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We will consider a reflexive Banach space 23, with real or complex scalars,
and a bounded operator in S3 with a real spectrum.

A self-adjoint (i.e. Hermitian) operator T in a finite-dimensional vector
space S3 has a complete set of eigenvectors; writing E(r) for the orthogonal
projection onto the subspace spanned by eigenvectors of eigenvalues in r,
T can be expressed as

(1) T =

For each set of real numbers r,

a projection E(r) exists.
We have

(2) \\E(r)\\<K

and for any vector x,
E{r)x = lim E(rn)x,

if xn is a sequence of sets expanding to T. If the spectrum of T is a{T) the
spectrum of T in E(r)^& is

(3) O(T;E(T)®) =a{T)nr.

These, and related facts, are well known, or are obvious consequences of
well-known results. They have been generalised to self-adjoint operators in
Hilbert space (6), in which setting they constitute the "Spectral Theorem".
In this case some proofs (see e.g. (11)) use the fact that, for all real
polynomials f,

W \\P{T)\\ £ sup \p{k)\,
\e<r(T)

which is easily proved. The inequalities (4) and

(5) \\p(T)\\^K sup \p(l)\

have been investigated, for any operator in a Banach space ((7), (3)). It
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320 D. R. Smart [2]

appears that, if we require (2) to hold for Borel sets rn, r, then (1) and (2)
are equivalent to (5).

In the spaces Lp (1 < f < oo; p ^ 2) the most important operators —
those integral and differential operators, which, in L2, would be self-adjoint
— tend to have eigenfunction expansions which converge (12, §§ 7.3, 12.42),
(2), (9), (10)), but only conditionally (12, § 9.5). This corresponds to the
statement that E{x) should exist, and (2) hold, when r and rn are intervals
on the real line. Taking (2) in this sense, the object of the present paper is to
investigate the equivalence of (1) and (2) to the inequality

(6) \\p{T)\\^K\p\,

where
(7) lpl=sup\p{X)\+viap{X).

((6) should hold for some closed real interval / , some K < oo, and all real
polynomials p. If this is so, / contains a(T).) Actually, starting from (6),
I fail *• to prove (1) but obtain the weaker result (3), together with the
existence of

(8) 5 =

I prove that 5 — T is generalised nilpotent, and zero in some special cases;
I can probably x prove that (S — T)2 = 0 and that

(9) | | ( 5 - T)E{[c,d})\\ ^K(d-c) (-oo<c<d< oo)

but the question whether 5 = T in general remains open.
Of course, the constants K in (2), (6) and (9) may differ.
The argument from (1) and (2) to (6) is fairly trivial (see § 5) so that the

following theorem should be regarded as the main result. (For notation,
see § 1).

THEOREM A. / / T is well-bounded then for any real number [i there is a
unique bounded projection P^ such that

(i) P^nnT;

(ii) Pfi^d) is the space of eigenvectors of fx.

In the space (£ = (7 — P^fd there is a unique bounded projection F^ such
that

(iii) F,nn(r;(E);

(iv) a(T;F^)Q(-oo)fi]na(T)

(v) o(T; (I ~ *;)<£) Q [[*, oo) n a(T).
1 Dr. Ringrose disposes of these difficulties in the following paper.
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[3] Conditionally convergent spectral expansions 321

Writing G^ for the projection F^(1 — P^) and E^ for the projection G^ + PM

we have

(vi) IIP^I ^ 3K, IIG^I ^ 2K, \\Ep\\ ^ 2K, whereK is the constant of (6).

(vii) Efip = EyE^ = EV (v < /u);

(viii) lim Evx = G^x (x

(ix) lim Ev(x) = E^x (

(x) Ek = 0(A < a); Ex = /(A ^ b), where J = [a, b] is the interval
mentioned in (7).

The Spectral Theorem is deduced from Theorem A in § 6. Unfortunately,
this case (where T is self-adjoint) is the only one in which I can verify (6)
directly.

1. Notation

The word "operator" means "linear operator", wherever it appears.
My only non-standard notation: T is well-bounded if (6) is satisfied (for

some real interval / , some number K < oo, and all real polynomials p).
For most of our terminology and notation and for facts which we take for

granted the reader can consult any text on functional analysis; for example
(10).

The following remarks may help the reader: cf> denotes the empty set,
[a, b] a closed interval; T n S means that T and S commute (in an obvious
sense, since all our operators are bounded), T nn S means that T commutes
with every bounded operator which commutes with S; if A and B are subsets
of a Banach space I write A -\- B for the set of vectors a -{- b (a € A, b e B);
for any operator E, ESQ denotes the range of E (thus if E is a projection,
(I — E)S3 is the nullspace of E); the adjoint T* of T can be defined by the
equation

(Tx,y)= (x,T*y) {x e ft, y e 18*)

(note that using the alternative definition would not affect our arguments);
§f{X)E{dX) means the same as Jf(X)dEx; for a sequence of operators Tn

and a limit operator T, we say that Tn-^»T strongly if Tnx-> Tx for all
a; c S3; o(T), the spectrum of T, is the set of scalars X for which T — U fails
to have an inverse (in the algebra of bounded linear operators on 33 to S3);
if p(X) = a0 -f- axX + • • • + anX

n is a polynomial we write P(T) = aol -f-
a±T + - • - + anT

n.

2. Operational Calculus

The following result is our basic tool.

LEMMA 2.1. Let T be well-bounded. Then the correspondence
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P(X)~>p(T)

can be extended (in a unique way) from the set of polynomials to the set of all
absolutely continuous real functions, with (6) remaining true. For the extended
correspondence we have

(i) p(X)q{X)^p(T)q(T)

(ii) cp(X)^cp(T)

(iii) p(X) + q{X) - p(T) + q(T)

(iv) p(T*) = (p(T))*

(v) p(T) o n T.

PROOF. If p is absolutely continuous, choose (by approximating to p', in
L'v by a polynomial), polynomials pn such that \pn — >̂l ->• 0. Then

- pn{T)\\ ^ tflfc, - AJ -> 0 as m, « -> oo,

so that >̂n (T) converges in operator norm to an operator (independent of the
choice of pn) which will be called p(T). Clearly (6) is true. Since (i) to (v)
are true for polynomials p they must also, for reasons of continuity, be true
for absolutely continuous functions.

We can now clarify the role of the interval / , by showing that / contains
the spectrum of T. In fact, if v 4 J, the function (X — v)~l is absolutely con-
tinuous over / ; this function thus corresponds to some operator which, by (i),
must be the inverse of T — vl.

Let [A be any real number. Write P (or Q) for the class of real functions,
each of which is absolutely continuous and is zero throughout some neigh-
bourhood of \ji, oo) (or of (—oo, fi\). We will consider the subspace 83^ (or
93 )̂ (not in general closed) composed of elements P(T)x (x e S3, p e P)
(or q(T)x (xe%,qeQ)).

Diagram 1

(peP) (ieQ)
P(A) q(A)

I I
LEMMA 2.2. S3A is a subspace.

PROOF. If p, r e P we can find s e P such that

s(X)r(X)=r(X).
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Thus
p(T)x + r(T)y = s(T)(p(T)x + r(T)y) e »„.

Also k(j)(T)x) = (kp(T))x e 23 ,̂ for any real number k.

LEMMA 2.3. 93^ is a subspace.

PROOF. Similar to Lemma 2.2.

LEMMA 2.4. 35^ and 23^ are disjoint.

PROOF. Let p e P, q e Q and suppose that

z = p{T)x = q{T)y.

We can choose absolutely continuous functions r, s, t such that s e P, te Q,

p{X)r(X) = q{X)r(X) = 0,

s{X) + r(A) + t{X) = 1.

Clearly

Thus

r(7>

+ r{T)q{T)y + t(T)p(T)x

= 0.
LEMMA 2.5. / / a; is an eigenvector of [x, if p e P and q e Q, then

p(T)x = q(T)x = 0.

PROOF. If Tx = fix, then the formula

r(T)x = r(/u)x

is true for all polynomials r and hence, by Lemma 2.1, for all absolutely
continuous functions. Thus

p(T)x = p{p)x = 0 (p

q(T)x = q([z)x = 0 (qeQ).
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LEMMA 2.6. Suppose that x = u + v -\- w where u e 35 ,̂ v is an eigenvector
of /u, and w e 33̂ ,. Then

(i) \\u\\^2K\\x\\

(ii) | |« + V | | ^ 2^11*11

(iii) \\w\\^2K\\x\\

(iv) \\v\\ ̂  3K\\x\\

PROOF, (i) For an absolutely continuous function p equal to 1 from — oo
almost to JU, then decreasing to 0 and remaining 0 in {ju, oo), we have

p(T)u = u, p{T)v = p(T)w = 0, sup \p{X)\ = var£(A) = 1,

so that
INI = \\HT)x\\ ^K\p\ • ||*|| = 2K\\x\\.

(ii) Similar; p should equal 1 in (— oo, /u] and decrease to 0 just to the
right of JU.

(iii) Similar; p should be zero in (— oo, /JL] and increase to 1 just to the
right of JU.

(iv) Similar; p should equal 1 at ju and decrease to 0 on either side of /A.

I must thank Dr. Ringrose for drawing my attention to the need for the
following lemma, and for giving a proof of it. (In the complex case it can be
avoided by using (A — ju + i)*1 in place of ((A — ju)2 + l ) - 1 in the proof
of Theorem A.)

LEMMA 2.7. If (T — filfx = 0 then {T — fd)x = 0.

PROOF. If (T — jul)2x = 0 then for any k > 0,

.(/ + k(T-jiI)*)x = x
so that

(/ + k(T - fxl)2)-^ = x.
Thus

\\(T - fd)x\\ = \\(T- pi){I + k(T -

As k can be taken arbitrarily large, (T — jul)x = 0.

3. We will prove the following special case of Theorem A.

THEOREM B. / / T is a well-bounded linear operator in a Banach space $8,
and [x is real and not an eigenvalue of T*, then there is a unique bounded pro-
jection Fp such that
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(i) F^nn T;
(ii) a(T;Ffi)Q (-00, fi] n a{T);

(iii) a(T; (I - *•„)») Q [a, 00) n <r(r).
REMARK. In (ii) or (iii) the difference of the two sides is at most the single

point ju.

REMARK. The ergodic theorem (used as in Lemma 4.1) shows that fi will
be an eigenvalue of T if and only if it is an eigenvalue of T*.

LEMMA 3.1. Under the conditions of Theorem B, 93 ̂  + 93^ is dense in 93.

PROOF. Suppose y J_ 93̂  + 93 .̂ Then for p e P, q e Q, xeft,

(q(T*)y, x) = (y, q(T)x) = 0.

T h u s [j>{T*) + q{T*)]y = 0 . N o w c h o o s e p e P , q e Q s o t h a t

Diagram 3

We obtain
\\(T* - fd)y\\ < eK\\y\\,

so that T*y = juy. Thus y = 0, since ju, is not an eigenvalue of T*.

DEFINITION OF F^ If x e 93^ + 23^ we can express a; as a; = y + z with
y = p(T)u e 93 ,̂ 2 = q(T)w e 93 .̂ By Lemma 2.4, y and 2: are uniquely
determined, although p e P and qeQ are not unique. Define

F^x = y.

Thus {ii seP is chosen so that s{X)p(X) =p(X) and Isl = 2),

ll*>ll = \\P(T)u\\ = \\s(T)p(T)u +
= \\s(T)x\\

^ 2K\\x\\.
Similarly,
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Thus Fp, defined as a bounded linear operator on a dense subspace of S3, can
be uniquely extended to the whole of S3 by continuity. Clearly, the range of
F/t is the closure of 23^ and the nulhpace of FA is the closure of 33̂ ,.

We can now prove that F^ has properties (i) to (iii) but its uniqueness
will only be proved at the end of § 4.

PROOF OF (i). Let 5 be any bounded linear operator commuting with T.
Then for any polynomials p, q (and hence for absolutely continuous functions
p, q) we have

Sp{T)z = p(T)Sz, Sq{T)z = q{T)Sz.

Thus SFp = FpS on the dense subspace 33̂  + 23̂  and so, by continuity, S
commutes with Fr

PROOF OF (ii). If K > /JL, we can choose an absolutely continuous function
r{X) such that

Diagram 4

Thus for x e 33 ,̂ x = P{T)y,

x = p(T)y = r(T)(T-KI)p(T)y

= r(T)(T - KI)X

= (T - KI)r{T)x.

Thus r(T) is the inverse of T — KI in SŜ , and hence (both operators being
bounded) in the closure of 23 ,̂ which is F^93. Thus a(T; Fffl h'es in (— oo, p]
and it obviously lies in a{T).

PROOF OF (iii). Similar.
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4. Proof of Theorem A

CONSTRUCTION OF P A . Let p(X) — ((A — ̂ ) 2 + I)"1 so that

fi(T) = ((T -

By Lemma 2.7, the subspace 23 e of eigenvectors of fi for T is the subspace of
eigenvectors of 1 for p{T). Also

so that

By the ergodic theorem (4) the operator P ̂  given by

P/lx = lim qn{T)x (x e S3)
(where

(4.1) qn(X) = - (1 + p{k) + • • ' + pW)n~x)
n

is a bounded projection onto 93e. Clearly P ̂  commutes with all bounded
operators which commute with T. This proves (i) and (ii).

LEMMA 4.1. The restriction TQ of T to (I — P^ffi is well-bounded and has
the additional property that ju is not an eigenvalue of TQ or of the operator T*
in ((/-*>„)»)*.

PROOF. By the argument above,

projects onto the space of eigenvectors of To, i.e. onto the zero subspace of

( £ = ( / - P
Thus P^ = 0, so that

0 = (P,o)* = lim qn{TQ)* = lim qn{T*),

and the range of this projection, which is the eigenspace of /u for T*, must
be the zero subspace. This proves the lemma.

Thus in (£ we can use Theorem B. This proves (iii) to (v). We now wish to
show that it is indifferent whether we regard 93^ and 93̂ , as subspaces of 93 or
as subspaces of ©.

LEMMA 4.2.

{p{T)x : x e 93, peP} = {p{T)x \xe&, p e P} = 93^

{q(T)x :xe%, q€Q}= {q{T)x : x e&, q e Q] = %

PROOF. This follows directly from Lemma 2.5.
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PROOF OF (vi). We know now (Lemmas 3.1 and 4.1) that: a dense set 93 «j
of vectors of 93 can be written in the form

(4.2) x = uJrV^.w (ueftp, ve PA93, W e 93 )̂.

For such an x, \\EpX\\ = \\u + v|| <L2K\\x\\, by Lemma 2.6. Thus 11^| | ^2K
and similar results hold for the other projections.

PROOF OF (vii). To show that EyG^ — EvE/l, I will show that EvPfl = 0.
Since the projections Ev and P ̂  commute, their product is a projection,
which obviously commutes with T. To show that this projection is zero, it is
enough to show that a = a(T; Zs,P^93) is the empty set. In fact, a is a subset
both of a(T; £,93) and of o(T; P^ S3). Thus a is a subset of ( - op, v]0 n B{fi},
which is the empty set.

To establish the equality of the projections EvG/i and Ev, which commute
with each other, it will be sufficient to show that they have the same range.
Obviously, £,6^93 Q Zs,93 so it will be enough to show that £,6^932 Ev93;
and for this it is sufficient to show that

In fact, P,93 + 93,, is dense in £",93 and 93, C 93̂  so it will be enough to show
that P,93 Q 93 .̂ Let x e PJ&. Then x = lim qn{T)x where qn(X) is defined by
(4.1) (with v in place of JU). Choose an absolutely continuous function r{X)
which equals 1 on some neighbourhood of v and vanishes on some neighbour-
hood of \JJL, oo). Then \r{X)qn{X) — qn(k)\ ->0 so that

x = lim r(T)qn(T)x = r(T) lim qn{T)x = r{T)x e 93A.

PROOF OF (viii). For x e 93d, we can write x in the form (4.2). By the def-
inition of 93 ,̂ u e 93, for all v sufficiently close to /u. Thus Evx = u — G^x.
Since | |£, | | < 2K, ||GA|| < 2K and Evx -> G^x for a; in the dense subset 93d,
we have Evx -> G^x for all x e 93.

PROOF OF (ix). Similar to (viii).
PROOF OF (X). Since a ^ / , <x.^a(T); thus Pa = 0 so we have 93 = ©,

Ea = Fa. By (iv),
a(T; £a93) = <f> (a < a),

so that £a93 = {0}, Ea = 0 (a < a). Similarly, / — Efi = 0 if 0 > b. Thus
the required results follow from (viii) and (ix).

UNIQUENESS OF P^ Let P be a bounded projection onto the eigenspace
of fz such that P commutes with T. Then P commutes with P^ so that
for all x€ 93, Px = P/lPx = PP^x = P^x.

UNIQUENESS OF F^ Let a bounded projection 77 have the properties (iii),
(iv) and (v) of F^ By Lemma 4.1 we need only consider the special
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case of Theorem B. Then SB = © so that 77 and F ̂  are operators in 33,
commuting with T and with each other. Thus (7 — 77)F ^ is a projection
and

a(T;I-n)F^)ga{T; (7-77)33) n <r(r; 7^33)

Q (—GO, [i\ n 0 , co) = {JJ).

The Corollary to Theorem E below (which could be proved at this stage)
shows that, in (I — 77) F^ 33, T equals (JLI. Since fi has no eigenvectors
this means that (7—77)7^33 = {0}. Because F^ and 77 are projections,
this implies

7,33 £7733.

Similarly we see that 7^33 2 ^ 3 - Thus 7^33 = 7733 and similarly,
(7-7^)33 = (7-77)33. Thus F ̂  = 77.

This completes the proof of Theorems A and B.

5. The Scalar Operator S = f ^dEA

I will write E{X) for 7sA and use the notation AE^) for 7s(Ai+1) — 7s (Af).

THEOREM C. Let {E(X)}_OO<X<OO be a family of projections such that for all
real X, /u, v,

(vi)' \\EM\\£K
(vii)' E(JJ,)E(V) = 7s(min jn, v)

(ix) lim E(v)x = E(ju)x (x e 93)
v-*/t+O

(x) E{X) = 0 (A < a); £(A) = 7 (A ^ 6).

Let p be any continuously differentiable function. Choose a net N consisting of
points (A,)1^t^w such that

(where d is some number > 0). Write 6(N) = max (\X0 — Xx\, • • •, \Xn_x — Xn\),

Then (1) as 6{N) -> 0, SN will converge strongly to an operator which will
be written

P(S)=jp(X)dEx.
In particular we write

(2) For this correspondence p{X) -> P(S) we have

1 ^ 7

X-+S
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(5.1) p(X)q(X)^p(S)q(S)

(5.2) \\p(S)\\^\p(b)\+Kva.rp(l).
[a,b1

(3) Ex is the projection obtained by applying Theorem A to the well-bounded
operator S.

LEMMA. Let f(X) be a function of a real variable X taking values in a metric
space. Let f(X) be continuous on the right at each point. Then f(X) has at most a
countable set of discontinuities.

PROOF. Define d(X), the discontinuity at X, to be the upper limit, as x
and y approach X, of p(f (x),f(y)). Let Sn be the set of points where d(X) > 1/n.
To the right of any point of Sn there is an interval containing no point of Sn.
Choose a rational number in this interval. This maps Sn one-one onto a sub-
set of the rationals, showing that Sn is countable. Thus the set that concerns
us, being u f 5 w , is countable.

PROOF OF THEOREM C (1). Consider some x e S3. By (ix) and the lemma,
Exx has a countable set of discontinuities. As p'{X) is continuous,

(5.3)

exists as a Riemann integral for any 0 > 0 (see (13), Theorem 1). Thus

(5.4) \™p(X)dE{X)x

exists (in the sense stated in the theorem) and is equal to

(5.5) [E{X)p{X)xt% - j™p'(X)E(X)xdX.

PROOF OF (2). By (x), (5.4) is independent of 0. (5.5) gives the inequality

\\jp(X)dE(X)x\\ ^ \p(b)\ - \\E(b)x\\ + \p(a)\

which, by (x) and (vi)', gives (5.2).

For any net N,

[SPiXJAEiAM&qMAEfo)] = 2p(Xt)q(Xi)AE(Xi),

by (vii)'. Letting d(N) -> 0 we obtain (5.1).

PROOF OF (3). Since Ex n ^iP(Xi)AE(Xi), we must have

Fix x e EjfS and 0 > 0. We have

x = EpX = E^EpX = E^x {X ^ (A).
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Thus

since the remaining terms of the left-hand side are all zero. Thus

(5.6) p(S)x =

We can now discuss the inverse of (T — vl), regarded as an operator in
EpSQ. If v > ju or v < a we choose 6 > 0 so that v>jbtJ

rd or v<.a — 6.
Then (A — v)~x = r{X) is a continuously differentiate function on
[a — 6, fi + 0] = / ' , so that r(5) can be defined by (5.6) as an operator in
Eft. The equation r(X)(X - v) = 1 (Af/') shows that

r(5)(5 - vl) = (5 - v/)r(S) = / ,

by the argument of (2). Thus, in E^, the spectrum of S is included in
a(S) n [a, //,]. Similarly, in (I — E^SS the spectrum of S is included in
o[S) n [a, b].

As S3 is reflexive, (vi)', (vii)' and Lorch's theorem (5) show that E(ju — 0)
exists (as a strong limit). For x e (E(ju) — E{p, — 0))S3, the sum

taken over a net N, reduces to the term with Xt < [i ^ Xi+1, which is

XiAE{Xt)x = A4(£GM) -E{JI — 0))x = A,a;.

Upon allowing 5(AT") -> 0, we obtain 5a; = jux. Thus (£(/*) — E{fi — 0))S3
consists of eigenvectors of fi. Conversely, if 5a; = /ux,

- B)x) = E([i - 0)(Sx) = p(E{p - B)x),

so that consideration of the spectrum of 5 in E(ju — 0)35 shows that

E(/u — 6)x = 0 (d> 0 ) .

Similarly E(p + d)x = x (0 > 0).

Thus x = E(jn + 0)x — E{jx — 0)x

= E(fi)x - E(JJ,~ 0)x e (E(ji) - E{p - O))93.

Thus (E(jx) — E(fx — 0)) is a projection, commuting with 5, onto the eigen-
space of p. The uniqueness statements in Theorem A now show that Ex is
the projection which Theorem A describes (for 5 in place of T).

THEOREM D. Let T be a well-bounded operator, {E(X)} the family of projec-
tions derived from T by Theorem A, and S the scalar operator derived from
{E(X)} by Theorem C. Then

(i) 5 on T and
(ii) 5 — T is a generalised nilpotent operator.
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PROOF.

(i) E{X) nn T. Thus JiXiAE{Xi) nn T. Thus 5 n o T.
(ii) We have to show that a(S — T) = {0}. We will show for each e > 0

that a(S — T) lies inside the e-neighbourhood of 0, i.e. that the spectral
radius of 5 — T is less than e. Fix e > 0. Choose a net N such that d(N)<e/2.
Then in AE{Xi)^d, S and T each has its spectrum in [Xit Xi+1] so that S — XtI
and T — XJ have spectra in [0, e/2]. As these last two operators commute,
the spectral radius of S — T = (5 — XJ) — (T — At-7) is at most e ((8),
§ 149). Thus the spectrum of 5 — T in 33, being the union of the spectra of
5 — T in the subspaces ^£(^^$8, lies in the e-neighbourhood of 0.

It seems likely x that S = T, in the situation described in Theorem D. If
5 — T is well-bounded (which is not obvious) the following theorem shows
that 5 equals T. This equality can also be proved in some other special
circumstances, for example if the space is finite-dimensional (by means of
the corollary below) or if T has a complete set of eigenfunctions (for then
Sx = Tx for a dense set of x).

THEOREM E. / / T is well-bounded and generalised nilpotent, then T = 0.

PROOF.

We can construct projections P^, G^, and Fn, and subspaces 93^ and 95̂
(— oo < fji < oo), as in the proof of Theorem A. If fx < 0, the spectrum of T
in ^ = Fp(I — P^SB is empty by Theorem A (iv). Thus S3A = {0}, so that

23o = u X, = {0}.
/t<0

Similarly 93J = {0}. As S30 + S3J is dense in (/ - PO)33, this means that
(7 — PO)93 = {0}, so that P o = / . Thus the nullspace of T is the whole of 95.

COROLLARY. / / the spectrum of T consists of a single point JU, and T is well-
bounded, then T = /ul.

PROOF. T — jul satisfies the conditions of Theorem E.
My reasons (heuristic), for believing that (S — T)2 = 0, are: T — S is the

limit, as sup (Xi+1 — Xt) -> 0, of operators T — 2 XiAE{Xi). Such an operator
corresponds (roughly) to the function p(X) of Diagram 5. Now lp(X)\ ^ \J\,

Diagram 5

Xo A,
1 See footnote, p. 3.
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however, fine the subdivision; but I(/>(A))2I ->0 as sup (Am — Xt) -> 0, so
we expect that (S — T)2 = 0. The fact that I/>(A)I is approximately | / |
suggests the inequality (9) of the introduction.

6. The Spectral Theorem
In this section we will assume that S3 is a Hilbert space and that 7" is a self-

adjoint operator. It is well known that the bound of T is then equal to its
spectral radius. The same theorem applied to p{T), taken with the spectral
mapping theorem, p(a(T)) = a(p{T)), shows that

\\p(T)\\ = sup \p(X)\
\e<r(T)

which is stronger than the statement that T is well-bounded.2 We define
the projections E ̂  as in the proof of Theorem A. On inspection of the defini-
tion of E^ it is easily seen that E^ is self-adjoint. The argument of Theorem
D (ii) shows that for a net N with d(N) < e, the spectral radius of

T-J,XiAE{Xi)
is less than e so that, since this operator is self-adjoint, |\T — 2 ^AE^)\\<s.
Thus

the right-hand side being the limit in operator norm of the corresponding
Riemann sums.
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