Appendix B

Hawking temperature of a general black brane metric

Here we calculate the Hawking temperature for a general class of black brane metrics of the form

$$ds^{2} = g(r) \left[-f(r)dt^{2} + d\vec{x}^{2} \right] + \frac{1}{h(r)}dr^{2}, \qquad (B.1)$$

where we assume that f(r) and h(r) have a first order zero at the horizon $r = r_0$, whereas g(r) is non-vanishing there. We follow the standard method [376] and demand that the Euclidean continuation of the metric (B.1),

$$ds^{2} = g(r) \left[f(r) dt_{\rm E}^{2} + d\vec{x}^{2} \right] + \frac{1}{h(r)} dr^{2}, \qquad (B.2)$$

obtained by the replacement $t \rightarrow -it_{\rm E}$, be regular at the horizon. Expanding (B.2) near $r = r_0$ one finds

$$ds^2 \approx \rho^2 d\theta^2 + d\rho^2 + g(r_0) d\vec{x}^2, \qquad (B.3)$$

where we have introduced new variables ρ , θ defined as

$$\rho = 2\sqrt{\frac{r-r_0}{h'(r_0)}}, \qquad \theta = \frac{t_{\rm E}}{2}\sqrt{g(r_0)f'(r_0)h'(r_0)}. \tag{B.4}$$

The first two terms in the metric (B.3) describe a plane in polar coordinates, so in order to avoid a conical singularity at $\rho = 0$ we must require θ to have period 2π . From (B.4) we then see that the period $\beta = 1/T$ of the Euclidean time must be

$$\beta = \frac{1}{T} = \frac{4\pi}{\sqrt{g(r_0)f'(r_0)h'(r_0)}}.$$
(B.5)