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plane Poiseuille flow
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Recently, subcritical transition to turbulence in the quasi-two-dimensional (quasi-2-D)
shear flow with strong linear friction (Camobreco et al., J. Fluid Mech., vol. 963, 2023,
R2) has been demonstrated by the 2-D mechanism at Re = 71 211, and the nonlinear
Tollmien–Schlichting (TS) waves related to the edge state were approached independently
of initial optimal disturbances. For 2-D plane Poiseuille flow, transition to the fully
developed turbulence requires that the Reynolds number is several times larger than the
critical Reynolds number Rec (Markeviciute & Kerswell, J. Fluid Mech., vol. 917, 2021,
A57). In this paper, we observed the subcritical transitional flow in 2-D plane Poiseuille
flow driven by the nonlinear TS waves by both linear and nonlinear optimal disturbances
(Re < Rec) with different quantitative edge states. The nonlinear optimal disturbances
could trigger the sustained subcritical transitional flow for Re � 2400. The initial energy
for nonlinear optimal disturbance is more efficient than the linear optimal disturbance
in reaching the subcritical transitional flow for 2400 � Re � 5000. Moreover, the initial
energy of linear optimal disturbance is larger than the energy of its edge state. The
nonlinear TS waves along the edge state are formed by the nonlinear optimal disturbances
to trigger transitional flow, which agrees well with the main conclusions of Camobreco
et al. (J. Fluid Mech., vol. 963, 2023, R2), while the required Re of 2-D plane Poiseuille
flow is much smaller.

Key words: nonlinear instability, shear-flow instability

1. Introduction

Subcritical transition to turbulence has received much attention for many decades since
the linear stability theory based on unstable eigenvalues (Lin 1944) could not explain the
transition to turbulence observed by the classic experiments (Reynolds 1883; Davis &
White 1928; Tillmark & Alfredsson 1992). The short-term instability behaviour treated
as transient growth of the finite amplitude optimal disturbances illustrated an optional
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transition scenario for linear stable flows. Therefore, theoretical (Trefethen & Embree
2005; Schmid 2007) and numerical (Butler & Farrell 1992) studies on transient growth
have been performed to describe the subcritical transition to turbulence.

The linearized Navier–Stokes (NS) equations for shear flows are employed to seek the
optimal disturbances that experience possible largest amplification. Mathematically, the
non-orthogonality of the eigenvectors or pseudospectra induce the instabilities (Trefethen
& Embree 2005); while physically the optimal disturbances could be amplified by the
Orr and lift-up mechanisms in shear flows (Schmid 2007). According to the non-normal
analysis, the disturbance energy increases linearly with Reynolds number Re and the
short-term target time for parallel shear flows. For three-dimensional (3-D) shear flows,
the optimal disturbances are amplified by the lift-up mechanism to form streaks, achieving
greater than a thousandfold growth in energy. According to the linear instability analysis,
the two-dimensional (2-D) plane shear flow is the most unstable due the occurrence of
Tollmien–Schlichting (TS) waves. However, for 2-D linear stable shear flows, the energy is
amplified tenfold rapidly via the Orr mechanism. Therefore, the 3-D optimal disturbances
are popular for investigating the subcritical transition to turbulence (Butler & Farrell 1992;
Reddy et al. 1998; Chapman 2002; Karp & Cohen 2014; Farano et al. 2015b; Roizner,
Karp & Cohen 2016) due to considerable transient growth as a primary instability. The TS
waves and the optimal streaks are considered together in plane Poiseuille flow (Zammert
& Eckhardt 2019), they found that the lower branch solution of the TS wave solution
bifurcating from the base flow, is an edge state of the 3-D system and 2-D system for a
range of Re.

Interestingly, the Orr and lift-up amplifications could be combined to drive the optimal
disturbances in shear flows. Non-parallel shear flow, such as spatially developing boundary
layer flows, enable the linear optimal disturbances to be amplified by the Orr and lift-up
mechanisms simultaneously (Hack & Moin 2017). Furthermore, the nonlinearity combines
the two mechanisms to result in much larger energy growth for parallel shear flows (Pringle
& Kerswell 2010), which is more important for investigating the subcritical transition of
shear flows quantitatively. For 3-D parallel shear flows, the nonlinear optimal disturbances
are localized wave packets that are tilted against the mean shear. The disturbances are
unpacked and amplified by the Orr mechanism to obey the shear firstly, and forming the
streamwise streaks by nonlinear oblique interactions and the lift-up mechanism, before
triggering the subcritical transition to turbulence (Cherubini et al. 2011; Monokrousos
et al. 2011; Pringle, Willis & Kerswell 2012; Rabin, Caulfield & Kerswell 2012; Eaves
& Caulfield 2015). The coherent structures are streaks for the edge state along the
basin boundary between the laminar and turbulent attractors for 3-D parallel shear flows
(Kerswell 2018).

However, the mechanism of subcritical transition to turbulence in 2-D shear flows
has remained mysterious, until the very recent quasi-2-D shear flow investigation by
Camobreco, Pothérat & Sheard (2023). The subcritical transition pathway from the
laminar to the turbulent state, i.e. the nonlinear TS waves, has been found by the linear
optimal disturbances. Although the subcritical lift-up transition is greatly suppressed in
the quasi-2-D shear flow, the small-scale turbulence was achieved eventually. It is very
hard to observe subcritical transition to turbulence in 2-D shear flows since the 2-D
turbulence manifests quite differently from the 3-D turbulence, such as the reverse energy
cascade (Boffetta & Ecke 2012). In fact, the fully developed turbulence in 2-D plane
Poiseuille flow could not be obtained until Reynolds numbers were far beyond the critical
value Rec (Falkovich & Vladimirova 2018; Markeviciute & Kerswell 2021). Therefore,
the subcritical transition to turbulence still remains an open question for pure 2-D plane
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Poiseuille flow, including reaching the 2-D turbulent state, the critical Re, the efficient
optimal disturbances and the edge states.

The study (Camobreco et al. 2023) mainly discussed the subcritical transition
mechanism along the same edge state touched by alternative linear optimal disturbances at
rc = Re/Rec = 0.9 (Re = 71 211) with the strong linear friction. However, the edge state
introduced in nonlinear non-modal analysis (Kerswell 2018) represents the basin boundary
for transitional flow quantitatively and usually relates to the minimal seed. Moreover,
the quantitative optimal disturbances and critical Re are of valuable interest to trigger
turbulence for 2-D shear flows, such as electron fluid (Sulpizio et al. 2019) with high
performance. In this study, we performed both the linear and nonlinear optimization to
seek the efficient optimal disturbances that experience nonlinear TS waves along the edge
state to trigger subcritical transition to turbulence in 2-D plane Poiseuille flow. Instead of
the 2-D fully turbulent state, the chaotic transitional flow is obtained by both linear and
nonlinear optimal disturbances via quantitatively different edge states. The critical Re is
approximately 2400 for the subcritical transitional flow due to the nonlinear TS waves.
The nonlinear disturbances are also wall modes for large Re, similar to linear optimal
disturbances; while for small Re, the nonlinear optimal disturbances deviate the wall mode.

In the material that follows, § 2 describes the governing equations and numerical
method, followed by the discussion of subcritical transitional flow in § 3. Section 4
illustrates the wall mode optimal disturbances for subcritical transitional flow, and the
discussion and conclusions are presented in § 5.

2. Governing equations and numerical simulations

The 2-D plane shear flow is governed by the incompressible NS equations

U t + U · ∇U = −∇P + 1
Re

∇2U, ∇ · U = 0, (2.1a,b)

where U is the velocity vector (U, V), and P is the pressure. Let the laminar state of
plane channel flow U = (U( y), 0), and for the plane Poiseuille flow U( y) = 1 − y2.
The equations are non-dimensionalized by the maximum velocity Umax, half-height of
the channel h, time h/Umax, and pressure ρU2

max. The Reynolds number Re = Umaxh/ν,
where ν is the viscosity. The perturbation velocity vector is u = utot − U . Therefore, the
governing equations of the perturbation velocities are

ut + u · ∇U + u · ∇u + U · ∇u = −∇p + 1
Re

∇2u, ∇ · u = 0. (2.2a,b)

Falkovich & Vladimirova (2018) found the pressure-driven laminar flow induces travelling
waves for sufficiently small viscosity and friction. By adding uniform friction to real fluid
layers, the turbulent flow was observed at Re ∼ 30 000 much larger than Rec = 7696,
which is based on the flow rate (4/3Umax). The subcritical transition to turbulence in
quasi-2-D flows has been studied in the duct flows with moving walls driven by the
linear friction under a strong transverse magnetic field (Camobreco et al. 2023). Due
to the significant effect of linear friction, the critical Reynolds number Rec = 79123.2,
which is based on the half-duct-height and the maximum velocity Umax in Camobreco,
Pothérat & Sheard (2021). They calculated the linear optimizations for the quasi-2-D shear
flow in a rectangular duct with significant linear friction under a strong magnetic field at
Re = 71 211, and found the linear and nonlinear optimizations offer identical results to
approach the edge state. However, the nonlinear optimal disturbances with the minimal
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energy, or the so-called minimal seeds (Pringle et al. 2012; Eaves & Caulfield 2015), are
the perfect choice to trigger the subcritical transition along the edge state between the
nonlinear laminar and turbulent attractor basin boundary. Therefore, besides the linear
optimizations, we employed fully nonlinear optimizations to investigate the subcritical
transition via the nonlinear edge state for 2-D plane Poiseuille flow. The nonlinear optimal
disturbance and the related evolution in the channel could be identified by the variational
method (see Pringle & Kerswell (2010), Cherubini et al. (2011) and Monokrousos et al.
(2011)). The disturbance energy density is defined as

E(t) = 1
2V

∫
V

[u2(t) + v2(t)] dV, (2.3)

and energy density of streamwise and vertical velocity disturbances

Eu(t) = 1
2V

∫
V

u2(t) dV, Ev(t) = 1
2V

∫
V

v2(t) dV, (2.4a,b)

where V is the volume of the channel, and for 2-D flow V = 2hLx is the area of the channel.
By defining the objective functions and introducing the Lagrangian multipliers, the adjoint
governing equations are formulated as

u�
t + u · ∇u� − u� · ∇u = −∇p� − 1

Re
∇2u�, ∇ · u� = 0, (2.5a,b)

where u� is the adjoint velocity of disturbance velocity u, and p� is the adjoint variable of
pressure disturbance p.

There are many numerical optimized methods to seek the nonlinear optimal disturbance
for shear flows (Pringle & Kerswell 2010; Monokrousos et al. 2011; Cherubini &
Palma 2015; Huang & Philipp 2020). In order to capture the edge state of subcritical
transition, the disturbance energy density (Pringle & Kerswell 2010) and the total
time-averaged dissipation are defined (Monokrousos et al. 2011) as the objective function,
respectively. In this study, the nonlinear optimizations are conducted by the well-developed
direct-adjoint-looping method based on the direct numerical simulation (DNS) codes
Diablo (Taylor 2008). The Fourier truncations are used in the streamwise x-direction,
and the dealiasing technique which removes the highest 1/3 portion of the Fourier
spectrum is employed. The finite difference method is used for the spatial discretizations
in the wall-normal direction, and a combined implicit–explicit Runge–Kutta–Wray
Crank–Nicolson scheme for time integration. The numerical energy threshold could be
obtained by the bisection technique. Since the simulated turbulence effects are very
strong for long 2-D channels (Jiménez 1987, 1990), the wavenumber αdomain = 0.1 is
mainly considered to define the computational domain length Lx = 2π/αdomain = 20π,
and α is used for convenience and refers to the channel length if not specified in this
study. According to Jiménez (1990), the target time T = 2000 is sufficient to observe
the saturated nonlinear interactions for 2-D plane Poiseuille flow. The edge tracking
method is shown in figure 1, the edge state is bracketed by energy trajectories of red
solid and dashed lines with initial energy density of 9.24967 × 10−6 and 9.24965 × 10−6,
respectively, for Re = 3500. Therefore, for convenience, we only show the two bounded
trajectories in this paper. The edge tracking technique is very similar to that shown in
figure 1 in Zammert & Eckhardt (2014). We performed the grid sensitivity study with
three grid resolutions, i.e. 512 × 256, 1024 × 512 and 2048 × 1024, the corresponding
critical energy densities that induce the subcritical transitional flow are 1.025 × 10−5,
9.2497 × 10−6 and 9.241 × 10−6, respectively. The energy relative difference between
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Figure 1. The edge tracking in 2-D plane Poiseuille flow at Re = 3500: the solid lines are the initial densities
of trajectories that trigger subcritical transition; the dashed lines are trajectories of laminar; and the edge state
(dotted line) bracketed by the trajectories of red lines.

the grids 1024 × 512 and 2048 × 1024 is less than 0.1 %. Therefore, the grid resolution
1024 × 512 is employed with more than 256 points distributed near the channel walls
within h/4. The time step 0.01 is chosen for all numerical optimizations and DNS in this
study.

3. Subcritical transitional flow

According to the linear stability analysis, the critical Reynolds number Rec is
approximately 5772.2 for 2-D plane Poiseuille flow (Orszag 1971). Figures 2(a) and
2(b) compare the time variation of kinetic energy of linear and nonlinear optimal
disturbances at the subcritical Reynolds number Re = 3500 for different channel lengths.
The linear optimal disturbances in this study are calculated for the maximal transient
energy growth. For example, the maximal energy gain is 34.08 with optimal target time
Topt = 12.55 with optimal wavenumber of 1.53 at Re = 3500. We calculated the linear
optimal disturbances with target time Topt by the numerical optimization (Butler & Farrell
1992), while the nonlinear optimal disturbances are captured for T = 2000. Both of the
optimal disturbances could reach the chaotic transitional flow via their edge states of
different energy norms with different channel length, as shown in figures 2(a) and 2(b). For
linear optimal disturbances, the initial energies are rescaled up to E0 = 1.44909 × 10−3

and E0 = 4.076686 × 10−4 for α = 0.4 and α = 0.1, respectively, to trigger the chaotic
transitional flow via the edge state related to the energy plateau; while the flows are
finally relaminarized after the experienced edge states for E0 = 1.449085 × 10−3 and
E0 = 4.076684 × 10−4. The energy norm of the edge state is approximately 2 × 10−3,
which is larger than the initial energy for α = 0.4. While the energy norm of edge state is
approximately 2 × 10−4, which is much smaller than the initial energy for α = 0.1. The
linear optimal disturbances experience amplification, decay in an oscillatory way and then
monotonically to touch the edge state. For the nonlinear optimal disturbances, or minimal
seeds, the critical initial energies are E0 = 3.602621 × 10−5 and E0 = 9.24967 × 10−6

for α = 0.4 and α = 0.1, respectively. The required energies of nonlinear optimal
disturbances are approximately 2.5 % of those of linear optimal disturbances for both
α = 0.4 and α = 0.1. The minimal seeds are amplified rapidly and decay to the edge
states, whose energy norms are approximately 7.0 × 10−4 and 1.25 × 10−4 for α = 0.4
and α = 0.1, respectively, before reaching the transitional flow.
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Figure 2. (a) The time history of perturbation kinetic energy for linear (black lines) and nonlinear (red lines)
optimal disturbances at Re = 3500 and α = 0.4. (b) The time history of perturbation kinetic energy for linear
(black lines for Topt and green lines for 10Topt) and nonlinear (red lines) optimal disturbances at Re = 3500 and
α = 0.1. (c) The time variation of perturbation kinetic energy of nonlinear optimal disturbances for different
Re; the black, red and green lines are corresponding to Re = 2400, 3500 and 5000, respectively. (d) The
perturbation kinetic energy varying with time from t = 0 to 4000 for the minimal seeds of 2-D plane Poiseuille
flow for different Re. (The solid lines depict the chaotic transitional flow while the dashed lines depict the
relaminarized flow.)

In Camobreco et al. (2023), the linear optimal disturbances with larger target time
8Topt resemble the nonlinear optimal disturbances, and the leading adjoint mode represent
the optimal initial disturbance in short channels. The linear optimal disturbances of
10Topt are calculated with the energy gain 3.67. The linear optimal disturbances are still
uniformly distributed in the channel and very similar to those of Topt (see figure 3a).
Figure 2(b) shows the comparison of energy time variation, the initial energy of 10Topt
is approximately 2.3831 × 10−4, which is much smaller than 4.076684 × 10−4 for Topt.
Moreover, the uniform linear optimal disturbances reach the same edge state with the same
energy, which is larger than that of the minimal seed. The linear optimal disturbances
with larger target time are more efficient in triggering transitional flow than those of
maximal energy growth; it is consistent with Camobreco et al. (2023) since the leading
adjoint eigenmode is a more efficient initial condition and plays a very important role
for larger target time. Moreover, the initial energy is still larger than the energy near the
edge state, which means that the energy is not amplified compared with the initial energy.
Figure 2(c) shows the energy time variation of minimal seeds for different Re, in this
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study, the subcritical transitional flow could be observed as Re � 2400 for α = 0.1. The
critical initial energies are E0 = 4.922 × 10−4 and E0 = 2.6186 × 10−6 for Re = 2400
and 5000, respectively. The linear optimal disturbance could not induce the subcritical
transitional flow for Re = 2400; while it requires E0 = 1.63153 × 10−4 of linear optimal
disturbance at Re = 5000 to trigger the transitional flow. It can be concluded that the
critical initial energy of nonlinear optimal disturbance is less than 2.5 % of that of linear
optimal disturbance with target time Topt. To check if the minimal seeds could sustain
the transitional flow after the target time T = 2000, figure 2(d) shows the variation of
disturbance energy with respect to time from 0 to 4000 for different Re. The sustained
transitional flow induced by the minimal seeds could be observed after the target time
T = 2000.

At Re = 5000, the initial perturbation energy increases rapidly to the peak by the Orr
mechanism, then it decreases gradually to the energy plateau related to the nonlinear edge
state, the nonlinear evolution sustains along the basin boundary with a sufficiently long
period before it drives the flow into chaotic transitional flow, in figures 2(c) and 2(d). The
energy time variation is almost the same as that of E0 > ED in figure 2(a) of Camobreco
et al. (2023), which demonstrates that the subcritical transition mechanism (nonlinear
TS waves) in 2-D plane Poiseuille flow is captured. Fully developed turbulence in 2-D
plane Poiseuille flow has been observed when the Reynolds number is far beyond the
critical value Rec (Falkovich & Vladimirova 2018; Markeviciute & Kerswell 2021), which
indicates that it might not be achieved if the Reynolds number is not greater than 5772.2
for 2-D plane Poiseuille flow. Therefore, it is not surprising that the obvious turbulent
kinetic energy oscillation is absent in 2-D flow transitional flow, and the fully developed
turbulence is absent for Re < Rec. As Re decreases, the nonlinear optimal disturbances
with increased initial kinetic energy could still trigger 2-D subcritical transitional flow,
and the perturbation energy variation is the same as Re = 5000. By employing nonlinear
optimizations, the subcritical transition of 2-D plane Poiseuille flow could be captured
at Re = 2400. It is interesting that the energy growth at the peak for the nonlinear
optimal disturbances is much smaller than the linear optimal disturbances, which might be
attributed to the long target time and nonlinear interactions. For example, the maximum
energy growth of linear optimal disturbance is approximately 34.08 for Re = 3500, while
the maximum energy growth at the peak in only approximately 15.1. Moreover, the
perturbation energy of the nonlinear edge state is smaller than the energy peak by Orr
amplification for larger Re; while the energy of the edge state is slightly larger than the
energy peak for Re = 2400. The kinetic energy of the transitional flow increases with Re.

Figure 3 compares the subcritical transitional flow field triggered by linear optimal
disturbances and minimal seeds, represented by disturbance vorticity. The linear optimal
disturbances distribute near the channel walls uniformly and symmetrically against the
mean shear and filled in the whole channel, that are the wall mode. While the streamwise
clustered nonlinear optimal disturbances locate one third of the channel, and the magnitude
of nonlinear optimal disturbances is much smaller. The linear optimal disturbances are
amplified by a tilting effect (see figure 3a,b); the linear travelling waves are formulated
and the disturbance magnitude decreases (see figure 3c,d) uniformly; the disturbance
magnitude decreases further non-uniformly and nonlinearly (see figure 3e, f ); the decrease
of magnitude ceases and the nonlinear TS waves are sustained (see figure 3f –h) before the
chaotic transitional flow is reached.

Unlike the linear optimal disturbances, the nonlinear optimal disturbances are
streamwise localized wave packets and not symmetric due to the nonlinear interaction in
the optimization. The localized optimal disturbances are amplified by the Orr mechanism
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Figure 3. The comparison of vorticity snapshots in the subcritical transition triggered by the (a–i) linear
and (a′–i′) nonlinear optimal disturbances for 2-D plane Poiseuille flow at Re = 3500. The time instants for
snapshots, (a–i) and (a′–i′), are t = 0, 20, 50, 100, 200, 400, 1000, 1500 and 2000, respectively.
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to obey the mean shear (figure 3b′), and the nonlinear interactions are evoked immediately
to form the nonlinear TS waves (figure 3c′). The nonlinear TS waves and the nonlinear
edge state sustains for a sufficiently long time, before the fluid-structure deviates into
the 2-D chaotic transitional state (figure 3i′). From the vorticity distributions, we can
see that the flow induces unsteadiness of the sharp vortex sheets ejected from the wall
by the nonlinear travelling waves, and is mediated by the secondary updrafts induced
at the walls by vorticity inhomogeneities in the core of the channel, which is consistent
with the observations (Jiménez 1990). Interestingly, the fluid structures are very similar
after t = 400 for both the linear (figure 3f –i) and nonlinear (figure 3f ′–i′) disturbances. It
indicates that the linear optimal disturbances could be treated as candidate to investigate
the subcritical transition of shear flows (Camobreco et al. 2023), since the nonlinear TS
waves along the linear edge state are very similar to the nonlinear edge state. It should
be noted that most of the uniform distributed linear optimal disturbances are decayed. If
only parts of disturbances in the channel are considered, the required initial energy density
might be reduced. For example, if the first half of the channel is filled with disturbances
and then zeroed everywhere outside of the first half, e.g. filtered with a step function, then
the initial energy density of the linear optimal is reduced to 1.11882 × 10−4, compared
with 4.076684 × 10−4 for the linear optimal disturbances without applying a step function
and 9.24967 × 10−6 for the nonlinear optimal disturbances. Therefore, quantitatively, the
minimal seeds capture the edge state more efficiently for long channels.

4. The wall mode optimal disturbance for subcritical transition

The optimal disturbances are amplified by the Orr mechanism in 2-D plane Poiseuille
flow. However, the magnitude of the streamwise velocity perturbation is much larger than
that of vertical velocity perturbation. In this section, the quantitative relation between the
two perturbation components is investigated. Figure 4 shows the time variation of the
perturbation energy of velocity components and their ratio for the optimal disturbances.
The time variation of perturbation energy of streamwise velocity Eu shows the same trend
as the total kinetic energy (see figure 2a) for different Re, while the variations of Ev are
quite different from Eu. It is obvious that the perturbation energy of streamwise velocity
u is much larger than the vertical velocity v, which means the streamwise velocity is
predominant in the 2-D flow. Correspondingly, the amplification of Ev is much more
remarkable than that of Eu, since the initial energy norm Ev is much smaller. From
figure 3, the initial optimal disturbances are located near the channel wall. According to the
well-established linear instability and transient growth theories (Lin 1944; Drazin & Reid
1981; Trefethen et al. 1993; Schmid & Henningson 2001; Chapman 2002; Schmid 2007),
the wall mode disturbances of the linearized NS equations (Orr–Sommerfeld equations)
of 2-D plane Poiseuille flow locate near the channel walls. Here, the uniformly disturbed
linear optimal disturbances are the wall mode as shown in figure 3(a). For the wall mode
near the channel wall y = −1, there exists the scaling law (Lin 1944; Chapman 2002)

y = −1 + y′/(αRe)1/3, (4.1)

where y′ is the scaled coordinate variable near the channel wall. Instead of the rigorous
but time-consuming asymptotic analysis in Chapman (2002), we just focus the continuity
equation ux + vy = 0 for estimation since there are no disturbances near the channel
centre. According to the periodic boundary condition in the streamwise direction, the
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Figure 4. The time variation of perturbation energy of velocity components (a) and the ratios between the
optimal disturbances (b) in 2-D plane Poiseuille flow at different Re.

disturbances could be decomposed into Fourier modes, such as

v(x, y) =
∑

ṽ( y) expiαx, (4.2)

where ṽ( y) are continuous functions in the wall-normal direction. Therefore,

iαũ( y) + dṽ( y)/dy = 0 (4.3)

is obtained according to the continuity equation. Considering the wall modes and the
scaling (4.1), iαũ(y′) should be balanced by dṽ( y′)/dy′(αRe)1/3 near the channel wall.
Consequently, it can be concluded that Eu is approximately (Re)2/3Ev for the wall mode
optimal disturbances if one focuses on the fixed streamwise wavenumber. Figure 4(b)
presents the values of (Re)−2/3Eu/Ev varying with Re for the linear optimal disturbances
in 2-D plane Poiseuille flow. The values are almost constant, i.e. 0.567 ± 0.01, which
demonstrates the linear optimal disturbances are the wall modes, quantitatively. However,
for the minimal seeds that induce the subcritical transitional flow, the values of
(Re)−2/3Eu/Ev are much smaller, which might be the reason why the peak energy
amplification is much smaller. The value keeps constant at approximately 0.33 for large
Reynolds numbers, while it is 0.41 at Re = 2400. It might be concluded that minimal
seeds are also exact wall modes for large Re, although they are streamwise localized in the
channel; the nonlinear optimal disturbances deviate the wall mode to trigger subcritical
transitional flow.

Figure 5 compares the initial optimal disturbances represented by disturbance
streamwise velocity and the disturbance vorticity. Generally, the value of the vorticity
is approximately one order larger than the value of the streamwise velocity. According to
the definition of vorticity ω = uy − vx and the asymptotic scaling of the wall mode, it is
very reasonable to obtain these results. For the nonlinear optimal disturbances, the initial
value of streamwise velocity and vorticity decreases with Re. Moreover, the disturbance
distributions are very similar between Re = 3500 and Re = 5000, while the disturbances
are more distorted for Re = 2400. It should be noted that the values of streamwise velocity
and vorticity for the linear optimal disturbances E0 = 4.076686 × 10−4 (see figure 5a,a′)
are only approximately twice of those of the minimal seeds E0 = 9.24967 × 10−6 (see
figure 5c,c′) at Re = 3500. The streamwise localization makes the minimal seeds much
more efficient to trigger the subcritical transitional flow, since the strong nonlinear
interactions are fully considered including the Orr amplification and edge states.
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Figure 5. The comparison of streamwise velocity of (a–d) and vorticity (a′–d′) optimal disturbances in 2-D
plane Poiseuille flow at different Re. Panels (a,a′), (b,b′), (c,c′) and (d,d′) show the results for Re = 3500, 2400,
3500 and 5000, respectively. Panels (a,a′) show the linear initial optimal disturbances, while (b,b′), (c,c′) and
(d,d′) show the nonlinear initial optimal disturbances.

5. Discussion and conclusions

The subcritical transition to turbulence for 3-D shear flows has been extensively
investigated, and the optimal disturbances would generate streaks (Monokrousos et al.
2011; Eaves & Caulfield 2015) with small initial energy or hairpin vortices (Karp &
Cohen 2014; Farano et al. 2015a) with sufficient initial energy to trigger the turbulence.
The nonlinear non-modal instability based on nonlinear optimizations could capture the
minimal seeds that evolve along the edge state before transition to turbulence, because
the nonlinear optimal disturbances are amplified by both the Orr and lift-up effects and it
is very suitable for studying the critical subcritical transitional shear flows quantitatively.
However, for quasi-2-D flows or 2-D flows, the disturbances are amplified by only the
vortex tilting effect due to the strong suppression of the lift-up effect, while the nonlinear
transient growth and the mechanism of subcritical transition to turbulence has remained
unclear. Recently, Camobreco et al. (2023) employed the linear optimal disturbances to
touch the edge state successfully, and revealed that the subcritical transition to turbulence
is caused by the nonlinear TS mechanism in the quasi-2-D shear flows encountered in
magnetohydrodynamic flow. However, the same edge state had been reached by nonlinear
and linear optimal disturbances with different initial energy and target time (Camobreco
et al. 2023). Recall that, the nonlinear edge state usually is achieved by the minimal
seed named as the optimal disturbances with the minimal energy that trigger subcritical
transition to turbulence (Pringle et al. 2012). Therefore, it is urgently needed to clarify if
the linear and nonlinear optimal disturbances are similar in subcritical transitional flow
in 2-D shear flows. In this paper, we studied the subcritical transitional flow in 2-D
plane Poiseuille flow by extensive numerical simulations, and the channel with length
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20π is chosen to check the streamwise localization on nonlinear optimal disturbances
(Mellibovsky & Meseguer 2015).

The edge state is reached by the linear optimal disturbance and minimal seeds. However,
the energy norms of the two edge states are quantitatively different, and the initial energy
of minimal seeds is significant smaller than that of linear optimal disturbances. The
strong chaotic transitional flow is observed in the present study, as Re decreases to 2400.
The minimal seeds distribute near the wall and are streamwise localized; and experience
the Orr amplification nonlinearly to achieve the maximal energy growth before reaching
the edge state; finally the strong chaotic flow, a precursor to turbulence, is achieved. The
evolution is very similar to that in Camobreco et al. (2023) except the sustained small-scale
turbulence, whose Reynolds number Re = 71 211. Moreover, it is not surprising that the
fully sustained turbulence requires Re > 30 000 for 2-D plane Poiseuille flow (Falkovich &
Vladimirova 2018). Interestingly, the energy of the edge state is smaller than the achieved
maximal energy for high Re. Moreover, the minimal seed conforms to the wall mode
disturbance for high Re.

To trigger the turbulence in 2-D and quasi-2-D flows is of great interest in high efficient
electron flows (Sulpizio et al. 2019) and laboratory experiments with soap films. This
study suggests that the localized disturbances near the channel walls could be favourable
in triggering the subcritical transitional flow in the 2-D shear flows.
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