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Abstract. Although barotropic matter does not constitute a realistic model for magnetic stars
on short timescales, it would be interesting to confirm a recent conjecture that states that
magnetized stars with a barotropic equation of state would be dynamically unstable (Reisenegger
2009). In this work we construct a set of barotropic equilibria, which can eventually be tested
using a stability criterion. A general description of the ideal MHD equations governing these
equilibria is summarized, allowing for both poloidal and toroidal magnetic field components. A
new finite-difference numerical code is developed in order to solve the so-called Grad-Shafranov
equation describing the equilibrium of these configurations, and some properties of the equilibria
obtained are briefly discussed.
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1. Overview
The persistence of magnetic fields in massive stars and their stellar remnants motivates

the study of what physical conditions are involved in sustaining such configurations. In
this context, barotropic equations of state, where pressure is a function solely of den-
sity, are often assumed to describe the matter within these objects (Yoshida & Eriguchi
2006; Haskell et al. 2008; Lander & Jones 2009; Ciolfi et al. 2009; Fujisawa et al. 2012).
Barotropy strongly restricts the range of possible equilibrium configurations and does
not strictly represent the realistic stably stratified matter within these objects, which is
likely to be an essential ingredient in the stability of magnetic fields in stars on short
timescales (Reisenegger 2009).

The question whether magnetic equilibria in barotropic stars can be stable or not
remains as an important issue to be answered. Several authors (Lander & Jones 2009;
Ciolfi et al. 2009; Fujisawa et al. 2012; Gourgouliatos et al. 2013) have explored the pos-
sible axially symmetric equilibria in barotropic stars, generally finding that the fraction
of the total magnetic energy corresponding to the toroidal component, Etor/Emag, is at
most a few %. In addition to not being enough to account for the energy emitted by
magnetars, this would be insufficient to stabilize the poloidal component (Braithwaite
2009; Akgün et al. 2013), as confirmed by the simulations of Lander & Jones (2012).
However, recent simulations (Ciolfi & Rezzolla 2013; Fujisawa & Eriguchi 2013) have
shown that higher fractions Etor/Emag are possible, making a more extensive survey of
these equilibria relevant. Studying properties of barotropic equilibria could be also rele-
vant considering the scenario in which neutron stars would reach an effectively barotropic
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state after overcoming stable stratification by means of direct and inverse β−decays and
ambipolar diffusion acting on timescales shorter than their lifetime (Hoyos et al. 2008;
Reisenegger 2009; Reisenegger, these Proceedings; Mitchell et al., these Proceedings).

This ongoing research is focused on obtaining a wide range of numerical barotropic
equilibria, paying attention to their main properties. In addition, these results can be
considered as a starting point to study in more detail whether magnetic fields in a wide
range of barotropic equilibria are stable or not (Mitchell et al., these Proceedings).

2. Barotropic equilibria: the Grad-Shafranov equation
Throughout this work, we take the approach of considering a magnetic star within

the context of ideal MHD, that is, a perfectly conducting fluid in dynamical equilibrium
described by the Euler equation,

∇P + ρ∇Φ =
1
c
J × B, (2.1)

where the right-side is the Lorentz force per unit volume. All known stars have a very
large fluid pressure P (P ∼ GM 2/R4 , M being the mass and R the radius), to magnetic
pressure B2/8π ratio (B being an estimation of the maximum magnetic field strength),
8πP/B2 � 106 (Reisenegger 2009), which suggests that magnetic fields do not play an
important role in the structure of these stars, so at first approximation we can consider
the star as spherical, with negligible deformations due to magnetic forces. In addition,
if axial symmetry is assumed, and spherical coordinates (r, θ, φ) are used to describe
the model, all scalar quantities are independent of the azimuthal coordinate, and the
magnetic field may be expressed as the sum of a poloidal (meridional) component, and
a toroidal (azimuthal) component, each determined by a single scalar function,

B = Bpol + Btor = ∇α(r, θ) × ∇φ + β(r, θ)∇φ, (2.2)

which turn out to be constant along their respective field lines (Chandrasekhar & Pren-
dergast 1956). Under this symmetry, the azimuthal component of the magnetic force
per unit volume must vanish, which implies a functional relation between these scalar
functions, β(r, θ) = β (α(r, θ)). In this way, both α and β are constant along field lines
and, if a vacuum is assumed outside the star, the toroidal field may lie only in regions
where the poloidal field lines close within the star. On the other hand, if a barotropic
equation of state, P = P (ρ), is assumed, the Lorentz force per unit mass must be the
gradient of some arbitrary function χ(r, θ), which turns out to be a function of α as
well, χ(r, θ) = χ (α(r, θ)). From this, a non-linear elliptic partial differential equation
is found to be the master equation governing barotropic MHD equilibria, the so-called
Grad-Shafranov (GS) equation,

∂2α

∂r2 +
sin θ

r2

∂

∂θ

(
1

sin θ

∂α

∂θ

)
+ ββ′ + r2 sin2 θρχ′ = 0 (2.3)

(Grad & Rubin 1958, Shafranov 1966), where primes stand for derivatives with respect
to the argument, and both β = β(α) and χ = χ(α) are arbitrary functions, whose form
may be chosen depending on the particular magnetic configuration of interest. Under the
assumption of weak magnetic field discussed in this section, the density ρ appearing in
the GS equation may be replaced by its non-magnetic background counterpart, ρ = ρ(r),
such that we solve for the magnetic functions for a given density profile, instead of
considering the more difficult task of solving self-consistently for the magnetic functions
and for the fluid quantities, as done, e. g., by Lander & Jones (2012).
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Figure 1. Numerical equilibria found using our code. In both cases, we used β(α) as given in
Eq. (3.1), together with χ(α) = α. Left: s = 10, right: s = 45. The dashed line corresponds
to the stellar surface. Poloidal field lines are shown in solid black curves while the color map
accounts for (r sin θBφ ).

3. Numerical solutions and discussion
In order to obtain suitable barotropic equilibria, we have developed a finite-difference

code to solve numerically the GS equation inside the star, for arbitrary choices of β(α),
χ(α) and density profile ρ(r). Outside the star, the function α(r, θ) may be written as
a superposition of multipoles, corresponding to the general solution of the GS equation
with both β = 0 and ρ = 0. Solutions found inside the star are matched to the ex-
terior expansion by demanding continuity of the magnetic field components, in order
to avoid surface currents. After testing our code, we studied the so-called twisted-torus
configuration

β(α) =

{
s(α − αs)1.1 αs � α

0 α < αs,
(3.1)

where s is a free parameter accounting for the relative strength between the poloidal and
the toroidal component. Here, αs ≡ α(R, π/2) stands for the value of α along the longest
poloidal field line closing within the star, R being the stellar radius, so the toroidal
field lies in the region α(r, θ) � αs only, as seen in Figure 1. This choice of β(α), along
with χ(α) = α, allows us to compare with previous works which have taken these same
functional forms. For the simple, but reasonably realistic profile ρ(r) = ρc(1 − r2/R2),
we explored the behavior of such configurations by changing the parameter s. Figure 2
shows the magnetic field profile for two different values of s: the larger the value of s,
the stronger the toroidal field becomes, although the region where the toroidal field lies
shrinks, as shown in Figure 1.

In all cases, the energy stored in the toroidal component is only a few percent of the
total magnetic energy, even when the toroidal field strength is comparable to the poloidal
one, in agreement with previous works. Furthermore, this ratio seems to be bounded by
a certain maximum value as seen in Figure 3 (left panel), above which the ratio would
decrease, as already pointed out in the literature (Lander & Jones 2009, Ciolfi et al. 2009,
Fujisawa et al. 2012), although such a behavior for large s and density profile considered
here is not reached in our calculations. It is interesting to see, however, that we do reach
a maximum in the ratio of toroidal to poloidal flux (Figure 3, right panel).
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Figure 2. Magnetic field profiles for equilibria in Fig. 1. Left: s = 10, with Etor/Em ag ≈ 0.5%.
Right: s = 45, with Etor/Em ag ≈ 3.5%.

Figure 3. Toroidal-to-total magnetic energy (left) and maximum toroidal-to-maximum
poloidal flux (right) ratios as functions of s, using ρ(r) = ρc (1 − r2/R2 ) and χ′ = 1.
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