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1. Discussion of results

In this paper a certain group with the third-Engel condition, that is a
member of the variety defined by *•

(*. 3y) = 1,
will be presented. Reasons for which its properties may be of interest are
advanced in the present section.

The theory of third-Engel-groups has been established by Heineken
in [3], the main result being:

THEOREM 1. (Heineken). / / G is a group with the third-Engel condition
then

(i) G is locally nilpotent; and
(ii) FS(G) :g P 2 x P 5 where P a and P 5 are respectively the Sylow 2- and

5-subgroups of G.
The hypothesis of this theorem is implied by the condition that the

subgroup generated by any two elements of G has class 3.
A related result is:

THEOREM 2. Let n be a fixed integer greater than 3. / / G is a group such
that the subgroup generated by any set of «—1 elements has class n, then

(i) G is locally nilpotent; and
(ii) rn+2(G) ^ P2 where P2 is the Sylow 2-subgroup of G.
The proof of this theorem depends heavily on known results, especially:

THEOREM 3. (Kappe). / / G is a group with no element of order 2 then
its second-right-Engel elements lie in C3(G).

We note that Theorem 3 is almost (but not quite) a consequence of
Kappe's Satz III in [6]. He shows that if e is second-right-Engel then

{e, x, y) = (e, y, x)-1.

If at this point y is replaced by yz and a standard commutator expansion
is undertaken, then there results

1 Our notation is explained in § 2.
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(e, x, y, z)2 = 1;

our statement of Theorem 3 follows.

PROOF OF THEOREM 2:

(i) Since G is a member of the variety

(x1, 3x2,x3, • • -,*„_!) = 1,

G/£n_3(G) belongs to the variety
(x1( 3x2) = 1.

This variety is locally nilpotent by Theorem 1, and so G is locally nilpotent.
(ii) This implies that there is a unique Sylow 2-subgroup P2 of G;

we have therefore to show that CB+2(G/-Pa) = P 2 . We shall assume P2 = 1
and then prove Cn+2(G) — 1, thus avoiding a change of notation. We deal
first with the case n > 4, in which a rather easier proof is available.

If c is any commutator of weight w—1 in the elements xlt • • •, xn_2

of G, then we have (c, 2y) = 1 for all y in G. Since G has no element of
order 2, Theorem 3 ensures that c e C3(G). Thus G/C3(G) has the property
that any subgroup generated by « - 2 elements has class n — 2. If n > 4,
Heineken's Satz in [4] shows that GjC3{G) has class »—2, that is that G
has class w+L

A different approach (which could be used when n > 4 also) is neces-
sary when n = 4. We find as above that the law c = 1 holds in G/C3(G)
where

c = (x1( 2z2).

The theory of second-Engel-groups was developed by Levi in [8]; if H is
such a group then H has class 3 and F3(H) has exponent 3. Therefore our
group G satisfies the pair of laws

x
9,

{{x1,z2,x3)
3,xi,x5>x6) = 1.

Standard commutator calculation shows that these imply

, £ 3 , Xit £5 , Xft) =

so G has class 6 and F6(G) is a 3-group. But since G also satisfies

(x1, 3xa, x3) = 1

we deduce that G/f1(G) is third-Engel. By Theorem 1

is the direct product of a 2-group and a 5-group, which means that F6(G)
has a similar structure. Since we have already proved that F6(G) is a 3-
group, it follows that Fe(G) = 1.
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That proves Theorem 2.
There is a difference between Theorems 1 and 2 regarding the behaviour

of elements of order 5. It is these we intend to examine rather than the
elements of order 2, for the simple reason that there are some very un-
pleasant third-Engel 2-groups. All groups in the non-nilpotent variety
2t22l2, for instance, are third-Engel 2-groups (this is the set of all groups G
with normal subgroups N such that both N and GjN have exponent 2;
see [1], example 3.4, or [11], example 16.36 for details).

It is natural to ask whether Theorem 2 holds when n = 3, that is
whether Theorem 1 (ii) can be amended to read 'T5(G) ^ P2". We shall
answer this in:

THEOREM 4. There exists a group, of order 520 and exponent 5, with the
properties that every 2 elements generate a subgroup of class 3 and that the
group itself has class precisely 5.

We also record a

CONJECTURE. For each positive integer n there is a finite 5-group with
the properties that every 2 elements generate a subgroup of class 3 and that the
group itself has class precisely n.

Thus we prove that it is false that -T5(G) ^ P2 and we conjecture that
it would be false that Fn(G) ^ P2 for any n, in Theorem 1 (ii). This is at
variance with a "folk-lore" belief that the prime 5 should not be exceptional
in Theorem 1. Perhaps a better way of looking at the facts is to regard 3 as
being the really exceptional prime.

Another interesting question is whether there exists, for each integer
n greater than 2 and each odd prime p, a finite ^-group of class precisely
n-\-\ with the property that every n—1 elements generate a subgroup of
class n. We note that such a group is known to exist in two cases:
(i) n = 3, any^>; see example 4.1 of C.K. Gupta's paper [2].

(ii) n = 4, p = 5; see Lazard [7], pp. 187 — 189.

2. Conventions

Our commutator notation is left-normed. We define the commutator
(x1( m2a;2, • • •, mnxn), in which m2, • • -,mn are positive integers, recursively
as follows. If m > 1 then

(x,my) = ((x, (m—

where (x, ly) = (x, y) = x~ly~rxy; and if n > 2 then

(xlt w2x2, • • •, mnxn) = {{xx, mzx2, • • •, mn_xxn_^\, mnxn).

A group satisfies the w-th Engel condition if, and only if, it belongs to the
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variety (x, my) = 1. More generally, we say that the element e of the group
G is m-right-Engel if, and only if, (e, my) = 1 for all y in G. Since we have
quoted results of Heineken which are in right-normed notation, we are
morally bound to record:

LEMMA 1. The third-Engel conditions in the right-normed and the left-
normed notations are equivalent.

The proof follows from the commutator identity

when x is replaced by (y, x).
The terms Pn(G) of the lower central series of G are defined thus:

Fn(G) is the subgroup generated by all commutators of the form
(x1,xz, • • •, »„) in G. If Fn+1(G) is 1 then G is said to be (nilpotent) of class
n; if in addition n > 1 and Fn(G) ^ 1 then G is said to be of class precisely n.
The upper central series of G is defined by putting C0(G) = 1, Ci{G) equal
to the centre of G, and Cn(G)/f1l_1(G) equal to d fC/C^G)) for « > 1. It
is a well-known theorem that Fn(G) = 1 if and only if fB(G) = G.

We state the usual list of commutator identities without proof:

(2.1) (x~\ y)-i = (x, y)'~\ (x, I T 1 ) " 1 = (x, y)'"1;

(2.2) (ay, 2) = {x, *)» (y, z), (», y*) = (*, *)(*. y)2;

(2.3) (xy, uv) = («, »)«(t/, w) (x, «)»• (y, «)•;

(2.4) (a?, y, a") (2, », y») (y, 2, x") = 1.

Frequently we shall calculate in Fn(G) with the group G having class n.
It is a consequence of the identities that we then have multilinearity when
expanding commutators, in the sense that (xlt • • -, a;,_1( yz, xi+1, • • •, xn)
is the product of (xlt • • •, x{, • • •, xn) with x< = y and xt = z; this holds
for each *. In particular if c = (xlt • • •, xn_2) and G has class n then (2.4)
gives

(c. (V> z)) = {c,y,z){c,z,y)-K

We use the following abbreviations: xv means y~xxy, x~v means (xv)~l,
and (x, y; u, v) means ((x, y), (u, v)). Some obvious extensions of the last
may appear from time to time.

Mappings from a subset of the group G into G will be denoted by the
Greek letters a, /S, y, 8. The image of x under 8 is xe, and we make the fol-
lowing definitions:

(x, 8) = x-W, (8, x) = (x, 0)~i.

Considerable use will be made of the result which follows.
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LEMMA 2. Let 6 be a mapping of (he group G into G, and let u, v be two
fixed elements of G. Then {u,v)e = (ue, ve) if and only if

(v, u; 6, v)(v, u, 0)<9-»> (0, v, ue){u, 0, v») = 1.

REMARK. The abbreviations just used are, explicitly:

{v,u; 6,v) = ((v,u), {d,v)),

(v,u,6) = ({v,u),6),

(d,v,u9) = {(0,v),u9),

(u, 0,t,") = ( K Q),v»).

Note also that Lemma 2 becomes just (2.4) when 0 is taken to be an inner
automorphism of G.

PROOF. We outline the calculations, starting with

(v, u; B, v) = (v, u)-1 {v, M)'"")"1*,

(v, u, 0)<9'"> = (v, u)-^'lv{{v, u)ey^~lv,

{d, v, ue) = {v9, ue)-^'lv{v, ue),

(u, 0,vu) = {u, »)-tt<>9. *>")•

It is easy to show by direct expansion that

(v, ue) (u, v)~u° {u9, V) (v, u)-1 = 1.

The result follows at once.

3. Construction of the group

Information about the structure of the group required in Theorem 4
was acquired in the course of calculations aimed at investigating its existence
or non-existence. When existence was suspected this information was used
to construct a group G by means of three cyclic splitting extensions, starting
from a group isomorphic to F2(G); this process is familiar, having already
been used to obtain examples in the papers [2], [9], [10]. The details follow.

We start by defining a group A. This shall have the following set of
17 generators:

{c(, <*„*»,/,: 1 ^ * ^ 3, 1 ^ 7 ^ 8, 1 ^ k ^ 3, 1 ^ I ^ 3}.

Next we specify some commutation relations by means of a table; if x
stands at the beginning of a row and y at the top of a column then (x, y)
stands where that row and column intersect.
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(3.1)
1

ft
h
/a

1

ft
1

1

1

ft

fl
1

1

/ i

ft
/a

1

1

ft

ft
1

1

We add the further defining relations:

(cifek) = (cf,/,) = 1,

(3.2)

where of course

^ * ^ 3, 1 ^ /, / '

We also put

(3.3) /f = 1 (1 ^ / ^ 3).

That completes the definition of A, which clearly has class precisely 2.
Several interpretations may be put on A. The exponents in the obvious

normal form for its elements may be taken as integers, or alternatively as
integers modulo 5" for any n > 0; when n = 1 the order of A is 517. Normally
we use integers modulo 5.

Next we prepare to construct an extension B of A. Define a mapping
a from the given generators of A into A as follows:

(c1( a) = dx, (c2, a) = dit (c3, a) = d7;

{dlt a) = e?f\f3, (d2, a) = «,-*/«/„

(3.4)
(d3, a) = (dA, a) = 1, (d6, a) =

(d8, a) = 1;

{e1,x)=l, {%,<*•)= ft,

(/„ a) = 1 for 1 ^ / ^ 3.

There is an obvious way of extending a to a mapping of A into A, since the
elements of A have a normal form. We denote the extended mapping by a.
To prove that a is an automorphism we need to show that a is onto A, which
is easy, and to show that a is a homomorphism. For the latter purpose we
use Lemma 2 on (3.1), (3.2) in a simplified form; since A has class 2 we
see that (u, v)a = (ua, va), for any pair u, v of the given generators, if and
only if

(v, u, a) (a, v, u) (u, a, v) = 1.
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The verification of the equation (u, v)a = (ua, va) is negligible except in
the following cases:

(c3, c2, a)(a, c3, C2){c2, a, c3) = 1 • 1 • 1 = 1,

(c1( c3, a)(a, clt c3){c3> a, cx) = / , • /3 • f3 = 1,

(c2, c1( a)(a, c2, c ^ q , a, c2) = /* • /f • /* = 1.

The relations (3.3) present no difficulty. Thus a is an automorphism, and
when exponents modulo 5 are used its order is 5.

We form the splitting extension B of A by a group of order 5 which is
generated by the element a inducing a in A. Thus B = gp{A, a), and a
set of defining relations for B can be obtained from (3.1) — (3.4) and

(3.5) a5 = 1.

Now consider the following mapping /J in B:

(«,/?) =c3;
{ct,p) =dt, (ct,p)=d6, (c3,/3)=d8;
(dlip) = e

(3.6) {ditp)=e

(*,, P) = tffift, (d,,P) = l, (da,0) = l;
{el,P)=h, (e2,P) = l, (e3,P)=fi;
(/„ 0) = 1 for 1 ^ / ^ 3.

Extend ft to a mapping (again denoted by P) of B into B in the now obvious
manner, and verify that p is onto B. We shall show that p is a homomorphism
and so an automorphism. Proofs involving (3.1) may be carried out using
the simplified form of Lemma 2 introduced above:

( c 3 ) c t , P)(P, c 3 , c2)(c2, p , c3) = ft • f3 • ft = 1 ,

( c 1 ( c , , P)(p, c l t c3)(c3, p , c 1 ) = l - l - l = l,

(c,, c l t p)(p, c t , C l ) ( C l > p , c2) = f 1 - f 1 - f f = 1 .

The other relations in (3.1) and all in (3.2), (3.3) give no trouble. For some
of (3.4) Lemma 2 is used:

(a, c,; p, a) (a, clt /?)<*•> (/?, a, c{) (c1( p, aci)

— /3 e2

(a, c2;p, a)(a, c2, /?)W.-> (p\ a,

-1 ifi -Z
e2 e 2 / l e2 /

, c3 , ^)«^.-> (/J, a, Cf)(c3 ) /
= 1 • 1 • 1 • 1 = 1.
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The rest of (3.4) require no more than the simplified form of the lemma,
and we summarise the calculations as follows. If we put

pt= (a,dt,p)(p,a,dt){dt,p,a)

for 1 5S i 5S 8 then some applications of Lemma 2 are described in the
following table:

i

1

2

3

4

5

6

7

8

i

/?
i

/S
i
i

i

(ft a, di)

ft
1

fi
1

ft
12

1

1

K. ft «)
/!
1

1

1

fl
ft
1

1

Pi

1

1

1

1

1

1

1

1

The remainder of (3.4) present no difficulty. For (3.5) we have

{a11)* = (ac3)
s = a»egd$° = 1 = (a8)^.

It follows that ft is a homomorphism, and so an automorphism, of B. In
the case of exponents modulo 5 some calculations, of which the hardest is

afiS = ac\df = a,
show that its order is 5.

The next step is to form the splitting extension C of B by a group
of order 5 which is generated by the element b inducing /? in B. Thus
C = gp{B, b}, and a set of defining relations for C can be obtained from
(3.1)—(3.6) and

(3.7) b5 = 1.

We define a mapping y in C:

(a, y) = Cz1, {b, y) = cx;

(clty) = ds, (c2ty) = d6,

(3.8)

(c3>y) =d1
1d5

1e1
ie2

ie3
ifll2l3,

(d1,y)=e3f
z
1ft, (dt,y) = l, (dSlY) =

(dt,y) = l, (d5ly) = e3, (d,,y) =

(/,, y) = 1 for 1 ̂ J ^ 3.
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Next let y denote the mapping of C into C which is the obvious extension
of the above mapping. A little effort shows that y is indeed onto C, and we
shall give some details of the proof that y is a homomorphism. For (3.1)
use the simplified form of the lemma:

(C3. c2, y)(y, cs, c2)(c2, y, c3) = f2 • /2 • f2 = 1,

fo. C3. y)(y, clt c3){cs, y, Cl) = f\ • fl • f\ = i,

(C2> clt y){y, c2, Cl)(c1( y, c2) = 1 • 1 • 1 = 1.

The other relations in (3.1) and all in (3.2), (3.3) present no problems. Next
use Lemma 2 in the case of (3.4):

(a, cx; y, a){a, cx, y) {y, a, c\)(clt y, a)

= U • e\3 1112 2 "3 /I
l

(a, c2;y, a)(a, c2, y){y, a, c\)(c2, y, a)

= 1 1 1 1 = 1,

(a, c3;y, a)(a, c3, y){y, a, 4)(c3, y, a)

— l elfoh el /2/3 el

Next we put

qt = {a,di,y){y,a,di)(di,y,a)

for 1 ^ t _ 8, and find as a result of calculation:

i

1

2

3

4

5

6

7

8

{a,dity)

fl
f\
1

1

k
1

1

1

[y,«. ^<)

/2

/?
I
l

/2

1

1

A

(di,y,a)

f*
1

1

1

h
1

1
/3
/3

1

1

1

1

1

1

1

1

In this way the simplified form of Lemma 2 takes care of eight more rela-
tions in (3.4), and the rest are easily checked. Consider (3.5) next:

(a?)6 = (ac^1)8 == a 6 ^ 5 ^ 1 0 = 1 = (a5)?.

Turning to (3.6), we use Lemma 2 as follows:
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(a, b; y, a){a, b, y)*.') (y, a, br)(b, y, a»)

= Aft • d^d^e^e^e^ft \f2 • dxe\fti% =

= 1 1 1 1 = 1,

{b,ct;y,b){b,ct,yyr-»(y,b,cZ)(Ct,y,b»)

— /l e3 e3/2 e3 /l /2 — 1 '

(6, c3;y, b){b, c3, y)<r.») (y, b, cl)(c3, y,

Then we put
rt = {b,di,y)(y,b,di){di,y, b)

for 1 ̂  i ^ 8, and find that:

* •

1

2

3

4

5

6

7

8

(b,dity)

ft
1

1

ft
ft
1

1

1

(y. &. di)

ft
l

l

/ !

ft
I

/I
I

(<**. r, b)

ft
l

l

I

ft
l

ft
l

ri

l

l

l

I

l

l

I

I

Thus the simplified form of Lemma 2 deals with the remaining non-trivial
relations in (3.6). Finally we have (3.7):

^

This completes the proof that y is an automorphism of C. In the case of
exponents modulo 5 it will be found that y has order 5.

We form the splitting extension G of C by a group of order 5 which is
generated by the element c inducing y in C. Thus G = gp{C, c}, and a set
of defining relations can be obtained from (3.1) —(3.8) and

(3.9) c5 = 1.

This group G is an example which enables Theorem 4 to be proved. Its order
is of course 520, exponents modulo 5 being used, and it is generated by
{a, b, c}, with defining relations in these generators given by (3.1) —(3.9).
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4. Proof of Theorem 4

It is easily verified from the defining relations of G that

A ( G ) = gp{ra(G), c.-.l^i^ 3},

r,(G) = i,
from which it follows that G has class precisely 5. The further consequence
that F5(G) has exponent 5 will be used without explicit reference from now
on. The hard part of the proof of Theorem 4 lies in showing that any pair
of elements of G generate a subgroup of class 3. If this is the case (and if
G is finite) then G is regular. Therefore when exponents modulo 5 are being
used G has exponent 5, for each of its generators a, b, c has order 5.

It is necessary to derive a number of laws in G before showing that all
two-generator subgroups have class 3. First we show that all such subgroups
are metabelian. By Theorem 2.1 of [5], this is equivalent to showing that
G belongs to the variety (x, y; x^1, y) = 1, which is clearly equivalent to
(x, y, y;x,y) = 1. Let zit for 1 g j ^ 3, be arbitrary elements in G and let

Z. / - 2(G) = a£<bv<c£<r2{G).
It follows that

(z1,za)r,{G) = cl*cZ*c*Ts(G)
where

Next we find that the value of (z1, z2, z^F^G) is

Therefore we have

where

It will thus be found that

(4.1) (x,y,y;x,y) = 1.

Next we consider the commutators (c,,, zt, z2, z3) for 1 ^ ; g 3. By
the usual expansion process such a commutator may be expressed as the
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product of 27 elements, each of which is a power of a commutator of weight
5 and with entries from {a, b, c}. These may be evaluated by means of the
defining relations in G, with the following results:

<PlS =

<p32

Further calculations show that

(C,, ZX, Z2 , Z2) = (Cj, Z2 , Z L 2 2 ) 2 = {Ct, Z2, Z2, Zj)

for 1 ^ )' g 3. Since G has class 5 we arrive at the following laws in G:

(4.2) (x, y, u, v, v) = (x, «/, w, «, v)2 = (x, y, v, v, u),

(4.3) (a;, y, 3z) = 1.

We deduce from (4.1) that

(a;, y, y, x, y) = (x, y, y, y, x),

and this with (4.2) at once gives

(4.4) (a;, y, x, y, y) = (x, y, y, x, y) = 1.

That is to say, every two-generator subgroup of G has class 4.

Expansion of (xz, y, xz, y, y) = 1, together with (4.3) and the law

(x, y, z, y, y) (z, x, y, y, y) (y, z, x, y,y) = 1

derived from (2.4), gives

(4-5) (x, y, z, y, y) = 1.
At this point (4.2), (4.3) and (4.5) show that any commutator of weight 5
with three identical entries is trivial.

Now suppose that x0 and y0 are third-right-Engel elements in G. Since

(xoyo, Zz) = (x0, 3z)(y0, 3z)(x0, z, y0, 2z)
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it follows from (4.5) that x0y0 is third-right-Engel. So if we can prove that
x0 is third-right-Engel when x0 = a, b, c, it will follow that G is a third-Engel-
group. Suppose z = yog where y0 = a^bic^ (with 0 sS f, r], f < 5) and
g e F2{G). Since G has class 5,

(z0, 3z) = (x0, tyo)(xo,g, 2yo){xo, yo,g, yo)(xo, 2yo,g).

So it will suffice to prove the following equations:

(4.6) (*„, 3y0) = 1,

(xo,g, 2yo)(xo, yo,g, yo){xo, 2yo,g) = 1,

for x0 = a, b, c, for y0 = aibvcl, and for all g e F2(G).
However it is now easy to prove (4.7). Calculation with (2.4) gives

(*o. 22/o- g) = (xo< yo'.Vo. g)(xo, Vo> g, 2/o)

= (g. yo'.*o.yo){xo>y<fg.yo)

= {g, y<>> xo> yo){g> yo> y<>> ^o)"1 (*<>. yo> g> y<>);

(*o. 2/o- g. 2/o) = (g. z0 ,2/0 , ^ " M g . 2/o. *o. 2/o)-

Hence (4.7) is equivalent to

(g. *o. 2/o- 2/o)2(g- y0. ^o. 2/o)3(g- y0. Wo. *o)4 = 1.

which is an immediate consequence of (4.2).
Next we consider (4.6) with xQ = a. I t will be sufficient to prove tha t

gp{a, bvc£} has class 3, and this in turn would follow from these equations:

(4.8) (a, bnct, a, a) = 1,

(4.9) (a, fact, a, bvct) == 1,

(4.10) (a, Sbvcl) = 1.

Note that, since every pair of elements generates a metabelian subgroup,
(4.9) is equivalent to

(a, bvci, bvct, a) = 1.

Consider (4.8). Since a commutator of weight 5 with three identical
entries is trivial we have

{a, bvci, a, a) = (a, b, a, a)1) (a, c, a, a)i.

Then (4.8) follows from the defining relations in G.
Consider (4.9). Expansion by the usual means gives

t, a,
where
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Wt — (a, bv, a, bv)(a, bv, a, ct)(a, ct, a, bv)(a, ct, a, cf),

W2 = (a, bv, ct, a, bi)(a, bv, tf, a, d)(a, bv, a, bv, rf){a, cf, a, bv, cC).

Simplification of the various terms goes as follows:

(a, bv, a, bv) = (a, ct, a, cf) = 1,

(a, bv, a, cC) = (a, b, a, c)vC(a, b, b, a, c)®c (a, b, a, c, c)v®

— \el I2J3) h >

{a, cC, a, bv) = (a, c, a, b)vi (a, c, c, a, 6) '® (a, c, a, b, b)®{

{a, bv, ci, a, bv) = (a, b, c, a, b)^ = / | 2 f ,

(a, bv, CC, a, ct) = (a, b, c, a, c)"^

{a, bv, a, bv, CC) = {a, b, a, b, c)vH = 1,

(a, c<, a, bv, CC) = (a, c, a, b, c)^

It will be found that Wt W2 = 1, and (4.9) follows.
Consider (4.10). On expanding (a, 3bvct) we obtain terms of weights 4

and 5. Those terms which are non-trivial are listed and evaluated below:

(a, bv, b\ cc) = (a, b, b, c)^ (a, b, b, c, c)*1©

— \e2 111 31 II •

(a, bv, ct, bv) = (a, b, c, b)vH(a, b, c, c, ft)*1®

(a, c«, bv, bv) = (a, c, b, b)^ {a, c, c, b, 6)'1©

_ (p2j3f \VHAV*®
— \e2ni3) /i »

(a, c£, d, bv) = (a, c, c, b)vi\a, c, c, b, 6)(3)fS

(a, d, bv, CC) = (a, c, b, c)iC*(a, c, b, b,

— e3 h >

(a, bv, CC, c«) = (a, ft, c, c)v('(a, b, b, c,

(a, 6», cc, ft,, CC) = (a, b, c, b, c)'** = f\H\

(a, bv, CC, ct, bv) = (a, b, c, c, ft)*1** = / } * i £ \

(a, bv, bv, cc, cC) = (a, 6, 6, c, c) ' 2 f J = ^ ' ,

(a, cc, bv, cC, bv) = (a, c, b, c, b)^' = ffc\

(a, bv, CC, bv, c() = (a, b, c, b, c ) ' * 1 = /J"c*.

(a, ct, bv, bv, ec ) = (a, c, b, b, c)v*c' = fi^'.
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Some arithmetic at this point will verify (4.10).
We have now proved that a is third-right-Engel in G. The proof that

b and c have this property is omitted, being entirely similar. It follows as
explained above that every element of G is third-right-Engel. But since G
is a 5-group zusatz 2 of [4] shows that every two-generator subgroup of
G has class 3. The proof of Theorem 4 is now complete.

References

[1] Reinhold Baer, "Nilpotent groups and their generalizations", Trans. Amer. Math. Soc.
47 (1940), 393—434.

[2] Chander Kanta Gupta, "A bound for the class of certain nilpotent groups", / . Austral.
Math. Soc. 5 (1965), 506—5H.

[3] Hermann Heineken, "Engelsche Elemente der Lange drei", Illinois J. Math. 5 (1961),
681—707.

[4] Hermann Heineken, "tlber ein Levisches Nilpotenzkriterium", Arch. Math. 12 (1961),
176—178.

[5] Graham Higman, "Some remarks on varieties of groups", Quart. J. Math. (Oxford
Second Series) 10 (1959), 165—178.

[6] Wolfgang Kappe, "Die A-Norm einer Gruppe", Illinois J. Math. 5 (1961), 187—197.
[7] Michel Lazard, "Sur les groupes nilpotents et les anneaux de Lie", Ann. Sci. Ecole

Norm. Sup. (3) 71 (1954), 101—190.
[8] F. W. Levi, "Groups in which the commutator relation satisfies certain algebraic condi-

tions", / . Indian Math. Soc. 6 (1942), 87—97.
[9] I. D. Macdonald, "Generalisations of a classical theorem about nilpotent groups",

Illinois J. Math. 8 (1964), 556—570.
[10] I. D. Macdonald, "A theorem about critical ^-groups", Proc. Internal. Conf. Theory of

Groups, Austral. Nat. Univ. Canberra, August 1965, 241—249 (Gordon and Breach,
New York, 1966).

[11] Hanna Neumann, Varieties of groups (Springer-Verlag, Berlin—Heidelberg—New York
1967).

The University of Newcastle
New South Wales

and
Australian National University
Canberra, A.C.T.

https://doi.org/10.1017/S144678870000450X Published online by Cambridge University Press

https://doi.org/10.1017/S144678870000450X

