar Operator $S = \int \lambda dE_{\lambda}$

I will write $E(\lambda)$ for E_{λ} and use the notation $\Delta E(\lambda_i)$ for $E(\lambda_{i+1}) - E(\lambda_i)$.

THEOREM C. Let $\{E(\lambda)\}_{-\infty < \lambda < \infty}$ be a family of projections such that for all real λ , μ , ν ,

(vi)' $||E(\mu)|| \leq K$ (vii)' $E(\mu)E(\nu) = E(\min \mu, \nu)$ (ix) $\lim_{\nu \to \mu \neq 0} E(\nu)x = E(\mu)x$ ($x \in \mathfrak{B}$) (x) $E(\lambda) = 0$ ($\lambda < a$); $E(\lambda) = I$ ($\lambda \geq b$).

Let p be any continuously differentiable function. Choose a net N consisting of points $(\lambda_i)_{1 \le i \le n}$ such that

$$a - \theta = \lambda_0 < \lambda_1 < \cdots < \lambda_n = b + \theta$$

(where θ is some number > 0). Write $\delta(N) = \max(|\lambda_0 - \lambda_1|, \dots, |\lambda_{n-1} - \lambda_n|)$, and $S_N = \sum p(\lambda_i) \Delta E(\lambda_i)$.

Then (1) as $\delta(N) \rightarrow 0$, S_N will converge strongly to an operator which will be written

$$p(S) = \int p(\lambda) \, dE_{\lambda}.$$

In particular we write

$$S=\int \lambda dE_{\lambda}.$$

(2) For this correspondence $p(\lambda) \rightarrow p(S)$ we have

$$1 \to I$$

$$\lambda \to S$$

$$\alpha p(\lambda) + \beta q(\lambda) \to \alpha p(S) + \beta q(S)$$

(5.1)
$$p(\lambda)q(\lambda) \to p(S)q(S)$$

(5.2)
$$||p(S)|| \leq |p(b)| + K \operatorname{var}_{[a,b]} p(\lambda).$$

(3) E_{λ} is the projection obtained by applying Theorem A to the well-bounded operator S.

LEMMA. Let $f(\lambda)$ be a function of a real variable λ taking values in a metric space. Let $f(\lambda)$ be continuous on the right at each point. Then $f(\lambda)$ has at most a countable set of discontinuities.

PROOF. Define $d(\lambda)$, the discontinuity at λ , to be the upper limit, as x and y approach λ , of $\rho(f(x), f(y))$. Let S_n be the set of points where $d(\lambda) > 1/n$. To the right of any point of S_n there is an interval containing no point of S_n . Choose a rational number in this interval. This maps S_n one-one onto a subset of the rationals, showing that S_n is countable. Thus the set that concerns us, being $\bigcup_1^{\infty} S_n$, is countable.

PROOF OF THEOREM C (1). Consider some $x \in \mathfrak{B}$. By (ix) and the lemma, $E_{\lambda}x$ has a countable set of discontinuities. As $p'(\lambda)$ is continuous,

(5.3)
$$\int_{a-\theta}^{b+\theta} E(\lambda) x p'(\lambda) d\lambda$$

exists as a Riemann integral for any $\theta > 0$ (see (13), Theorem 1). Thus

(5.4)
$$\int_{a-\theta}^{b+\theta} p(\lambda) \, dE(\lambda) \, x$$

exists (in the sense stated in the theorem) and is equal to

(5.5)
$$[E(\lambda) \not p(\lambda) x]_{a-\theta}^{b+\theta} - \int_{a-\theta}^{b+\theta} \not p'(\lambda) E(\lambda) x \, d\lambda.$$

PROOF OF (2). By (x), (5.4) is independent of θ . (5.5) gives the inequality

$$\begin{split} ||\int p(\lambda) dE(\lambda)x|| &\leq |p(b)| \cdot ||E(b)x|| + |p(a)| \cdot ||E(a-0)x|| \\ &+ ||ub|||E(\lambda)x||\int_a^b |p'(\lambda)| d\lambda \end{split}$$

which, by (x) and (vi)', gives (5.2).

For any net N,

$$[\sum p(\lambda_i) \Delta E(\lambda_i)][\sum q(\lambda_j) \Delta E(\lambda_j)] = \sum p(\lambda_i)q(\lambda_i) \Delta E(\lambda_i),$$

by (vii)'. Letting $\delta(N) \to 0$ we obtain (5.1).

PROOF OF (3). Since $E_{\lambda} \cap \sum p(\lambda_i) \Delta E(\lambda_i)$, we must have

$$E_{\lambda} \cap p(S).$$

Fix $x \in E_{\mu} \mathfrak{B}$ and $\theta > 0$. We have

$$x = E_{\mu}x = E_{\lambda}E_{\mu}x = E_{\lambda}x \qquad (\lambda \ge \mu).$$

Conditionally convergent spectral expansions

Thus

[13]

$$\sum p(\lambda_i) \Delta E(\lambda_i) x = \sum_{\lambda_i < \mu} p(\lambda_i) \Delta E(\lambda_i) x,$$

since the remaining terms of the left-hand side are all zero. Thus

(5.6)
$$p(S) x = \int_{a-\theta}^{b+\theta} p(\lambda) dE_{\lambda} x = \int_{a-\theta}^{\mu+\theta} p(\lambda) dE_{\lambda} x.$$

We can now discuss the inverse of $(T - \nu I)$, regarded as an operator in $E_{\mu}\mathfrak{B}$. If $\nu > \mu$ or $\nu < a$ we choose $\theta > 0$ so that $\nu > \mu + \theta$ or $\nu < a - \theta$. Then $(\lambda - \nu)^{-1} = r(\lambda)$ is a continuously differentiable function on $[a - \theta, \mu + \theta] = J'$, so that r(S) can be defined by (5.6) as an operator in $E_{\mu}\mathfrak{B}$. The equation $r(\lambda)(\lambda - \nu) = 1$ ($\lambda \in J'$) shows that

$$r(S)(S - \nu I) = (S - \nu I)r(S) = I,$$

by the argument of (2). Thus, in $E_{\mu}\mathfrak{B}$, the spectrum of S is included in $\sigma(S) \cap [a, \mu]$. Similarly, in $(I - E_{\mu})\mathfrak{B}$ the spectrum of S is included in $\sigma(S) \cap [\mu, b]$.

As \mathfrak{B} is reflexive, (vi)', (vii)' and Lorch's theorem (5) show that $E(\mu - 0)$ exists (as a strong limit). For $x \in (E(\mu) - E(\mu - 0))\mathfrak{B}$, the sum

 $\sum \lambda_i \varDelta E(\lambda_i) x$,

taken over a net N, reduces to the term with $\lambda_i < \mu \leq \lambda_{i+1}$, which is

 $\lambda_i \Delta E(\lambda_i) x = \lambda_i (E(\mu) - E(\mu - 0)) x = \lambda_i x.$

Upon allowing $\delta(N) \to 0$, we obtain $Sx = \mu x$. Thus $(E(\mu) - E(\mu - 0))$ consists of eigenvectors of μ . Conversely, if $Sx = \mu x$,

$$(SE(\mu - \theta)x) = E(\mu - \theta)(Sx) = \mu(E(\mu - \theta)x),$$

so that consideration of the spectrum of S in $E(\mu - \theta)$ shows that

$$E(\mu - \theta)x = 0 \qquad (\theta > 0).$$

Similarly $E(\mu + \theta)x = x$ ($\theta > 0$).

Thus $x = E(\mu + 0)x - E(\mu - 0)x$

$$= E(\mu)x - E(\mu - 0)x \epsilon (E(\mu) - E(\mu - 0))\mathfrak{B}.$$

Thus $(E(\mu) - E(\mu - 0))$ is a projection, commuting with S, onto the eigenspace of μ . The uniqueness statements in Theorem A now show that E_{λ} is the projection which Theorem A describes (for S in place of T).

THEOREM D. Let T be a well-bounded operator, $\{E(\lambda)\}$ the family of projections derived from T by Theorem A, and S the scalar operator derived from $\{E(\lambda)\}$ by Theorem C. Then

(i)
$$S \cap \cap T$$
 and

(ii) S - T is a generalised nilpotent operator.

Proof.

(i) $E(\lambda) \cap \cap T$. Thus $\sum \lambda_i \Delta E(\lambda_i) \cap \cap T$. Thus $S \cap \cap T$.

(ii) We have to show that $\sigma(S - T) = \{0\}$. We will show for each $\varepsilon > 0$ that $\sigma(S - T)$ lies inside the ε -neighbourhood of 0, i.e. that the spectral radius of S - T is less than ε . Fix $\varepsilon > 0$. Choose a net N such that $\delta(N) < \varepsilon/2$. Then in $\Delta E(\lambda_i)$, S and T each has its spectrum in $[\lambda_i, \lambda_{i+1}]$ so that $S - \lambda_i I$ and $T - \lambda_i I$ have spectra in $[0, \varepsilon/2]$. As these last two operators commute, the spectral radius of $S - T = (S - \lambda_i I) - (T - \lambda_i I)$ is at most ε ((8), § 149). Thus the spectrum of S - T in \mathfrak{B} , being the union of the spectra of S - T in the subspaces $\Delta E(\lambda_i)\mathfrak{B}$, lies in the ε -neighbourhood of 0.

It seems likely ¹ that S = T, in the situation described in Theorem D. If S - T is well-bounded (which is not obvious) the following theorem shows that S equals T. This equality can also be proved in some other special circumstances, for example if the space is finite-dimensional (by means of the corollary below) or if T has a complete set of eigenfunctions (for then Sx = Tx for a dense set of x).

THEOREM E. If T is well-bounded and generalised nilpotent, then T = 0. PROOF.

We can construct projections P_{μ} , G_{μ} , and F_{μ} , and subspaces \mathfrak{B}_{μ} and \mathfrak{B}'_{μ} $(-\infty < \mu < \infty)$, as in the proof of Theorem A. If $\mu < 0$, the spectrum of T in $\mathfrak{B}_{\mu} = F_{\mu}(I - P_{\mu})\mathfrak{B}$ is empty by Theorem A (iv). Thus $\mathfrak{B}_{\mu} = \{0\}$, so that

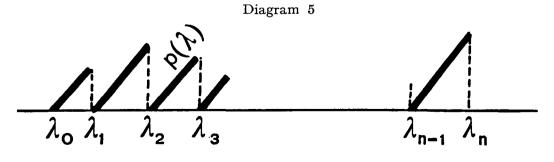
$$\mathfrak{B}_{\mathbf{0}} = \underset{\mu < \mathbf{0}}{\cup} \mathfrak{B}_{\mu} = \{0\}.$$

Similarly $\mathfrak{B}'_0 = \{0\}$. As $\mathfrak{B}_0 + \mathfrak{B}'_0$ is dense in $(I - P_0)\mathfrak{B}$, this means that $(I - P_0)\mathfrak{B} = \{0\}$, so that $P_0 = I$. Thus the nullspace of T is the whole of \mathfrak{B} .

COROLLARY. If the spectrum of T consists of a single point μ , and T is wellbounded, then $T = \mu I$.

PROOF. $T - \mu I$ satisfies the conditions of Theorem E.

My reasons (heuristic), for believing that $(S - T)^2 = 0$, are: T - S is the limit, as sup $(\lambda_{i+1} - \lambda_i) \to 0$, of operators $T - \sum \lambda_i \Delta E(\lambda_i)$. Such an operator corresponds (roughly) to the function $p(\lambda)$ of Diagram 5. Now $|p(\lambda)| \ge |J|$,



¹ See footnote, p. 3.

ut $[(\phi(\lambda))^2] \to 0$ as sup $(\lambda_{i+1} - \lambda_i) \to 0$, s

however, fine the subdivision; but $|(p(\lambda))^2| \to 0$ as $\sup (\lambda_{i+1} - \lambda_i) \to 0$, so we expect that $(S - T)^2 = 0$. The fact that $|p(\lambda)|$ is approximately |J| suggests the inequality (9) of the introduction.

6. The Spectral Theorem

In this section we will assume that \mathfrak{B} is a Hilbert space and that T is a selfadjoint operator. It is well known that the bound of T is then equal to its spectral radius. The same theorem applied to p(T), taken with the spectral mapping theorem, $p(\sigma(T)) = \sigma(p(T))$, shows that

$$||\phi(T)|| = \sup_{\lambda \in \sigma(T)} |\phi(\lambda)|$$

which is stronger than the statement that T is well-bounded.² We define the projections E_{μ} as in the proof of Theorem A. On inspection of the definition of E_{μ} it is easily seen that E_{μ} is self-adjoint. The argument of Theorem D (ii) shows that for a net N with $\delta(N) < \varepsilon$, the spectral radius of

$$T - \sum \lambda_i \Delta E(\lambda_i)$$

is less than ε so that, since this operator is self-adjoint, $||T - \sum \lambda_i \Delta E(\lambda_i)|| < \varepsilon$. Thus

$$T=\int \lambda \, dE_{\lambda}$$
 ,

the right-hand side being the limit in operator norm of the corresponding Riemann sums.

References

- N. Dunford; Spectral Operators, Pacific Journal of Mathematics 4 (1954) 321-354.
- [2] Hille, E. and Tamarkin, J. D., On the theory of Fourier transforms, Bulletin of the American Mathematical Society 39 (1933), 768-774.
- [3] Loomis, L. H., Abstract Harmonic Analysis, New York (1953), § 26 F, G.
- [4] Lorch, E. R., Means of iterated transformations in reflexive vector spaces, Bulletin of the American Mathematical Society 45 (1939), 945-947.
- [5] Lorch, E. R., On a calculus of operators in reflexive vector spaces, Transactions of the American Mathematical Society 45 (1939), 217-234, Theorem 3.2.
- [6] von Neumann, J., Allgemeine Eigenwerttheorie Hermitescher Funktionaloperatoren, Mathematische Annalen, 102 (1930), 49-131.
- [7] von Neumann, J., Eine Spektraltheorie f
 ür allgemeine Operatoren eines unit
 ären Raumes, Mathematische Nachrichten 4 (1951), 258-281.
- [8] Riesz, F. and Sz.-Nagy, B., Leçons d'analyse fonctionnelle, 2e ed., Budapest, 1953.
- [9] Rutovitz, D., On the L_p-convergence of eigenfunction expansions, Quarterly Journal of Mathematics, (2) 7 (1956) 24-38.
- [10] Smart, D. R., Eigenfunction expansions in L^p and C, Illinois Journal of Mathematics 3 (1959) 82-97.
- [11] Taylor, A. E., Introduction to functional analysis, New York, (1958).
- [12] Zygmund, A., Trigonometrical series, Warsaw (1935).
- [13] Graves, L. M., Riemann integration and Taylor's theorem in general analysis, Transactions of the American Mathematical Society 29 (1927), 163-177.

University of Western Australia, Perth.

² Dr. Ringrose's results make the remaining lines of this proof superfluous.