CONDITIONALLY CONVERGENT SPECTRAL EXPANSIONS

D. R. SMART

(received 11 September 1959, revised 11 January 1960)

We will consider a reflexive Banach space \mathfrak{B}, with real or complex scalars, and a bounded operator in \mathfrak{B} with a real spectrum.
A self-adjoint (i.e. Hermitian) operator T in a finite-dimensional vector space \mathfrak{B} has a complete set of eigenvectors; writing $E(\tau)$ for the orthogonal projection onto the subspace spanned by eigenvectors of eigenvalues in τ, T can be expressed as

$$
\begin{equation*}
T=\int \lambda E(d \lambda) . \tag{1}
\end{equation*}
$$

For each set of real numbers τ,

$$
\text { a projection } E(\tau) \text { exists. }
$$

We have

$$
\begin{equation*}
\|E(\tau)\|<K \tag{2}
\end{equation*}
$$

and for any vector x,

$$
E(\tau) x=\lim E\left(\tau_{n}\right) x
$$

if τ_{n} is a sequence of sets expanding to τ. If the spectrum of T is $\sigma(T)$ the spectrum of T in $E(\tau) \mathfrak{B}$ is

$$
\begin{equation*}
\sigma(T ; E(\tau) \mathfrak{B})=\sigma(T) \cap \tau \tag{3}
\end{equation*}
$$

These, and related facts, are well known, or are obvious consequences of well-known results. They have been generalised to self-adjoint operators in Hilbert space (6), in which setting they constitute the "Spectral Theorem". In this case some proofs (see e.g. (11)) use the fact that, for all real polynomials p,

$$
\begin{equation*}
\|p(T)\| \leqq \sup _{\lambda \in \sigma(T)}|p(\lambda)| \tag{4}
\end{equation*}
$$

which is easily proved. The inequalities (4) and

$$
\begin{equation*}
\|p(T)\| \leqq K \sup |p(\lambda)| \tag{5}
\end{equation*}
$$

have been investigated, for any operator in a Banach space ((7), (3)). It 319
appears that, if we require (2) to hold for Borel sets τ_{n}, τ, then (1) and (2) are equivalent to (5).

In the spaces $L^{p}(1<p<\infty ; p \neq 2)$ the most important operators those integral and differential operators, which, in L^{2}, would be self-adjoint - tend to have eigenfunction expansions which converge (12, §§ 7.3, 12.42), (2), (9), (10)), but only conditionally (12, §9.5). This corresponds to the statement that $E(\tau)$ should exist, and (2) hold, when τ and τ_{n} are intervals on the real line. Taking (2) in this sense, the object of the present paper is to investigate the equivalence of (1) and (2) to the inequality

$$
\begin{equation*}
\|p(T)\| \leqq K \mathbf{l} p \mathbf{l} \tag{6}
\end{equation*}
$$

where

$$
\begin{equation*}
\mathbf{I} p \mathbf{|}=\sup _{\lambda \in J}|p(\lambda)|+\operatorname{var}_{J} p(\lambda) \tag{7}
\end{equation*}
$$

((6) should hold for some closed real interval J, some $K<\infty$, and all real polynomials p. If this is so, J contains $\sigma(T)$.) Actually, starting from (6), I fail ${ }^{1}$ to prove (1) but obtain the weaker result (3), together with the existence of

$$
\begin{equation*}
S=\int \lambda E(d \lambda) \tag{8}
\end{equation*}
$$

I prove that $S-T$ is generalised nilpotent, and zero in some special cases; I can probably ${ }^{1}$ prove that $(S-T)^{2}=0$ and that

$$
\begin{equation*}
\|(S-T) E([c, d])\| \leqq K(d-c) \quad(-\infty<c<d<\infty) \tag{9}
\end{equation*}
$$

but the question whether $S=T$ in general remains open.
Of course, the constants K in (2), (6) and (9) may differ.
The argument from (1) and (2) to (6) is fairly trivial (see § 5) so that the following theorem should be regarded as the main result. (For notation, see § 1).

Theorem A. If T is well-bounded then for any real number μ there is a unique bounded projection P_{μ} such that
(i) $P_{\mu} \cap \cap T$;
(ii) $P_{\mu}(\mathfrak{B})$ is the space of eigenvectors of μ.

In the space $\mathfrak{C}=\left(I-P_{\mu}\right) \mathfrak{B}$ there is a unique bounded projection F_{μ} such that
(iii) $F_{\mu} \cap \cap(T$; © $)$;
(iv) $\sigma\left(T ; F_{\mu}(\mathbb{C}) \subseteq(-\infty, \mu] \cap \sigma(T)\right.$
(v) $\sigma\left(T ;\left(I-F_{\mu}\right) \mathscr{C}\right) \subseteq[\mu, \infty) \cap \sigma(T)$.
${ }^{1}$ Dr. Ringrose disposes of these difficulties in the following paper.

Writing G_{μ} for the projection $F_{\mu}\left(I-P_{\mu}\right)$ and E_{μ} for the projection $G_{\mu}+P_{\mu}$ we have
(vi) $\left\|P_{\mu}\right\| \leqq 3 K,\left\|G_{\mu}\right\| \leqq 2 K,\left\|E_{\mu}\right\| \leqq 2 K$, where K is the constant of (6).
(vii) $E_{\nu} G_{\mu}=E_{\nu} E_{\mu}=E_{\nu}(\nu<\mu)$;
(viii) $\lim E_{\nu} x=G_{\mu} x \quad(x \in \mathfrak{B})$;
(ix) $\lim _{\nu \rightarrow \mu+0} E_{\nu}(x)=E_{\mu} x \quad(x \in \mathfrak{B})$;
(x) $E_{\lambda}=0(\lambda<a)$; $E_{\lambda}=I(\lambda \geqq b)$, where $J=[a, b]$ is the interval mentioned in (7).

The Spectral Theorem is deduced from Theorem A in § 6. Unfortunately, this case (where T is self-adjoint) is the only one in which I can verify (6) directly.

1. Notation

The word "operator" means "linear operator", wherever it appears.
My only non-standard notation: T is well-bounded if (6) is satisfied (for some real interval J, some number $K<\infty$, and all real polynomials p).

For most of our terminology and notation and for facts which we take for granted the reader can consult any text on functional analysis; for example (10).

The following remarks may help the reader: ϕ denotes the empty set, [a,b] a closed interval; $T \cap S$ means that T and S commute (in an obvious sense, since all our operators are bounded), $T \cap \cap S$ means that T commutes with every bounded operator which commutes with S; if A and B are subsets of a Banach space I write $A+B$ for the set of vectors $a+b(a \in A, b \in B)$; for any operator $E, E \mathfrak{B}$ denotes the range of E (thus if E is a projection, $(I-E) \mathfrak{B}$ is the nullspace of $E)$; the adjoint T^{*} of T can be defined by the equation

$$
(T x, y)=\left(x, T^{*} y\right) \quad\left(x \in \mathfrak{B}, y \in \mathfrak{B}^{*}\right)
$$

(note that using the alternative definition would not affect our arguments); $\int f(\lambda) E(d \lambda)$ means the same as $\int f(\lambda) d E_{\lambda}$; for a sequence of operators T_{n} and a limit operator T, we say that $T_{n} \rightarrow T$ strongly if $T_{n} x \rightarrow T x$ for all $x \in \mathfrak{B} ; \sigma(T)$, the spectrum of T, is the set of scalars λ for which $T-\lambda I$ fails to have an inverse (in the algebra of bounded linear operators on \mathfrak{B} to \mathfrak{B}); if $p(\lambda)=a_{0}+a_{1} \lambda+\cdots+a_{n} \lambda^{n}$ is a polynomial we write $p(T)=a_{0} I+$ $a_{1} T+\cdots+a_{n} T^{n}$.

2. Operational Calculus

The following result is our basic tool.
Lemma 2.1. Let T be well-bounded. Then the correspondence

$$
p(\lambda) \rightarrow p(T)
$$

can be extended (in a unique way) from the set of polynomials to the set of all absolutely continuous real functions, with (6) remaining true. For the extended correspondence we have
(i) $p(\lambda) q(\lambda) \rightarrow p(T) q(T)$
(ii) $c p(\lambda) \rightarrow c p(T)$
(iii) $p(\lambda)+q(\lambda) \rightarrow p(T)+q(T)$
(iv) $p\left(T^{*}\right)=(p(T))^{*}$
(v) $p(T) \cap \cap T$.

Proof. If p is absolutely continuous, choose (by approximating to p^{\prime}, in L_{1}^{\prime}, by a polynomial), polynomials p_{n} such that $\mathbf{I} p_{n}-p \mathbf{I} \rightarrow 0$. Then

$$
\left\|p_{n}(T)-p_{m}(T)\right\| \leqq K \mid p_{n}-p_{m} \mathbf{I} \rightarrow 0 \text { as } m, n \rightarrow \infty,
$$

so that $p_{n}(T)$ converges in operator norm to an operator (independent of the choice of p_{n}) which will be called $p(T)$. Clearly (6) is true. Since (i) to (v) are true for polynomials p they must also, for reasons of continuity, be true for absolutely continuous functions.

We can now clarify the role of the interval J, by showing that J contains the spectrum of T. In fact, if $\nu \notin J$, the function $(\lambda-\nu)^{-1}$ is absolutely continuous over J; this function thus corresponds to some operator which, by (i), must be the inverse of $T-\nu I$.

Let μ be any real number. Write P (or Q) for the class of real functions, each of which is absolutely continuous and is zero throughout some neighbourhood of $[\mu, \infty)$ (or of $(-\infty, \mu]$). We will consider the subspace \mathfrak{B}_{μ} (or $\mathfrak{B}_{\mu}^{\prime}$) (not in general closed) composed of elements $p(T) x(x \in \mathfrak{B}, p \in P)$ (or $q(T) x(x \in \mathfrak{B}, q \in Q)$).

Diagram 1

(q ε Q)

Lemma 2.2. \mathfrak{B}_{μ} is a subspace.
Proof. If $p, r \in P$ we can find $s \in P$ such that

$$
s(\lambda) p(\lambda) \equiv p(\lambda), \quad s(\lambda) r(\lambda) \equiv r(\lambda)
$$

Thus

$$
p(T) x+r(T) y=s(T)(p(T) x+r(T) y) \in \mathfrak{B}_{\mu}
$$

Also $k(p(T) x)=(k p(T)) x \in \mathfrak{B}_{\mu}$, for any real number k.
Lemma 2.3. $\mathfrak{B}_{\mu}^{\prime}$ is a subspace.
Proof. Similar to Lemma 2.2.
Lemma 2.4. \mathfrak{B}_{μ} and $\mathfrak{B}_{\mu}^{\prime}$ are disjoint.
Proof. Let $p \in P, q \in Q$ and suppose that

$$
z=p(T) x=q(T) y
$$

We can choose absolutely continuous functions r, s, t such that $s \in P, t \in Q$,

$$
\begin{aligned}
p(\lambda) r(\lambda) \equiv q(\lambda) r(\lambda) & \equiv 0 \\
s(\lambda)+r(\lambda)+t(\lambda) & \equiv 1
\end{aligned}
$$

Diagram 2

Clearly

$$
s(\lambda) q(\lambda) \equiv t(\lambda) p(\lambda) \equiv 0
$$

Thus

$$
\begin{aligned}
z & =s(T) z+r(T) z+t(T) z \\
& =s(T) q(T) y+r(T) q(T) y+t(T) p(T) x \\
& =0
\end{aligned}
$$

Lemma 2.5. If x is an eigenvector of μ, if $p \in P$ and $q \in Q$, then $p(T) x=q(T) x=0$.

Proof. If $T x=\mu x$, then the formula

$$
r(T) x=r(\mu) x
$$

is true for all polynomials r and hence, by Lemma 2.1, for all absolutely continuous functions. Thus

$$
\begin{array}{ll}
p(T) x=p(\mu) x=0 & (p \in P) \\
q(T) x=q(\mu) x=0 & (q \in Q)
\end{array}
$$

Lemma 2.6. Suppose that $x=u+v+w$ where $u \in \mathfrak{B}_{\mu}$, vis an eigenvector of μ, and $w \in \mathfrak{B}_{\mu}^{\prime}$. Then
(i) $\|u\| \leqq 2 K\|x\|$
(ii) $\|u+v\| \leqq 2 K\|x\|$
(iii) $\|w\| \leqq 2 K\|x\|$
(iv) $\|v\| \leqq 3 K\|x\|$

Proof. (i) For an absolutely continuous function p equal to 1 from $-\infty$ almost to μ, then decreasing to 0 and remaining 0 in $[\mu, \infty)$, we have

$$
p(T) u=u, \quad p(T) v=p(T) w=0, \quad \sup |p(\lambda)|=\operatorname{var} p(\lambda)=1
$$

so that

$$
\|u\|=\|p(T) x\| \leqq K\|p\| \cdot\|x\|=2 K\|x\|
$$

(ii) Similar; p should equal 1 in $(-\infty, \mu]$ and decrease to 0 just to the right of μ.
(iii) Similar; p should be zero in $(-\infty, \mu]$ and increase to 1 just to the right of μ.
(iv) Similar; p should equal 1 at μ and decrease to 0 on either side of μ.

I must thank Dr. Ringrose for drawing my attention to the need for the following lemma, and for giving a proof of it. (In the complex case it can be avoided by using $(\lambda-\mu+i)^{-1}$ in place of $\left((\lambda-\mu)^{2}+1\right)^{-1}$ in the proof of Theorem A.)

Lemma 2.7. If $(T-\mu I)^{2} x=0$ then $(T-\mu I) x=0$.
Proof. If $(T-\mu I)^{2} x=0$ then for any $k>0$,

$$
\left(I+k(T-\mu I)^{2}\right) x=x
$$

so that

$$
\left(I+k(T-\mu I)^{2}\right)^{-1} x=x
$$

Thus

$$
\begin{aligned}
\|(T-\mu I) x\| & =\left\|(T-\mu I)\left(I+k(T-\mu I)^{2}\right)^{-1} x\right\| \\
& \leqq K\|x\| \cdot \mathbf{I}(\lambda-\mu)\left(1+k(\lambda-\mu)^{2}\right)^{-1} \mid \\
& \leqq K\|x\| \cdot \frac{5}{2} k^{-\frac{1}{2}}
\end{aligned}
$$

As k can be taken arbitrarily large, $(T-\mu I) x=0$.
3. We will prove the following special case of Theorem A.

Theorem B. If T is a well-bounded linear operator in a Banach space \mathfrak{B}, and μ is real and not an eigenvalue of T^{*}, then there is a unique bounded projection F_{μ} such that
(i) $F_{\mu} \cap \cap T$;
(ii) $\sigma\left(T ; F_{\mu} \mathfrak{B}\right) \subseteq(-\infty, \mu] \cap \sigma(T)$;
(iii) $\sigma\left(T ;\left(I-F_{\mu}\right) \mathfrak{B}\right) \subseteq[\mu, \infty) \cap \sigma(T)$.

Remark. In (ii) or (iii) the difference of the two sides is at most the single point μ.

Remark. The ergodic theorem (used as in Lemma 4.1) shows that μ will be an eigenvalue of T if and only if it is an eigenvalue of T^{*}.

Lemma 3.1. Under the conditions of Theorem $B, \mathfrak{B}_{\mu}+\mathfrak{B}_{\mu}^{\prime}$ is dense in \mathfrak{B}.
Proof. Suppose $y \perp \mathfrak{B}_{\mu}+\mathfrak{B}_{\mu}^{\prime}$. Then for $p \in P, q \in Q, x \in \mathfrak{B}$,

$$
\begin{aligned}
& \left(p\left(T^{*}\right) y, x\right)=(y, p(T) x)=0 \\
& \left(q\left(T^{*}\right) y, x\right)=(y, q(T) x)=0
\end{aligned}
$$

Thus $\left[p\left(T^{*}\right)+q\left(T^{*}\right)\right] y=0$. Now choose $p \in P, q \in Q$ so that $\mathbf{\|} p(\lambda)+q(\lambda)-(\lambda-\mu) \mathbf{I}<\varepsilon$.

Diagram 3

We obtain

$$
\left\|\left(T^{*}-\mu I\right) y\right\|<\varepsilon K\|y\|
$$

so that $T^{*} y=\mu y$. Thus $y=0$, since μ is not an eigenvalue of T^{*}.
Definition of F_{μ}. If $x \in \mathfrak{B}_{\mu}+\mathfrak{B}_{\mu}^{\prime}$ we can express x as $x=y+z$ with $y=p(T) u \in \mathfrak{B}_{\mu}, z=q(T) w \in \mathfrak{B}_{\mu}^{\prime}$. By Lemma 2.4, y and z are uniquely determined, although $p \in P$ and $q \in Q$ are not unique. Define

$$
F_{\mu} x=y
$$

Thus (if $s \in P$ is chosen so that $s(\lambda) p(\lambda) \equiv p(\lambda)$ and $|s|=2$),

$$
\begin{aligned}
\left\|F_{\mu} x\right\|=\|p(T) u\| & =\|s(T) p(T) u+s(T) q(T) w\| \\
& =\|s(T) x\| \\
& \leqq 2 K\|x\|
\end{aligned}
$$

Similarly,

$$
\left\|\left(I-F_{\mu}\right) x\right\|=\|z\| \leqq 2 K\|x\| .
$$

Thus F_{μ}, defined as a bounded linear operator on a dense subspace of \mathfrak{B}, can be uniquely extended to the whole of \mathfrak{B} by continuity. Clearly, the range of F_{μ} is the closure of \mathfrak{B}_{μ} and the nullspace of F_{μ} is the closure of $\mathfrak{B}_{\mu}^{\prime}$.

We can now prove that F_{μ} has properties (i) to (iii) but its uniqueness will only be proved at the end of § 4.

Proof of (i). Let S be any bounded linear operator commuting with T. Then for any polynomials p, q (and hence for absolutely continuous functions p, q) we have

$$
S p(T) z \equiv p(T) S z, \quad S q(T) z \equiv q(T) S z
$$

Thus $S F_{\mu}=F_{\mu} S$ on the dense subspace $\mathfrak{B}_{\mu}+\mathfrak{B}_{\mu}^{\prime}$ and so, by continuity, S commutes with F_{μ}.

Proof of (ii). If $\kappa>\mu$, we can choose an absolutely continuous function $r(\lambda)$ such that

$$
r(\lambda)(\lambda-\kappa) p(\lambda) \equiv p(\lambda) \quad(p \in P)
$$

Diagram 4

Thus for $x \in \mathfrak{B}_{\mu}, x=p(T) y$,

$$
\begin{aligned}
x=p(T) y & =r(T)(T-\kappa I) p(T) y \\
& =r(T)(T-\kappa I) x \\
& =(T-\kappa I) r(T) x
\end{aligned}
$$

Thus $r(T)$ is the inverse of $T-\kappa I$ in \mathfrak{B}_{μ}, and hence (both operators being bounded) in the closure of \mathfrak{B}_{μ}, which is $F_{\mu} \mathfrak{B}$. Thus $\sigma\left(T ; F_{\mu} \mathfrak{B}\right)$ lies in $(-\infty, \mu]$ and it obviously lies in $\sigma(T)$.

Proof of (iii). Similar.

4. Proof of Theorem A

Construction of P_{μ}. Let $p(\lambda)=\left((\lambda-\mu)^{2}+1\right)^{-1}$ so that

$$
p(T)=\left((T-\mu I)^{2}+I\right)^{-1} .
$$

By Lemma 2.7, the subspace \mathfrak{B}_{e} of eigenvectors of μ for T is the subspace of eigenvectors of 1 for $p(T)$. Also

$$
\mathbf{I}(p(\lambda))^{n} \mathbf{I} \leqq 3,
$$

so that

$$
\left\|(p(T))^{n}\right\| \leqq 3 K \quad(n \geqq 1) .
$$

By the ergodic theorem (4) the operator P_{μ} given by

$$
P_{\mu} x=\lim q_{n}(T) x \quad(x \in \mathfrak{B})
$$

(where

$$
\begin{equation*}
q_{n}(\lambda)=\frac{1}{n}\left(1+p(\lambda)+\cdots+p((\lambda))^{n-1}\right) \tag{4.1}
\end{equation*}
$$

is a bounded projection onto \mathfrak{B}_{e}. Clearly P_{μ} commutes with all bounded operators which commute with T. This proves (i) and (ii).

Lemma 4.1. The restriction T_{0} of T to $\left(I-P_{\mu}\right) \mathfrak{B}$ is well-bounded and has the additional property that μ is not an eigenvalue of T_{0} or of the operator T_{0}^{*} in $\left(\left(I-P_{\mu}\right) \mathfrak{B}\right)^{*}$.

Proof. By the argument above,

$$
P_{\mu 0}=\lim q_{n}\left(T_{0}\right)
$$

projects onto the space of eigenvectors of T_{0}, i.e. onto the zero subspace of

$$
\mathfrak{C}=\left(I-P_{\mu}\right) \mathfrak{B} .
$$

Thus $P_{\mu 0}=0$, so that

$$
0=\left(P_{\mu 0}\right)^{*}=\lim q_{n}\left(T_{0}\right)^{*}=\lim q_{n}\left(T_{0}^{*}\right),
$$

and the range of this projection, which is the eigenspace of μ for T_{0}^{*}, must be the zero subspace. This proves the lemma.
Thus in © we can use Theorem B. This proves (iii) to (v). We now wish to show that it is indifferent whether we regard \mathfrak{B}_{μ} and $\mathfrak{B}_{\mu}^{\prime}$ as subspaces of \mathfrak{B} or as subspaces of \mathbb{C}.

Lemma 4.2.

$$
\begin{aligned}
\{p(T) x: x \in \mathfrak{B}, p \in P\} & =\{p(T) x: x \in \mathfrak{C}, p \in P\}=\mathfrak{B}_{\mu} \\
\{q(T) x: x \in \mathfrak{B}, q \in Q\} & =\{q(T) x: x \in \mathbb{C}, q \in Q\}=\mathfrak{B}_{\mu}^{\prime}
\end{aligned}
$$

Proof. This follows directly from Lemma 2.5.

Proof of (vi). We know now (Lemmas 3.1 and 4.1) that: a dense set $\mathfrak{B}_{\boldsymbol{a}}$ of vectors of \mathfrak{B} can be weritten in the form

$$
\begin{equation*}
x=u+v+w \quad\left(u \in \mathfrak{B}_{\mu}, v \in P_{\mu} \mathfrak{B}, w \in \mathfrak{B}_{\mu}^{\prime}\right) . \tag{4.2}
\end{equation*}
$$

For such an $x,\left\|E_{\mu} x\right\|=\|u+v\| \leqq 2 K\|x\|$, by Lemma 2.6. Thus $\left\|E_{\mu}\right\| \leqq 2 K$ and similar results hold for the other projections.

Proof of (vii). To show that $E_{\nu} G_{\mu}=E_{\nu} E_{\mu}$, I will show that $E_{\nu} P_{\mu}=0$. Since the projections E_{ν} and P_{μ} commute, their product is a projection, which obviously commutes with T. To show that this projection is zero, it is enough to show that $\sigma=\sigma\left(T ; E_{\nu} P_{\mu} \mathfrak{B}\right)$ is the empty set. In fact, σ is a subset both of $\sigma\left(T ; E_{\nu} \mathfrak{B}\right)$ and of $\sigma\left(T ; P_{\mu} \mathfrak{B}\right)$. Thus σ is a subset of $(-\infty, \nu] \theta \cap \theta\{\mu\}$, which is the empty set.

To establish the equality of the projections $E_{\nu} G_{\mu}$ and E_{ν}, which commute with each other, it will be sufficient to show that they have the same range. Obviously, $E_{\nu} G_{\mu} \mathfrak{B} \subseteq E_{\nu} \mathfrak{B}$ so it will be enough to show that $E_{\nu} G_{\mu} \mathfrak{B} \supseteq E_{\nu} \mathfrak{B}$; and for this it is sufficient to show that

$$
G_{\mu} \mathfrak{B} \supseteq E_{\nu} \mathfrak{B} .
$$

In fact, $P_{\nu} \mathfrak{B}+\mathfrak{B}_{\nu}$ is dense in $E_{\nu} \mathfrak{B}$ and $\mathfrak{B}_{\nu} \subseteq \mathfrak{B}_{\mu}$ so it will be enough to show that $P_{\nu} \mathfrak{B} \subseteq \mathfrak{B}_{\mu}$. Let $x \in P_{\nu} \mathfrak{B}$. Then $x=\lim q_{n}(T) x$ where $q_{n}(\lambda)$ is defined by (4.1) (with ν in place of μ). Choose an absolutely continuous function $r(\lambda)$ which equals 1 on some neighbourhood of v and vanishes on some neighbourhood of $[\mu, \infty)$. Then $\mathbf{I} r(\lambda) q_{n}(\lambda)-q_{n}(\lambda) \mathbf{I} \rightarrow 0$ so that

$$
x=\lim r(T) q_{n}(T) x=r(T) \lim q_{n}(T) x=r(T) x \in \mathfrak{B}_{\mu} .
$$

Proof of (viii). For $x \epsilon \mathfrak{B}_{d}$, we can write x in the form (4.2). By the definition of $\mathfrak{B}_{\mu}, u \in \mathfrak{B}_{\nu}$ for all ν sufficiently close to μ. Thus $E_{\nu} x=u=G_{\mu} x$. Since $\left\|E_{\nu}\right\|<2 K,\left\|G_{\mu}\right\|<2 K$ and $E_{\nu} x \rightarrow G_{\mu} x$ for x in the dense subset \mathfrak{B}_{d}, we have $E_{\nu} x \rightarrow G_{\mu} x$ for all $x \in \mathfrak{B}$.

Proof of (ix). Similar to (viii).
Proof of (x). Since $\alpha \notin J, \alpha \notin \sigma(T)$; thus $P_{\alpha}=0$ so we have $\mathfrak{B}=\mathfrak{C}$, $E_{\alpha}=F_{\alpha}$. By (iv),

$$
\sigma\left(T ; E_{\alpha} \mathfrak{B}\right)=\phi \quad(\alpha<a),
$$

so that $E_{\alpha} \mathfrak{B}=\{0\}, E_{\alpha}=0(\alpha<a)$. Similarly, $I-E_{\beta}=0$ if $\beta>b$. Thus the required results follow from (viii) and (ix).

Uniqueness of P_{μ}. Let P be a bounded projection onto the eigenspace of μ such that P commutes with T. Then P commutes with P_{μ} so that for all $x \in \mathfrak{B}, P x=P_{\mu} P x=P P_{\mu} x=P_{\mu} x$.

Uniqueness of F_{μ}. Let a bounded projection Π have the properties (iii), (iv) and (v) of F_{μ}. By Lemma 4.1 we need only consider the special
case of Theorem B. Then $\mathfrak{B}=\mathfrak{C}$ so that Π and F_{μ} are operators in \mathfrak{B}, commuting with T and with each other. Thus $(I-\Pi) F_{\mu}$ is a projection and

$$
\begin{aligned}
\left.\sigma(T ; I-\Pi) F_{\mu} \mathfrak{B}\right) & \subseteq \sigma(T ;(I-\Pi) \mathfrak{B}) \cap \sigma\left(T ; F_{\mu} \mathfrak{B}\right) \\
& \cong(-\infty, \mu] \cap[\mu, \infty)=\{\mu\}
\end{aligned}
$$

The Corollary to Theorem E below (which could be proved at this stage) shows that, in $(I-\Pi) F_{\mu} \mathfrak{B}, T$ equals μI. Since μ has no eigenvectors this means that $(I-\Pi) F_{\mu} \mathfrak{B}=\{0\}$. Because F_{μ} and Π are projections, this implies

$$
F_{\mu} \mathfrak{B} \subseteq \Pi \mathfrak{B}
$$

Similarly we see that $F_{\mu} \mathfrak{B} \supseteq \Pi \mathfrak{B}$. Thus $F_{\mu} \mathfrak{B}=\Pi \mathfrak{B}$ and similarly, $\left(I-F_{\mu}\right) \mathfrak{B}=(I-\Pi I) \mathfrak{B}$. Thus $F_{\mu}=\Pi$.

This completes the proof of Theorems A and B.

5. The Scalar Operator $\mathbf{S}=\int \lambda \mathrm{dE}_{\boldsymbol{\lambda}}$

I will write $E(\lambda)$ for E_{λ} and use the notation $\Delta E\left(\lambda_{i}\right)$ for $E\left(\lambda_{i+1}\right)-E\left(\lambda_{i}\right)$.
Theorem C. Let $\{E(\lambda)\}_{-\infty<\lambda<\infty}$ be a family of projections such that for all real λ, μ, ν,
(vi)' $\|E(\mu)\| \leqq K$
(vii) $E(\mu) E(v)=E(\min \mu, v)$
(ix) $\lim E(\nu) x=E(\mu) x \quad(x \in \mathfrak{B})$
(x) $\stackrel{\nu \rightarrow \mu+0}{E}(\lambda)=0 \quad(\lambda<a) ; \quad E(\lambda)=I(\lambda \geqq b)$.

Let p be any continuously differentiable function. Choose a net N consisting of points $\left(\lambda_{i}\right)_{1 \leqq i \leqq n}$ such that

$$
a-\theta=\lambda_{0}<\lambda_{1}<\cdots<\lambda_{n}=b+\theta
$$

(where θ is some number >0). Write $\delta(N)=\max \left(\left|\lambda_{0}-\lambda_{1}\right|, \cdots,\left|\lambda_{n-1}-\lambda_{n}\right|\right)$, and $S_{N}=\sum p\left(\lambda_{i}\right) \Delta E\left(\lambda_{i}\right)$.

Then (1) as $\delta(N) \rightarrow 0, S_{N}$ will converge strongly to an operator which will be written

$$
p(S)=\int p(\lambda) d E_{\lambda}
$$

In particular we write

$$
S=\int \lambda d E_{\lambda}
$$

(2) For this correspondence $p(\lambda) \rightarrow p(S)$ we have

$$
\begin{aligned}
1 & \rightarrow I \\
\lambda & \rightarrow S \\
\alpha p(\lambda)+\beta q(\lambda) & \rightarrow \alpha p(S)+\beta q(S)
\end{aligned}
$$

$$
\begin{align*}
p(\lambda) q(\lambda) & \rightarrow p(S) q(S) \tag{5.1}\\
\|p(S)\| & \leqq|p(b)|+K \operatorname{var}_{[a, b]} p(\lambda) \tag{5.2}
\end{align*}
$$

(3) E_{λ} is the projection obtained by applying Theorem A to the well-bounded operator S.

Lemma. Let $f(\lambda)$ be a function of a real variable λ taking values in a metric space. Let $f(\lambda)$ be continuous on the right at each point. Then $f(\lambda)$ has at most a countable set of discontinuities.

Proof. Define $d(\lambda)$, the discontinuity at λ, to be the upper limit, as x and y approach λ, of $\rho(f(x), f(y))$. Let S_{n} be the set of points where $d(\lambda)>1 / n$. To the right of any point of S_{n} there is an interval containing no point of S_{n}. Choose a rational number in this interval. This maps S_{n} one-one onto a subset of the rationals, showing that S_{n} is countable. Thus the set that concerns us, being $\cup_{1}^{\infty} S_{n}$, is countable.

Proof of Theorem C (1). Consider some $x \in \mathfrak{B}$. By (ix) and the lemma, $E_{\lambda} x$ has a countable set of discontinuities. As $p^{\prime}(\lambda)$ is continuous,

$$
\begin{equation*}
\int_{a-\theta}^{b+\theta} E(\lambda) x p^{\prime}(\lambda) d \lambda \tag{5.3}
\end{equation*}
$$

exists as a Riemann integral for any $\theta>0$ (see (13), Theorem 1). Thus

$$
\begin{equation*}
\int_{a-\theta}^{b+\theta} p(\lambda) d E(\lambda) x \tag{5.4}
\end{equation*}
$$

exists (in the sense stated in the theorem) and is equal to

$$
\begin{equation*}
[E(\lambda) p(\lambda) x]_{a-\theta}^{b+\theta}-\int_{a-\theta}^{b+\theta} p^{\prime}(\lambda) E(\lambda) x d \lambda \tag{5.5}
\end{equation*}
$$

Proof of (2). By (x), (5.4) is independent of θ. (5.5) gives the inequality

$$
\begin{aligned}
\left\|\int p(\lambda) d E(\lambda) x\right\| \leqq|p(b)| \cdot\|E(b) x\| & +|p(a)| \cdot\|E(a-0) x\| \\
& +\operatorname{lub}\|E(\lambda) x\| \int_{a}^{b}\left|p^{\prime}(\lambda)\right| d \lambda
\end{aligned}
$$

which, by (x) and (vi)', gives (5.2).
For any net N,

$$
\left[\sum p\left(\lambda_{i}\right) \Delta E\left(\lambda_{i}\right)\right]\left[\sum q\left(\lambda_{j}\right) \Delta E\left(\lambda_{j}\right)\right]=\sum p\left(\lambda_{i}\right) q\left(\lambda_{i}\right) \Delta E\left(\lambda_{i}\right)
$$

by (vii)'. Letting $\delta(N) \rightarrow 0$ we obtain (5.1).
Proof of (3). Since $E_{\lambda} \cap \sum p\left(\lambda_{i}\right) \Delta E\left(\lambda_{i}\right)$, we must have

$$
E_{\lambda} \cap p(S)
$$

Fix $x \in E_{\mu} \mathfrak{B}$ and $\theta>0$. We have

$$
x=E_{\mu} x=E_{\lambda} E_{\mu} x=E_{\lambda} x \quad(\lambda \geqq \mu)
$$

Thus

$$
\sum p\left(\lambda_{i}\right) \Delta E\left(\lambda_{i}\right) x=\sum_{\lambda_{i}<\mu} p\left(\lambda_{i}\right) \Delta E\left(\lambda_{i}\right) x
$$

since the remaining terms of the left-hand side are all zero. Thus

$$
\begin{equation*}
p(S) x=\int_{a-\theta}^{b+\theta} p(\lambda) d E_{\lambda} x=\int_{a-\theta}^{\mu+\theta} p(\lambda) d E_{\lambda} x \tag{5.6}
\end{equation*}
$$

We can now discuss the inverse of ($T-\nu I$), regarded as an operator in $E_{\mu} \mathfrak{O}$. If $\nu>\mu$ or $\nu<a$ we choose $\theta>0$ so that $\nu>\mu+\theta$ or $\nu<a-\theta$. Then $(\lambda-\nu)^{-1}=r(\lambda)$ is a continuously differentiable function on $[a-\theta, \mu+\theta]=J^{\prime}$, so that $r(S)$ can be defined by (5.6) as an operator in $E_{\mu} \mathfrak{B}$. The equation $r(\lambda)(\lambda-\nu)=1\left(\lambda \in J^{\prime}\right)$ shows that

$$
r(S)(S-v I)=(S-v I) r(S)=I
$$

by the argument of (2). Thus, in $E_{\mu} \mathfrak{B}$, the spectrum of S is included in $\sigma(S) \cap[a, \mu]$. Similarly, in $\left(I-E_{\mu}\right) \mathfrak{B}$ the spectrum of S is included in $\sigma(S) \cap[\mu, b]$.

As \mathfrak{B} is reflexive, (vi)', (vii)' and Lorch's theorem (5) show that $E(\mu-0)$ exists (as a strong limit). For $x \in(E(\mu)-E(\mu-0)) \mathfrak{B}$, the sum

$$
\sum \lambda_{i} \Delta E\left(\lambda_{i}\right) x
$$

taken over a net N, reduces to the term with $\lambda_{i}<\mu \leqq \lambda_{i+1}$, which is

$$
\lambda_{i} \Delta E\left(\lambda_{i}\right) x=\lambda_{i}(E(\mu)-E(\mu-0)) x=\lambda_{i} x
$$

Upon allowing $\delta(N) \rightarrow 0$, we obtain $S x=\mu x$. Thus $(E(\mu)-E(\mu-0)) \mathfrak{B}$ consists of eigenvectors of μ. Conversely, if $S x=\mu x$,

$$
(S E(\mu-\theta) x)=E(\mu-\theta)(S x)=\mu(E(\mu-\theta) x)
$$

so that consideration of the spectrum of S in $E(\mu-\theta) \mathfrak{B}$ shows that

$$
E(\mu-\theta) x=0 \quad(\theta>0)
$$

Similarly $E(\mu+\theta) x=x \quad(\theta>0)$.
Thus $x=E(\mu+0) x-E(\mu-0) x$

$$
=E(\mu) x-E(\mu-0) x \epsilon(E(\mu)-E(\mu-0)) \mathfrak{B}
$$

Thus $(E(\mu)-E(\mu-0))$ is a projection, commuting with S, onto the eigenspace of μ. The uniqueness statements in Theorem A now show that E_{λ} is the projection which Theorem A describes (for S in place of T).

Theorem D. Let T be a well-bounded operator, $\{E(\lambda)\}$ the family of projections derived from T by Theorem A, and S the scalar operator derived from $\{E(\lambda)\}$ by Theorem C. Then
(i) $S \cap \cap T$ and
(ii) $S-T$ is a generalised nilpotent operator.

Proof.
(i) $E(\lambda) \cap \cap T$. Thus $\sum \lambda_{i} \Delta E\left(\lambda_{i}\right) \cap \cap$. Thus $S \cap \cap T$.
(ii) We have to show that $\sigma(S-T)=\{0\}$. We will show for each $\varepsilon>0$ that $\sigma(S-T)$ lies inside the ε-neighbourhood of 0 , i.e. that the spectral radius of $S-T$ is less than ε. Fix $\varepsilon>0$. Choose a net N such that $\delta(N)<\varepsilon / 2$. Then in $\Delta E\left(\lambda_{i}\right) \mathfrak{B}, S$ and T each has its spectrum in $\left[\lambda_{i}, \lambda_{i+1}\right]$ so that $S-\lambda_{i} I$ and $T-\lambda_{i} I$ have spectra in $[0, \varepsilon / 2]$. As these last two operators commute, the spectral radius of $S-T=\left(S-\lambda_{i} I\right)-\left(T-\lambda_{i} I\right)$ is at most $\varepsilon((8)$, $\S 149)$. Thus the spectrum of $S-T$ in \mathfrak{B}, being the union of the spectra of $S-T$ in the subspaces $\Delta E\left(\lambda_{i}\right) \mathfrak{B}$, lies in the ε-neighbourhood of 0 .

It seems likely ${ }^{1}$ that $S=T$, in the situation described in Theorem D. If $S-T$ is well-bounded (which is not obvious) the following theorem shows that S equals T. This equality can also be proved in some other special circumstances, for example if the space is finite-dimensional (by means of the corollary below) or if T has a complete set of eigenfunctions (for then $S x=T x$ for a dense set of x).

Theorem E. If T is well-bounded and generalised nilpotent, then $T=0$.
Proof.
We can construct projections P_{μ}, G_{μ}, and F_{μ}, and subspaces \mathfrak{B}_{μ} and $\mathfrak{B}_{\mu}^{\prime}$ $(-\infty<\mu<\infty)$, as in the proof of Theorem A. If $\mu<0$, the spectrum of T in $\overline{\mathfrak{B}}_{\mu}=F_{\mu}\left(I-P_{\mu}\right) \mathfrak{B}$ is empty by Theorem A (iv). Thus $\mathfrak{B}_{\mu}=\{0\}$, so that

$$
\mathfrak{B}_{0}=\underset{\mu<0}{\cup} \mathfrak{B}_{\mu}=\{0\} .
$$

Similarly $\mathfrak{B}_{0}^{\prime}=\{0\}$. As $\mathfrak{B}_{0}+\mathfrak{B}_{0}^{\prime}$ is dense in $\left(I-P_{0}\right) \mathfrak{B}$, this means that $\left(I-P_{0}\right) \mathfrak{B}=\{0\}$, so that $P_{0}=I$. Thus the nullspace of T is the whole of \mathfrak{B}.

Corollary. If the spectrum of T consists of a single point μ, and T is wellbounded, then $T=\mu I$.

Proof. $T-\mu I$ satisfies the conditions of Theorem E.
My reasons (heuristic), for believing that $(S-T)^{2}=0$, are: $T-S$ is the limit, as sup $\left(\lambda_{i+1}-\lambda_{i}\right) \rightarrow 0$, of operators $T-\sum \lambda_{i} \Delta E\left(\lambda_{i}\right)$. Such an operator corresponds (roughly) to the function $p(\lambda)$ of Diagram 5. Now $|p(\lambda)| \geqq|J|$,

Diagram 5

[^0]however, fine the subdivision; but $\mathbf{I}(p(\lambda))^{2} \boldsymbol{I} \rightarrow 0$ as sup $\left(\lambda_{i+1}-\lambda_{i}\right) \rightarrow 0$, so we expect that $(S-T)^{2}=0$. The fact that $|p(\lambda)|$ is approximately $|J|$ suggests the inequality (9) of the introduction.

6. The Spectral Theorem

In this section we will assume that \mathfrak{B} is a Hilbert space and that T is a selfadjoint operator. It is well known that the bound of T is then equal to its spectral radius. The same theorem applied to $p(T)$, taken with the spectral mapping theorem, $p(\sigma(T))=\sigma(p(T))$, shows that

$$
\|p(T)\|=\sup _{\lambda \in \sigma(T)}|p(\lambda)|
$$

which is stronger than the statement that T is well-bounded. ${ }^{2}$ We define the projections E_{μ} as in the proof of Theorem A. On inspection of the definition of E_{μ} it is easily seen that E_{μ} is self-adjoint. The argument of Theorem D (ii) shows that for a net N with $\delta(N)<\varepsilon$, the spectral radius of

$$
T-\sum \lambda_{i} \Delta E\left(\lambda_{i}\right)
$$

is less than ε so that, since this operator is self-adjoint, $\left\|T-\sum \lambda_{i} \Delta E\left(\lambda_{i}\right)\right\|<\varepsilon$. Thus

$$
T=\int \lambda d E_{\lambda}
$$

the right-hand side being the limit in operator norm of the corresponding Riemann sums.

References

[1] N. Dunford; Spectral Operators, Pacific Journal of Mathematics 4 (1954) 321-354.
[2] Hille, E. and Tamarkin, J. D., On the theory of Fourier transforms, Bulletin of the American Mathematical Society 39 (1933), 768-774.
[3] Loomis, L. H., Abstract Harmonic Analysis, New York (1953), § 26 F, G.
[4] Lorch, E. R., Means of iterated transformations in reflexive vector spaces, Bulletin of the American Mathematical Society 45 (1939), 945-947.
[5] Lorch, E. R., On a calculus of operators in reflexive vector spaces, Transactions of the American Mathematical Society 45 (1939), 217-234, Theorem 3.2.
[6] von Neumann, J., Allgemeine Eigenwerttheorie Hermitescher Funktionaloperatoren, Mathematische Annalen, 102 (1930), 49-131.
[7] von Neumann, J., Eine Spektraltheorie für allgemeine Operatoren eines unitären Raumes, Mathematische Nachrichten 4 (1951), 258-281.
[8] Riesz, F. and Sz.-Nagy, B., Leçons d'analyse fonctionnelle, 2e ed., Budapest, 1953.
[9] Rutovitz, D., On the L_{p}-convergence of eigenfunction expansions, Quarterly Journal of Mathematics, (2) 7 (1956) 24-38.
[10] Smart, D. R., Eigenfunction expansions in L^{p} and C, Illinois Journal of Mathematics 3 (1959) 82-97.
[11] Taylor, A. E., Introduction to functional analysis, New York, (1958).
[12] Zygmund, A., Trigonometrical series, Warsaw (1935).
[13] Graves, L. M., Riemann integration and Taylor's theorem in general analysis, Transactions of the American Mathematical Society 29 (1927), 163-177.
University of Western Australia, Perth.
${ }^{2}$ Dr. Ringrose's results make the remaining lines of this proof superfluous.

[^0]: ${ }^{1}$ See footnote, p. 3.

