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Abstract
Sonar systems are frequently used to classify objects at a distance by using the structure of the echoes of acoustic
waves as a proxy for the object’s shape and composition. Traditional synthetic aperture processing is highly effec-
tive in solving classification problems when the conditions are favourable but relies on accurate knowledge of the
sensor’s trajectory relative to the object being measured. This article provides several new theoretical tools that
decouple object classification performance from trajectory estimation in synthetic aperture sonar processing. The
key insight is that decoupling the trajectory from classification-relevant information involves factoring a function
into the composition of two functions. The article presents several new general topological invariants for smooth
functions based on their factorisations over function composition. These invariants specialise to the case when a
sonar platform trajectory is deformed by a non-small perturbation. The mathematical results exhibited in this arti-
cle apply well beyond sonar classification problems. This article is written in a way that supports full mathematical
generality.

1. Introduction

Sonar systems are frequently used to classify objects at a distance by using the structure of the echoes
of acoustic waves as a proxy for the object’s shape and composition. To obtain good classification accu-
racy, many sonar systems use a moving sensor platform to produce a synthetic aperture. As the sensor
platform’s position changes, one can measure how the echoes change, and from these changes deduce
properties of the object.

Traditional synthetic aperture processing is highly effective in solving classification problems when
the conditions are favourable but relies on accurate knowledge of the sensor’s trajectory relative to
the object being measured. Any deviations from the expected trajectory degrade the classification
performance of the overall system. Because of this, there is a well-established practice of motion com-
pensation and autofocus algorithms that iteratively apply corrections to the estimated trajectory in hopes
of removing these deviations.

While the autofocus approach works well for small perturbations of the expected trajectory, it suffers
when the initial guess of the trajectory is bad. It is natural to ask, ‘can one obtain good classification
accuracy from synthetic aperture sonar images without a good trajectory estimate?’ Given that the sig-
natures (the ensemble of all received echoes) of different targets appear to have quite different geometry
and topology [49], classification may be possible even given inaccurate trajectory information.

This article provides several new theoretical tools that decouple object classification performance
from trajectory estimation in synthetic aperture sonar processing. It does so by defining several new

C© The Author(s), 2022. Published by Cambridge University Press. This is an Open Access article, distributed under the terms of the Creative
Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution and reproduction,
provided the original article is properly cited.

https://doi.org/10.1017/S0956792522000365 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792522000365
https://orcid.org/0000-0003-0766-3301
mailto:michaelr@american.edu
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/S0956792522000365&domain=pdf
https://doi.org/10.1017/S0956792522000365


2 M. Robinson

general topological invariants for smooth functions, which specialise to the case when a sonar platform’s
trajectory is deformed by a non-small perturbation.

Although this article is theoretical in nature and does not seek to provide ready-to-use processing
algorithms, the decoupling of trajectory from classification performance means that good trajectory
information is not necessary for sonar object classification. Indeed, Proposition 11 establishes that the
image of the sonar signature – the space of pulse echoes without regard to the order in which they arrive
– is the governing factor behind the good classification performance observed in [49].

The mathematical results exhibited in this article apply well beyond sonar classification problems,
so this article is written in a way that supports full mathematical generality. The key insight is that
decoupling the trajectory from classification-relevant information involves factoring a function into the
composition of two functions. Generalising this insight, for a smooth function u we define two categories
QuasiP(u) and Const(u) that describe classes of factorisations of u by function composition under
certain constraints. While the constraints were motivated by the needs of sonar classification, they are
sufficiently weak to permit wide usage of these categories.

The plan for the paper is as follows. In the next few subsections, we discuss the literature for syn-
thetic aperture sonar target classification (Section 1.1), which provides context for the contributions of
this article (Section 1.2). In Section 2, we introduce the concept of circular synthetic aperture sonar
(CSAS) and the specific classification problem to be addressed in the rest of the article. CSAS is widely
used to collect information about underwater objects. The interested reader who is unfamiliar with the
basics can consult one of the many papers on the topic, for instance [22, 39, 44]. In Section 3, we intro-
duce the factorisation categories QuasiP(u) and Const(u) and prove several fundamental results about
them, including a complete characterisation of QuasiP(u) for CSAS. Although this complete charac-
terisation is of limited utility for Const(u), we show that a pair of views of the same target establishes
an equivalence between functions using common factors. We develop this idea in Section 4 by defining
a category CRSE(u1, u2) of factorisation equivalences and ultimately prove a characterisation theorem
for this category. The theoretical machinery we have constructed is used to revisit the motivating CSAS
example in Sections 3.3 and 4.4. Finally, we provide a brief conclusion in Section 5.

1.1. Historical context

The process of forming an image from synthetic aperture sonar data uses a bank of spatial matched
filters (pixels) over the region where a sonar target is located. Because sonar targets tend to be spatially
localised, high-resolution image-based methods are highly effective at rejecting background clutter.
Image-based methods generally require accurate knowledge of the sensor platform’s trajectory rela-
tive to the object being measured, careful control of the sonar waveform, and intimate knowledge of
the clutter environment. Hundreds of papers attest to the effectiveness of image-based methods when
the conditions are favourable. As a brief sample, the reader is encouraged to consult [6, 7, 8, 9, 11, 17,
23, 26, 34], though this list is not exhaustive. When information about the sensor platform trajectory is
not sufficiently accurate, the recovered energy spreads across neighbouring filters in the image (pixels),
leading to blurring. Theoretically, blurring is a manifestation of the instability of the Fourier transform
when the domain is deformed [30]. Classification becomes difficult if one is forced to start with blurred
images.

Since the sensor platform has inertial mass, it is often possible to determine compensations to the
filters to account for its motion. When motion compensations are applied, this results in a more focused
image [15]. Moreover, when the trajectory is known to be close to a given trajectory – a circular orbit
around the target for instance – then motion compensation can improve object classification [38]. The
impacts of motion blurring on classification with and without compensation have been discussed in the
literature, for instance [4, 16]. Specific considerations related to motion effects in CSAS systems have
also been discussed [38, 40].

Because the scattering transform is Lipschitz continuous relative to small deformations [1, 5, 37], it
can be used to mitigate small, arbitrary trajectory and propagation distortions in sonar signals [50]. The
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scattering transform works by decomposing the signal via local convolutions with wavelets or another
frame of localised functions. When the distortions are small, the fact that sonar signals of interest tend
to be sparse in this basis can be used to isolate the target’s response from the distortions. Robust stability
results for many frames commonly in use have been established [54]. However, the scattering transform
suffers from the ‘curse of dimensionality’, which means that it can be rather difficult to determine a
priori which subspace constitutes the target response. Consequently, the scattering transform can be
computationally expensive. This happens because the scattering transform explicitly characterises the
distinction between target responses and trajectory distortions. Since the present article explores this
distinction implicitly, it provides a perspective on sonar data that is complementary to the scattering
transform and may ultimately require less computation.

The fact that classification can sometimes succeed with poor trajectory information suggests that
non-image-based methods could succeed as well. Statistical machine learning methods applied to the
raw sonar echoes are a natural choice. Indeed, machine learning has been successfully applied to sonar
classification problems over the past three decades, going back to the beginnings of the subject [2, 3, 10,
13, 20, 25, 32, 56]. Unfortunately, machine learning requires large and diverse training data sets, which
can be expensive to obtain. The implication for sonar classification is that the data need to contain
not only the targets of interest, but also enough diversity to capture physical effects due to shadows,
background structure and pose [55].

A different perspective is to take the space of echoes arising from a given target as a feature in the
abstract, rather than as a point in some high-dimensional space. Comparing such abstract spaces using
homotopy equivalence is the dominant technique in the mathematical discipline of algebraic topology.
By construction, homotopy equivalence is automatically robust to deformations, so it might seem to be
ideally suited for sonar classification problems. Unfortunately homotopy equivalence is neither easily
testable nor robust to statistical noise. However, a regularised version of homotopy equivalence, called
persistent homology, is algorithmically computable and is noise robust. The use of persistent homology
to study data sets forms the basis of topological data analysis (TDA), for which a standard classification
pipeline has emerged [12, 14, 33].

TDA can be applied to sonar classification by comparing the space of echoes arising from an unknown
target with a dictionary of spaces for known targets. The traditional TDA pipeline does not consider the
ordering of the pulses, since persistent homology is only sensitive to the relationship between similar
echoes. Those pulses that are transmitted from nearby locations will be near one another in the space
of echoes and so also will those pulses arising from symmetries in the target. While most sonar targets
are unlikely to be actually symmetric, strong spatial Fourier modes can yield the same effect. There is a
large literature on signals with strong Fourier modes, which are called almost periodic functions.

Unfortunately, homotopy equivalence is not the proper equivalence for sonar targets. Since the stan-
dard TDA pipeline cannot discriminate between spaces that are homotopy equivalent, TDA is not strictly
applicable to sonar echoes. Specifically, homotopy equivalence is both too weak and too strong! As a
brief example of the inappropriateness of homotopy equivalence in sonar, it has been shown that homo-
topy equivalence spuriously detects the direction that the sensor platform orbits a target in CSAS [45].
Conversely, homotopy equivalence fails to discriminate between the echoes arising from a spherical
target and an extended one, such as a rod, since both have contractible spaces of echoes. Nevertheless,
persistent homology can yield an effective classifier for sonar targets [49]. Moreover, justification for
using the space of echoes is established by Proposition 11.

To obtain a better equivalence, one needs to supply information about the ordering of the pulses. In
this case, the object to be classified is not merely the space of echoes, but a function from the trajectory
to the space of echoes. There are some TDA tools that look at such functions [19, 27, 52]; these are
special cases of what this article presents in Section 3.2.

This article relies on the idea of factoring functions through various manifolds. For the practical
usage of factorisations in CSAS, one must factor through a circle. Such factorisations through circles
have recently become practical through the moniker of finding circular coordinates for data sets using
persistent cohomology. The interested reader is referred to [18, 36, 42, 43, 53].
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At a high level, this article seeks to explore a kind of signal processing that is aware of the underlying
topology of the space of echoes. Several kinds of filters that are sensitive to topological features are
known [21, 46, 47, 48], though it is clear that the works referenced do not exhaust the possibilities. The
results of this article could provide a basis for extending these filters, by supplying the base topological
data upon which such filters are built.

1.2. Contributions

From a mathematical perspective, the focus of this article is to classify smooth maps u : M → N based
on factorisations of u into the composition of two functions. The article defines two new differential
topological invariants for a smooth map u that are distinct from its homotopy class. These invariants
are the categories Const(u) and QuasiP(u) of factorisations of u (Definition 2). In addition to the fac-
torisation categories for a single map, the article also defines a new differential topological invariant
CRSE(u1, u2) for a pair of smooth maps u1, u2 that relates their respective factorisations to each other
(Definition 8). Each isomorphism class of CRSE(u1, u2) identifies an individual sonar target that could
have yielded both the responses u1 and u2 under different conditions.

From a practical perspective, the three new invariants allow one to deduce whether changes in
sensor configuration or trajectory might be able to confound two objects within a CSAS collection.
(Unfortunately, we have not discovered an efficient way to compute these invariants in all cases, though
QuasiP(u) can be computed algorithmically in the case of CSAS using Theorem 2.)

As already noted, [49] shows that persistent homology can be used to classify targets without image
formation. But why should a topological invariant (homology) be useful in classification? Proposition 11
establishes a sufficient condition for homology of the space of echoes to be an effective solution.
Moreover, Theorem 2 provides a more complete answer to this question by establishing that the
QuasiP(u) of a CSAS signature is determined by the fundamental group (a topological property), and
this is preserved if the trajectory is deformed. This is still only a partial answer for two reasons: (1) not
only topology but also geometry impacts persistent homology, and (2) many realistic targets have CSAS
signatures with trivial QuasiP(u), limiting its usefulness. Although Const(u) does not share this second
limitation, we have not succeeded in discovering an algorithmically computable characterisation of it.

This article establishes the following new results:

(1) The factorisation categories are functorial (Propositions 8, 9, and 16), changing the domain or
codomain induces functors on the factorisation categories;

(2) The factorisation categories are related to, but distinct from, homotopy classes (Corollary 3 and
Proposition 14);

(3) When maps are related via a diffeomorphism, their respective categories are isomorphic
(Theorem 1) and the image of CRSE in them is maximal (Theorem 4);

(4) When the same target appears in multiple settings, the factorisation categories of the resulting
signatures have equivalent subcategories based on the target (Theorems 3 and 5); and

(5) When the domain M is a circle S1 (directly relevant to CSAS), the quasiperiodic factorisation
category is completely classified by subgroups of the fundamental group of N (Theorem 2).

2. Motivating example: CSAS

Consider a CSAS collection in which the sonar platform orbits a fixed target, as shown in Figure 1. For
the purposes of this article, suppose that the sensor’s standoff range R is constant, and that its look angle
θ increases monotonically (but not necessarily linearly) from 0◦ to 360◦ over the length of the collection.
If the target’s scatterers are sufficiently reflective when compared to the receiver noise and clutter in the
scene, then determining the ranges to them is not a difficult problem. This fact means that we may safely
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Figure 1. General CSAS collection geometry wherein the sensor platform orbits a target, where one
scatterer’s position has been highlighted.

assume that the standoff range R is fixed and constant without impacting the realism of the model. If
the actual range varies, this may be compensated for by applying a θ -dependent modulation to the raw
echoes.

We will follow mathematical tradition and denote the set of angles by the circle S1 so that θ ∈ S1

specifies the look angle. The sensor emits sonar pulses as it moves along its trajectory and records their
echoes from the target. We will neglect receive and transmit filter effects for this article to keep the
exposition simple, though filters can be incorporated easily using the framework the article develops.
Let us therefore assume that the transmitted pulses are impulses, and the sensor’s receiver covers a wide
band of frequencies.

Given the standoff range R and a point scatterer located at a distance rp to target centre, with an angle
αp relative to the the θ = 0 axis, the quantity rp cos(αp − θ ) is the component of the vector from the
scatterer to the sensor along the look direction. (See Figure 1.) Likewise, rp sin(αp − θ ) is the component
of the vector from the scatterer to the sensor that is normal to the look direction. Therefore, the distance
from the scatterer to the sensor is

x =
√(

rp sin(αp − θ )
)2 + (

R + rp cos(αp − θ )
)2

,

If the signal wavelength is 2π f /c, where f is the frequency of the sonar pulse and c is its phase
speed, then the amount of phase delay along a path of length x is 2π fx/c. This is generally expressed as
a complex factor exp (−2π ifx/c). If the standoff range R is large, we can approximate the phase delay
from the scatterer to the sensor via

exp(−2π ifx/c) = exp

(
−2π if

c

√(
rp sin(αp − θ )

)2 + (
R + rp cos(αp − θ )

)2
)

≈ exp

(
−2π if

c
rp cos(αp − θ )

)
exp

(
−2π if

c
R

)
.

The nuisance phase exp
(− 2π if

c
R
)

is traditionally absorbed into a multiplicative factor dependent on the
scatterer’s material properties called its complex reflectivity ap.

Assembling these pieces, the following equation models the signature s, which describes the
received echoes as a function of the look angle θ and received frequency f received from a set of P
point scatterers,

s(θ , f ) =
P∑

p=1

ap exp
(− 2π if

c
rp cos(αp − θ )

)
√(

rp sin(αp − θ )
)2 + (

R + rp cos(αp − θ )
)2

. (2.1)
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(a) (b)

Figure 2. Two simple composite scatterers (a) one with 2-fold symmetry and (b) one with 3-fold
symmetry.

The denominator in each term captures the fact that the echo from a given scatterer spreads out, making
its received signal strength diminish as its distance to the sensor increases.

This is, of course, a rather simplified model. Substantially more realistic models (not just superposi-
tions of point scatterers) are supported by the framework developed in the latter sections of this article.
Although we use a single look angle θ in this section, this is only to ensure that the signals can be rep-
resented ‘on paper’ as images. The framework supports ‘look angles’ that can be represented as points
on an arbitrary connected smooth manifold.

Equation (2.1) sets up a correspondence between the look angle θ and the received echo as a function
of pulse frequency f . If the sensor platform’s angular position with respect to the target is not known
accurately, this function becomes the composition of s with an unknown function of slow time t. That
is, θ = φ(t), where t is the time of pulse transmission. Due to the inertia of the sensor platform, we may
assume that the function φ is smooth.

If φ is an affine function, then traditional imaging methods (for instance, polar format or back pro-
jection [41]) provide a complete solution to the problem of determining the location and reflectivity of
each scatterer. These methods do not work at all if φ is an unknown smooth function that deviates far
from an affine function.

To fix ideas, let us restrict attention to the case where the point scatterers in this target model can
be grouped into two subsets: one subset has a 180◦ rotational symmetry, while the other subset has a
120◦ rotational symmetry. We will usually refer to these symmetries as a 2-fold symmetry and a 3-fold
symmetry, respectively. One easy way that this may happen is if the first subset consists of exactly two
point scatterers, placed opposite the target centre, as in Figure 2(a). Similarly, the other subset could be
realised as a subset of exactly three point scatterers, evenly spaced around a circle concentric with the
target centre, as in Figure 2(b). It is immediately clear that there are other possible ways to realise these
kinds of symmetries using more point scatterers, and while this will be developed more completely in
Proposition 5 (and following), these two simplistic models will suffice for the moment. We will call
these subsets of the set of point scatterers composite scatterers for brevity. Notice that each composite
scatterer additionally has a reference rotation angle α with respect to the θ = 0 axis. The two composite
scatterers will typically have different reference rotation angles, which means that the superposition of
the two composite scatterers may not have any rotational symmetries at all.

2.1. A composite scatterer model: Quasiperiodic factorisations

The general formula (2.1) can be specialised to two subsets of scatterers, one with P-fold symmetry and
one with Q-fold symmetry. If we assume that the composite scatterer with P-fold symmetry consists of
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(a) (b)

Figure 3. Signatures of the composite scatterers shown in Figure 2 (a) has 2-fold symmetry and (b) has
3-fold symmetry.

exactly P points, then the signature reduces to a rather specific form:

sP(θ , f ; α) = a
P∑

p=1

exp
(− 2π if

c
r cos

(
2πp

P
+ α− θ

))
√(

r sin
(

2πp
P

+ α − θ
))2 + (

R + r cos
(

2πp
P

+ α− θ
))2

, (2.2)

in which all of the point scatterers have the same complex reflectivity a = ap and the same distance to
target center r = rp. Because cos and sin are 2π -periodic functions, and the sum consists of P evenly
spaced terms, it follows that s(θ + (2π/P), f ) = s(θ , f ) for all look angles θ and frequencies f .

Example signatures of the two scatterers shown in Figure 2 are shown in Figure 3. In the plots of
the signatures, the look angle θ is shown in the vertical dimension and the frequency f is shown on
the horizontal dimension. Notice that both of the signatures repeat vertically, with the 2-fold symmetric
target showing two copies and the 3-fold symmetric target showing three copies. It is therefore obvious
that the symmetry class can be used to coarsely discriminate between targets, as the two signatures
shown in Figure 3 are easy to distinguish from each other.

Concretely, the signatures corresponding to two targets with 3-fold symmetry will repeat three times
in look angle, like Figure 3(b). The structure of the signature within one period of this repetition – within
a horizontal band 120◦ tall in Figure 3(b) – can be used to distinguish two different targets with 3-fold
symmetry. Generalising this idea, two targets with the same symmetry class can be discriminated by
comparing their fundamental domains.

If the trajectory of the sensor is unevenly traversed so that the look angle does not vary linearly,
then the periodicity visible in Figure 3 is destroyed. In this case, sonar engineers often call the distorted
angular coordinate slow time, since it measures the time as the sensor moves along its trajectory. (In like
manner, fast time is often used for the time within a pulse, which is a distorted version of the distance from
the sensor to the target.) For instance, Figure 4 shows two possible signatures after a smooth trajectory
distortion has been applied, though only one complete orbit around the target has been traversed. To
relate the vertical axes in the plots shown in Figure 4 to those of Figure 3, one must transform slow time
t to look angle θ by integrating the sensor’s angular velocity:

θ = φ(t) =
∫ t

0

φ ′(t)dt.

In order to do this, one must have a good measurement of the angular velocity. In practice, this is often
difficult.

Although Figures 3(b) and 4(a) are collections of echoes from the same composite scatterer and
differ only by the application of a distortion φ, they are quite different as functions. On the other hand,
no trajectory distortion of Figure 4(b) can be applied to transform it into any of the others because its
underlying symmetry class (5-fold symmetry) is different.
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(a) (b)

Figure 4. Signatures of the composite scatterers with trajectory distortions over a single orbit of the
target; after removing distortions (a) has 3-fold symmetry and (b) has 5-fold symmetry.

This article aims to make the intuitive ideas of ‘removing trajectory distortions’ precise, and develops
the proper notion of ‘signatures equivalent up to trajectory distortions’. The main idea is to realise
that the signatures shown in Figure 3 can act as representatives of signature equivalence classes and to
consider the properties arising from trajectory distortions. Mathematically, decoupling trajectory effects
from target effects requires that we consider the process of factoring functions via composition.

As a preview, Theorem 2 characterises factorisations of functions with circular domains. Intuitively,
it says that one may distinguish the equivalence classes of signatures by their winding numbers. In other
words, even though the rows of Figure 4(a) do not traverse look angles evenly, they repeat three times.
This differs from Figure 4(b), which makes five repetitions, and so the signatures must be different. On
the other hand, the signature in Figure 3(b) also makes three repetitions, so there are grounds for possible
equivalence with Figure 4(a). Moreover, if we are considering only one frequency (column in Figures 3
and 4), then Corollary 2 indicates that this is all that can be determined. We emphasise that none of
these conclusions are surprising in the case that the trajectory is evenly traversed – the trajectory has
been motion compensated to look angle – but we reiterate that ensuring trajectories are evenly traversed
can be quite difficult in practice.

2.2. Two composite scatterers: Constant rank factorisations

For a target formed as the superposition of two composite scatterers, Proposition 5 shows that the signa-
ture traces out a torus knot, a closed path on the surface of a torus. This remains true if there are trajectory
distortions. As a result, Theorem 2 states that such signatures can be classified by the topological type
of the corresponding torus knot. Torus knots are classified by a pair of integer winding numbers (P,Q),
which correspond to the symmetry classes of the composite scatterers.

Again using the look angle θ directly to fix ideas, we can construct the superposition of both subsets
of scatterers, a P-fold symmetric subset and a Q-fold symmetric subset. This is done by taking a sum1

of the two composite scatterers:

s(θ , f ; α, α′) = sP(θ , f ; α) + sQ(θ , f ; α′). (2.3)

It is sometimes helpful to consider the relative angle β = α′ − α. Figure 5 shows the configuration of
point scatterers if P = 2, Q = 3, and β = 28◦.

1It will become apparent that equation (2.3) satisfies the hypotheses of Proposition 5. Given this fact, s has a constant rank
factorisation in which the phase function is a torus knot.
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Figure 5. Combined scatterer with P = 2, Q = 3, and relative angle β = 28◦ shown.

Figure 6. A typical signature of the sum of the two scatters shown in Figure 5, where P = 2, Q = 3, and
the relative angle is β = 28◦.

Since the θ = 0 axis was essentially arbitrary, it is sometimes helpful to take α = 0, resulting in the
formula:

s(θ , f ; 0, β) = a
P∑

p=1

exp
(− 2π if

c
r cos

(
2πp

P
− θ

))
√(

r sin
(

2πp
P

− θ
))2 + (

R + r cos
(

2πp
P

− θ
))2

+a′
Q∑

q=1

exp
(
− 2π if

c
r′ cos

(
2πq
Q

+ β − θ
))

√(
r′ sin

(
2πq
Q

+ β − θ
))2 +

(
R + r′ cos

(
2πq
Q

+ β − θ
))2

.

For simplicity, let us take a = a′ and r = r′ in what follows in this section. The resulting signature is
shown in Figure 6.

Notice that superposition of these particular two subsets (Figure 5) is not quite 2-fold symmetric itself,
because 28◦ + 240◦ = 268◦ �= 270◦. It would be 2-fold symmetric if the relative angle were to be chosen
as β = 30◦, and there are other possible choices of relative angle resulting in a 2-fold symmetric target.
The effect of this slight asymmetry is visible in Figure 6, where it makes the signature approximately
repeat vertically.

After inspecting equation (2.2), it is clear that holding θ fixed and varying α results in the same
information as varying θ while holding α fixed. With two reference angles in equation (2.3), it is more
convenient to hold the look angle θ fixed and vary the reference angles instead. If we hold the look angle
θ and frequency f fixed, while varying the reference angles α and α′ arbitrarily, we obtain a somewhat
different perspective of the signature, shown for two different frequencies in Figure 7.

The benefit of this perspective is that all possible relative angles β are represented. The locus of
points in Figure 7 with a fixed relative angle β = α′ − α is a line with slope of 1. The relative angle β
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(a) (b)

Figure 7. Response as a function of scatterer angles at (a) 300 Hz and (b) 600 Hz.

(a) (b)

Figure 8. Extracted single-frequency response with a constant relative angle (28◦) between scatterers
at 300 Hz.

determines the intercept of the line. For instance, if β = 28◦, Figure 8 shows how the signature at 300
Hz is obtained by following such a trajectory.

The plots shown in Figures 7(a)–(b) and 8(a) are really on the surface of a torus in virtue of
Proposition 5, since both the horizontal and vertical axes measure angles. The trajectory shown in
Figure 8(a) for a relative angle β = 28◦ eventually returns to its starting point (at the origin), after mak-
ing two complete horizontal circuits and three complete vertical circuits in Figure 8(a). The trajectory
is therefore an example of a (2, 3) torus knot, as is immediately apparent when drawn on the surface of
an embedded torus in Figure 9(a). The signature is therefore best thought of as a function on the surface
of the torus, since it too is periodic in both reference angles. If we consider a different frequency, say
600 Hz, then the torus knot trajectory is unchanged, but the underlying function on the surface of the
torus changes, as shown in Figure 9(b). Considering all frequencies f is theoretically (and practically)
valuable but is difficult to draw.

The functions on the surface of the torus in Figure 9 allow us to go beyond merely classifying sig-
natures by torus knot type. If two targets have the same torus knot type, they can still be distinguished
by differences between their corresponding functions on the torus. If we switch to a different target, the
torus functions will change, probably substantially, and will no longer assure the same kind of equiv-
alence. Therefore, the basic idea given two signatures is to first determine if they have the same torus
knot type. If not, they correspond to different targets. If they do have the same torus knot type, then one
would hope to simulate the functions on the torus and argue based on their specifics.

The mathematical invariants explored in this article characterise (theoretically) how close the two
signatures are by parameterising all possible functions on the torus, and on all other manifolds besides.
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(a) (b)

Figure 9. Single-frequency response with a constant relative angle (28◦) as a torus knot at (a) 300 Hz,
(b) 600 Hz.

While these invariants are emphatically not yet practically computable, their use provides a theoretical
framework for asserting that two targets are distinguishable regardless of trajectory distortions.

The key insight is that distorting the sensor trajectory deflects the knot on the surface of the torus
but cannot change its torus knot type. Effectively, because the knot is constrained to lie on the surface
of the torus, its knot type is ‘locked in place’. This article defines constant rank factorisations to model
trajectory distortions in this case. Moreover, the article defines an equivalence class that classifies these
factorisations. The article presents several tools to characterise the mathematical properties of constant
rank factorisations (Theorems 3 and 5) and presents a complete characterisation (Theorem 2) that applies
to P-fold symmetric targets.

3. Categories of factorisations

We begin by generalising the ideas inherent in Section 2. Given the nature of the sensing problem, the
collected data are measured in a signal space N , which is typically a submanifold of Cn. For instance,
the signal space is Cn in equations (2.1) (2.2), and (2.3) if n distinct frequencies are collected from each
sensor location along the trajectory.

Similarly, the sensor’s configuration (location, time, etc.) is captured by a manifold M. We assume
that a signature of our target is characterised by an idealised representative target model represented
as a smooth map between two spaces U : C → N, and that the sensor trajectory can be modelled by
composing this idealised model with a function φ : M → C, which may contain distortions. We cannot
measure either of these functions, but instead are able to measure their composition u = U ◦ φ. In order
to make any theoretical headway, some assumptions must be placed on the functions φ or U. This article
relies on the idea that the trajectory does not ‘come to a stop’ at any point. This can be modelled formally
by requiring the Jacobian matrix dφ to have a constant rank throughout M.

Definition 1. A smooth map f : M → N is said to be of constant rank if the Jacobian matrix dxf has the
same rank at every point x in M. For brevity, the rank of the Jacobian matrix for a constant rank map
will be called the rank of f.

Constant rank maps have many useful properties that avoid some pathological behaviours of contin-
uous maps. Most importantly, a constant rank map imposes restrictions on the dimension of its domain
and image.
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Proposition 1. [31, Thm. 7.15] Suppose that f : M → N is a smooth map with constant rank:

(1) If f is surjective, then it is a submersion: its rank is equal to the dimension of N,
(2) If f is injective, then it is an immersion: its rank is equal to the dimension of M, and
(3) If f is bijective, then it is a smooth embedding: its rank is equal to the dimension of M, and this is

the same as the dimension of N.

When these special cases are not available, the constant rank assumption still provides bounds on the
dimensions involved.

Proposition 2. Suppose that f : M → N is a smooth map from an m-dimensional manifold to an n-
dimensional manifold, and that f has constant rank k. Then k ≤ m, and the image of f is a k-dimensional
immersed submanifold of N.

Proof. Briefly, this follows by applying [31, Thm 7.13] and [31, Lem. 8.18]. The former asserts that
there are coordinate charts on M and N where f can be written as:

f (x1, . . . , xk, xk+1, . . . , xm) = (x1, . . . , xk, 0, . . . , 0).

Observe that k ≤ m is a consequence of this fact. One then notes that the chart in question on N is a
submanifold chart for (a portion of) the image of f . Restricting the domain to the k-dimensional sub-
manifold S ⊆ M whose coordinate charts select the first k coordinates in the formula above, the result is
clearly an immersion since f |S is injective on each of the relevant charts. At this point, [31, Lem. 8.18]
asserts that f |S is locally an embedding, resulting in the dimension k for the image.

Corollary 1. A constant rank map cannot be a surjection from a lower-dimensional manifold to a
higher-dimensional manifold.

In particular, if the domain is S1 as is the case for CSAS, the rank of the Jacobian cannot exceed 1.

Definition 2. A constant rank factorisation of a smooth map u : M → N between two finite-dimensional
smooth manifolds is a factorisation u = U ◦ φ in which φ is a smooth map of constant rank. If we write
φ : M → C and U : C → N for a constant rank factorisation, we call C the phase space, φ the phase map,
and U the signature map. We will often write a constant rank factorisation u = U ◦ φ as an ordered pair
(φ, U) when the function u is understood from context. We will permit the phase space C to be a smooth
metrizable manifold modelled on separable Hilbert space of any dimension,2 including infinity.

A morphism C : (φ1, U1) → (φ2, U2) between two constant rank factorisations of a single map u : M →
N consists of a commuting diagram3

where c : C1 → C2 is a smooth map, which we call the component map. Because the diagram commutes,
this means that φ2 = c ◦ φ1 and U1 = U2 ◦ c.

2If C is a finite-dimensional smooth manifold, it is automatically metrizable [31, Prop. 11.26] and modeled on separable Hilbert
space.

3A diagram is said to commute if the functions obtained by composing adjacent arrows depend only on their start and end points
in the diagram. Commutative diagrams are an efficient way to express a collection of functional equations and make frequent
appearances in this article.
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In the CSAS example in Section 2, the path of the sensor defines the manifold M =R. The signal
space is N =C

n where n is the number of frequency samples collected. Finally, the phase space C = S1

is the look angle. As a result, Figures 3 and 6 show examples of three signature maps (U functions). In
contrast, Figure 4 shows two examples of u = U ◦ φ functions.

Objects and morphisms form the building blocks of a category.

Definition 3. [51, Def. 5.1.1.1][24, Sec. 2.3] A category C consists of a collection of objects and mor-
phisms. Each morphism m is associated with an ordered pair of objects (x,y), which is usually written
m : x → y. If m1 : x → y and m2 : y → z are two morphisms, there is a unique morphism called the compo-
sition (m2 ◦ m1) : x → z. Composition is an associative operation so that (m1 ◦ m2) ◦ m3 = m1 ◦ (m2 ◦ m3).
Moreover, for every object x, there is a unique morphism idx : x → x for which idx ◦ m = m and n ◦ idx = n
for any morphisms m : y → x and n : x → z.

Lemma 1. The class of constant rank factorisations of a smooth map u : M → N forms a category
Const(u), where the composition of morphisms of constant rank factorisations consists of composition
of component maps between the phase spaces.

Proof. We take each constant rank factorisation u = U ◦ φ as an object in Const(u).
Using the identity function for the component map, the morphism id(φ,U) : (φ, U) → (φ, U) given by

the diagram

does not change any other morphism when it is composed on the left or the right. For instance, abusing
notation slightly, if m : (φ, U) → (φ ′, U′) is another morphism whose component map is m, then we have
the larger diagram

that defines the composition m ◦ id(φ,U). Evidently the component map of this composition is m = m ◦ idC,
which asserts that on the level of Const(u) morphisms, we have that m = m ◦ id(φ,U). Composition on the
left by id(φ,U) follows similarly.

Suppose that we have three morphisms m1 : (φ1, U1) → (φ2, U2), m2 : (φ2, U2) → (φ3, U3), and
m3 : (φ3, U3) → (φ4, U4). Associativity of composition of these morphisms (m1 ◦ m2) ◦ m3 = m1 ◦ (m2 ◦
m3) follows because the same equation holds for their corresponding component maps.

One general source of constant rank factorisations is quasiperiodic factorisations, which were defined
in several earlier papers.
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Definition 4. [47, 48] A quasiperiodic factorisation of a smooth map u : M → N consists of a fac-
torisation u = U ◦ φ in which φ is a smooth submersion. The category of quasiperiodic factorisations
QuasiP(u) is defined analogously to Const(u), with objects consisting of factorisations and morphisms
given by diagrams of exactly the same form as in Definition 2.

Proposition 3. Every quasiperiodic factorisation is also a constant rank factorisation. Thus, the cat-
egory of quasiperiodic factorisations QuasiP(u) is a subcategory of the category of constant rank
factorisations Const(u).

Proof. Observe that a submersion is necessarily of constant rank.

The trivial factorisation of a smooth map u = u ◦ id arises when the trajectory is not distorted, since
the phase map is simply the identity map. Such a situation is an instance of a general phenomenon,
called an initial object.

Definition 5. [51, Def. 6.1.3.2][24, Sec. 3.5] An object i in a category is called initial if for every object
x there is exactly one morphism i → x.

Both categories QuasiP(u) and Const(u) share an initial object.

Proposition 4. The factorisation of a smooth map u : M → N given by u = u ◦ idM is an initial object
for Const(u) and an initial object for QuasiP(u).

Proof. To establish this, suppose that u = U ◦ φ is another constant rank (or quasiperiodic) factori-
sation. The only way to make the following diagram commute

for some manifold C is to assert that c = φ. Conversely, with c = φ, this diagram always commutes!

Section 2 provides anecdotal evidence that certain sonar collections can be described by torus knots.
This is a general situation that arises whenever two periodic smooth functions are superposed.

A torus knot is a smooth embedding φ : S1 → S1 × S1. That means that φ has a Jacobian map of rank 1
at all points in S1 and is a homeomorphism onto its image [31, Ch. 7]. As a result, a torus knot cannot
have self-intersections. This definition is somewhat more specific than the usual definition of a knot in
the literature, which merely requires continuity. Equivalence classes of torus knots are characterised by
a pair of coprime integers, called the torus knot type [35].

Proposition 5. If u : S1 →C
D is the sum

u(x) = u1(x) + u2(x)

of two non-constant smooth functions, a (2π/m)-periodic function u1, and a (2π/n)-periodic function
u2 for integers m and n, then u has a constant rank factorisation in which the phase function is a torus
knot of type (m,n).

Notice in particular that a torus S1 × S1 is of larger dimension (the dimension is 2) than that of the
circle S1. Therefore, the constant rank factorisation guaranteed by this Proposition is not a quasiperi-
odic factorisation. On the other hand, projecting to either of the two factors S1 × S1 → S1 yields a
quasiperiodic factorisation.
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Proof. Let φ1, φ2 : S1 → S1 be linear maps of degree m and n, respectively, so that

φ1(x) := [mx]2π , and φ2(x) := [nx]2π .

According to [47, Thm. 8], this choice results in the universal quasiperiodic factorisations4 of u1 and u2

provided m and n are coprime. If we define φ : S1 → (S1 × S1) by:

φ(x) := (φ1(x), φ2(x)) = ([mx]2π , [nx]2π )

then, by hypothesis

commutes if we take

U(y, z) := u1(y) + u2(z).

By construction, φ is of constant rank and is also a torus knot of type (m, n).

The categories Const(u) and QuasiP(u) are diffeomorphism invariants.

Theorem 1. Suppose that u1, u2 : M → N are smooth maps and M is a connected manifold. If u2 = u1 ◦ f
where f : M → M is a diffeomorphism, then

(1) Const(u1) and Const(u2) are isomorphic categories, and
(2) QuasiP(u1) and QuasiP(u2) are isomorphic categories.

Proof. Both statements follow from reasoning about the following commutative diagram

for an arbitrary constant rank (or quasiperiodic factorisation) u1 = U ◦ φ. Evidently this implies that
u2 = U ◦ φ ◦ f is a factorisation of the same type, since diffeomorphisms are of locally constant rank
and we assumed that M is connected. This provides for a bijection on the objects of the two categories
under discussion. Since this also means that the factorisations of u1 and u2 share the space C, there is
no further transformation required on morphisms to establish the isomorphism.

A given smooth map u often has many quasiperiodic factorisations, though there is a ‘simplest’. This
notion can be formalised by the dual notion of an initial object, namely a final object. A final object f in
a category is one for which every other object x has a unqiue morphism x → f . In Const(u), morphisms
may only be unique up to composition with a diffeomorphism.

The ‘simplest’ quasiperiodic factorisation is the one given by the final object of QuasiP(u). That
these final objects always exist is suggested by the construction in [47, Thm. 5].

Proposition 6. The category of quasiperiodic factorisations QuasiP(u) of a smooth map u : M → N
has final objects.

In [47], these are called universal quasiperiodic factorisations.

Proof. The construction in [47, Thm. 5] produces a factorisation u = U ◦ φ with phase space C in
which C is a particular quotient of the disjoint union of all phase spaces for quasiperiodic factorisations.
That is,

4As will be discussed in Proposition 6, these are also final objects in QuasiP(u1) and QuasiP(u2).
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C =
(⊔

α

Cα

)
/∼,

where α ranges over all quasiperiodic factorisations. The equivalence relation ∼ is defined by x1 ∼ x2

whenever x1 ∈ C1 and x2 ∈ C2 are points in the phase spaces for two quasiperiodic factorisations u =
U1 ◦ φ1 = U2 ◦ φ2, and there is an x such that x1 = φ1(x) and x2 = φ2(x). Such a C is clearly well defined
as a set. To establish that C is a manifold as well, it suffices to realise that every value in the codomain
of a surjective submersion is a regular value. The preimage of every value is therefore a submanifold of
the domain. Continuity of the phase maps ensures that preimages of open sets around each value in the
codomain are open as well, so the equivalence relation ∼ identifies open sets to each other, preserving
coordinate charts. As a result, C is a manifold of dimension

k = min{rank φ : u = U ◦ φ is a quasiperiodic factorisation}.
This, being a minimum of a set of non-negative integers, not only exists but is attained. (The dimension
is important to keep in mind for Const(u) in Proposition 7.)

It remains to establish that if u = U′ ◦ φ ′ is another quasiperiodic factorisation with phase space C ′,
then there is a unique morphism c : C′ → C making the diagram below commute,

Since C ′ is one of the sets appearing in the disjoint union, there is a smooth map c : C′ ↪→ �Cα → C
formed as the composition of two constant rank maps.

Suppose that there were another choice c′ : C′ → C making the diagram commute. Consider x ∈ C′.
Since φ ′ is surjective by assumption, there is a y ∈ M such that φ ′(y) = x. Since the diagram commutes,
this means that φ(y) = c′(φ ′(y)) = c′(x). Moreover, commutativity for the other morphism implies that
φ(y) = c(φ ′(y)) = c(x). Therefore, we must conclude that c′(x) = c(x), establishing uniqueness of c.

Although final objects in Const(u) must necessarily involve infinite-dimensional phase spaces, they
are actually a bit easier than you might imagine because infinite-dimensional manifolds have simpler
structure than finite-dimensional ones.

Proposition 7. The final object of Const(u) for every smooth map u : M → N between finite-dimensional
manifolds has the same phase space, namely infinite-dimensional separable Hilbert space. Moreover,
the final object’s phase map is an embedding of the phase space of the final object of QuasiP(u) as a
finite-dimensional submanifold into this common phase space.

Proof. Note that the phase map in question is definitely of finite rank – being the same rank as in
QuasiP(u) because every quasiperiodic factorisation is also a constant rank factorisation. To see that
the phase space is correct, suppose that we have any other Const(u) object, a constant rank factorisation
u = U′ ◦ φ ′ with phase space C ′. Restricting the codomain to the image of the phase map φ ′(M), we are
back at a QuasiP(u) factorisation, so we obtain a uniquely determined map into the claimed phase space
on that portion via Proposition 6.

If the factorisation’s phase space C ′ is finite-dimensional, there is no further work to do as the portion
outside the image of φ ′ is finite-dimensional and can be easily embedded in infinite-dimensional Hilbert
space. Otherwise, as a consequence of Henderson’s theorem [29, Cor. 1], the factorisation’s phase space
C ′, being a metrizable infinite-dimensional manifold modeled on separable Hilbert space, embeds as an
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open set in separable infinite-dimensional Hilbert space itself. This establishes the required map into
the final object’s phase space. Because the morphism is an embedding, we have the usual fact that two
embedded copies of the same manifold are diffeomorphic to each other. Therefore, the map is unique
up to a diffeomorphism.

At this point, it likely seems that constant rank factorisations and quasiperiodic factorisations are
rather similar. The key difference between these two concepts is crystallised by the idea of an embed-
ded torus knot u : S1 → (S1)n ⊂R

n+1. Every quasiperiodic factorisation of u will necessarily have a
one-dimensional phase space due to the requirement that the phase map be a surjective submersion.
(Moreover, see Lemma 2 proven a little later in this article.) In contrast, factorisation of u through a
torus (S1)n can be of constant rank. In this way, torus knots are more naturally studied through the
lens of constant rank factorisations. The next example emphasises this difference a bit more starkly by
exhibiting function that is like a torus knot but has no nontrivial quasiperiodic factorisations. The key
idea is to violate the periodicity hypotheses of Proposition 5.

Example 1. The function u : R→R given by:

u(x) := sin x + sin(πx)

has a constant rank factorisation:

where

φ(x) := ([x]2π , [πx]2π) , (3.1)

and

U(y, z) := sin y + sin z,

since the derivative of φ is a constant, hence of constant rank. Since the dimension of R is 1, it follows
that φ cannot be a submersion φ : R→ (S1 × S1) since the codomain is of dimension 2. (The reader is
reminded that although φ looks a bit like a torus knot, it is not, since the domain is R. Moreover, φ is not
surjective, so it does not contradict the dimension bounds provided by the constant rank assumption.)

On the other hand, u has no quasiperiodic factorisation with S1 as the phase space, and so only has
the trivial quasiperiodic factorisation. To see this, recall the trigonometric identity

sin(x + y) cos(x − y) = 1

4i

(
ei(x+y) − e−i(x+y)

) (
ei(x−y) + e−i(x−y)

)

= 1

4i

(
e2ix − e−2ix + e2iy − e−2iy

)

= 1

2
sin(2x) + 1

2
sin(2y).

Thus,

u(x) = 2 sin

((
1 + π

2

)
x

)
cos

((
1 − π

2

)
x

)
.

The supremum of this function is certainly not more than 2, and its infimum is certainly not less than −2.
It is a commonly recognised fact that the image of φ : R→ (

S1 × S1
)

given as Equation (3.1) is dense
in S1 × S1, so this means that the supremum of u is therefore equal to 2 and the infimum is equal to −2.

Now suppose that there was a quasiperiodic factorisation u = V ◦ψ with phase space S1 so that
ψ : R→ S1 and V : S1 →R. Since S1 is compact, V must attain its maximum value, which must be 2,
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and likewise V must attain its minimum value, which must be −2. Therefore, at the maximum, x must
satisfy the equation:

2 = 2 sin

((
1 + π

2

)
x

)
cos

((
1 − π

2

)
x

)
.

This means that (
1 + π

2

)
x =

(
1

2
+ 2n

)
π , and

(
1 − π

2

)
x = 2mπ

for some integers m and n. Therefore,

x = 4mπ

1 − π

so that
1 + 4n

1 + π
= 4m

1 − π
.

Solving for m, we have that

m = 1

4

(
1 − π

1 + π

)
(1 + 4n),

which is a contradiction since that quantity is not rational!

Taken together, Propositions 3 and 7 imply that any final object u = U ◦ φ of QuasiP(u) is an object
of Const(u). One therefore might speculate – in defiance of Proposition 7 – that u would also be a final
object of Const(u) as well. The map in Example 1 is a counterexample to this, however! Specifically,
take an object of Const(u) with a compact phase space (namely S1 × S1). There can be no Const(u)
morphism from this object to the single isomorphism class of QuasiP(u), since the phase space in
that case is not compact; this is precluded by the constant rank assumption since it would violate
Corollary 1.

3.1. Functoriality

The categories Const(u) and QuasiP(u) are natural in the sense that they are transformed functori-
ally by pre- and post-composition of u with other smooth functions. The following Propositions are
modifications of Theorem 1.

Proposition 8. Suppose that u : M → N and f : N → N ′ are smooth maps. The map f induces a covariant
functor QuasiP(u) → QuasiP(f ◦ u) and a covariant functor Const(u) → Const(f ◦ u).

Proof. Suppose u = U ◦ φ is a quasiperiodic or a constant rank factorisation in which C is the phase
space. Then the following diagram commutes

which means that (f ◦ u) = (f ◦ U) ◦ φ is a factorisation of the same type as for u. This transforms the
objects of the categories QuasiP(u) or Const(u).

Morphisms are transformed in much the same way as objects, by composing f on the left, as can be
seen from the commutative diagram:
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Composition of morphisms is completely unchanged by this recipe, as it consists of composition of the
maps on the phase space.

Proposition 9. Suppose that u : M → N is a smooth map. If g : M′ → M is a surjective submersion, then
g induces a covariant functor QuasiP(u) → QuasiP(u ◦ g). Similarly, if g : M′ → M is a constant rank
map, then g induces a covariant functor Const(u) → Const(u ◦ g).

Proof. Suppose u = U ◦ φ is a quasiperiodic factorisation in which C is the phase space. Because g is
assumed to be a surjective submersion, (φ ◦ g) is also a surjective submersion. Therefore, the following
diagram commutes

which means that (u ◦ g) = U ◦ (φ ◦ g) is a quasiperiodic factorisation. Similarly, if u = U ◦ φ is a con-
stant rank factorisation, then under the assumption that g is a constant rank function, then so is (φ ◦ g).
This transforms the objects of the categories QuasiP(u) or Const(u). Morphisms and their composition
follow along mutatis mutandis as in the proof of Proposition 8.

3.2. Functions with circular domains

At present, the most complete characterisation of QuasiP(u) that is known is Theorem 2, which is proven
in this section. Theorem 2 applies when the domain M is the circle S1. This characterisation relies on
the observation that u becomes a loop in N and therefore has a representative [u] in the fundamental
group π1(N).

Example 2. Let us consider the identity map u = idS1 : S1 → S1 and its category QuasiP(idS1 ) of
quasiperiodic factorisations. First of all, its factorisation u = u ◦ u is the final object of QuasiP(u).
While this seems a little trivial, suppose that we had some other quasiperiodic factorisation u = U ◦ φ
with S1 as its phase space. If φ is not injective, this means that U ◦ φ is not injective, which contradicts
its factorisation since u is injective. On the other hand, suppose that φ : S1 → S1 was not surjective. Let
x ∈ S1 be outside the image of φ. Since φ is continuous, there is an open neighbourhood of x outside the
image of φ, which amounts to saying that the image of φ is homeomorphic to a closed interval. Such a
map φ must therefore have critical points and therefore cannot have constant rank. Therefore, φ must
be bijective to participate in a quasiperiodic factorisation of u = U ◦ φ. Since φ is of constant rank, it
is therefore a local diffeomorphism; bijectivity assures that it is a diffeomorphism.

Also, u cannot have R as the phase space of any of its quasiperiodic factorisations. Since S1 is com-
pact, this would imply that the phase map S1 →R has at least one local maximum, which is a critical
point. This violates the constant rank assumption.

On the other hand, with constant rank factorisations, there are many other possible phase spaces.
Perhaps the easiest such is to take the cylinder S1 ×R as the phase space, with φ(x) = (x, 0) and
U(x, y) = x. It is clear that φ is of constant rank (it is 1), and since the second factor in the cylin-
der is ignored, this assures that u = U ◦ φ. This factorisation is not isomorphic to the trivial one in
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Const(u), because that would imply the existence of a smooth, bijective map c : S1 → (S1 ×R) such that
the diagram below commutes

Such is evidently impossible on several grounds, the most damning of which is the classical invariance
of dimension because S1 and S1 ×R are of differing dimension.

The above example illuminates a general principle about quasiperiodic factorisations whose domain
is a circle.

Lemma 2. Every quasiperiodic factorisation of a smooth map u : S1 → N has either S1 or the single-
point space as its phase space.

This does not hold for constant rank factorisations, since the phase map need not be surjective in that
case.

Proof. If u = U ◦ φ is a quasiperiodic factorisation, this means that φ is a surjective submersion.
Therefore, the only options for the phase space are 0- or 1-dimensional. Additionally, because φ is
continuous and S1 is connected and compact, the phase space must also be connected and compact. One
option is evidently the single-point space. Setting this aside, there are only two compact one-dimensional
manifolds (with or without boundary), namely a closed interval or S1. Any smooth map φ from S1 to the
closed interval must have at least one critical point, since the interval can be totally ordered and thus
a maximum value is attained via compactness. The presence of critical points violates the requirement
that φ be a submersion, which leaves S1 as the only possible 1-dimensional phase space.

Recall that since H1(S1) ∼=Z, every continuous map u : S1 → S1 induces a group homomorphism
u∗ : H1(S1) → H1(S1) of the form:

u∗(n) = kn

for some integer k. We call k the degree deg(u) of u.

Lemma 3. (Standard; see [28, Sec. 2.2], for instance) If u, u1, u2 : S1 → S1 are smooth maps such that
u = u2 ◦ u1, then deg(u) = deg(u2)deg(u1).

Proof. Consider the map u∗ : H1(S1) → H1(S1) induced by u on H1(S1). We have that u∗([z]) =
deg(u)[z] where [z] is the generator of H1(S1) ∼=Z. But since homology is functorial, we have that
(u2 ◦ u1)∗([z]) = (u2)∗(u1)∗([z]) = deg(u2)deg(u1)[z].

Another way to see that Lemma 3 is true is to recall that the prototypical map of degree n is zn : C→C

in the complex plane, and composition of this with zm yields (zn)m = zmn.
Taking Lemma 2 to its next logical step, if U ◦ φ is a quasiperiodic factorisation of u : S1 → N,

then φ : S1 → S1 has a well-defined degree deg(φ). A useful consequence of Lemma 3 is that degrees
characterise isomorphism classes of QuasiP(u) up to sign changes in some cases.

Lemma 4. Two quasiperiodic factorisations U1 ◦ φ1 and U2 ◦ φ2 of a smooth map u : S1 → N are
isomorphic in QuasiP(u) if and only if |deg(φ1)| = |deg(φ2)|.
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Proof. Suppose that we have two such factorisations u = U1 ◦ φ1 = U2 ◦ φ2 which correspond to iso-
morphic objects of QuasiP(u). This means that we have a continuous map f such that the diagram
commutes

(3.2)

In particular, this implies that φ2 = f ◦ φ1 and φ1 = f −1 ◦ φ2. In terms of degrees, this means that
deg(φ2) = deg(f )deg(φ1) and deg(φ1) = deg(f −1)deg(φ2). Since all of these degrees must be non-zero
integers, we have to conclude that deg(f ) = deg(f −1) = ±1, namely that |deg(φ1)| = |deg(φ2)|.

Conversely, suppose that we have two quasiperiodic factorisations u = U1 ◦ φ1 = U2 ◦ φ2 with
|deg(φ1)| = |deg(φ2)|. Does this imply the existence of a homeomorphism f such that the diagram in (3.2)
commutes? Yes, the covering space classification theorem [28, Thm 1.38] yields an explicit construction
of such a map f . Thus, the two quasiperiodic factorisations are isomorphic in QuasiP(u).

The above Lemmas lead to the following characterisation of isomorphism classes of objects in
QuasiP(u), at least when the domain of u is a circle.

Theorem 2. If u : S1 → N is a smooth map, then the isomorphism classes of QuasiP(u) are in bijective
correspondence with cyclic subgroups of π1(N) that contain [u].

Proof. First of all, if u is constant, then there is nothing to prove. Let us therefore assume that u is
not constant for the remainder of the argument.

Suppose that u = U ◦ φ is a quasiperiodic factorisation. We will use this to generate a cyclic subgroup
of π1(N) that contains [u]. Because of Lemma 2, U : S1 → N therefore corresponds to an element [U] ∈
π1(N). Let T : Ob(QuasiP(u)) → 2π1(N) be given by:

T(U ◦ φ) := {[U]k : k ∈Z},
which is evidently a cyclic subgroup of π1(N). Moreover, Lemma 4 indicates that [u] is homotopic to
[U]deg(φ), and therefore T(U ◦ φ) contains [u] as required.

Suppose that H ⊆ π1(N) is a cyclic subgroup containing [u]. That means that [u] is homotopic to
[U]k for some k and some U : S1 → N. We need to find a function φ : S1 → S1 such that u = U ◦ φ. By
the covering space classification theorem [28, Thm 1.38], one can construct such a φ that additionally
satisfies k = deg(φ).

If two quasiperiodic factorisations of u = U1 ◦ φ1 = U2 ◦ φ2 are QuasiP(u)-isomorphic, then they
generate the same cyclic subgroup of π1(N). To see this, note that |deg(φ1)| = |deg(φ2)| by Lemma 4,
and therefore [u] is homotopic to both [U1]deg(φ1) and [U2]deg(φ2). Since both are cyclic subgroups, this
means that [U1]k and [U2]±k are homotopic so that T(U1 ◦ φ1) and T(U2 ◦ φ2) are the same subgroup.

Conversely, if two quasiperiodic factorisations of u = U1 ◦ φ1 = U2 ◦ φ2 generate the same cyclic sub-
group of π1(N) via T , this means that deg(φ1) = ±deg(φ2) and that [U1] is homotopic to [U2]. As a result
of Lemma 4, these two factorisations are isomorphic in QuasiP(u).

Corollary 2. Suppose that u : S1 → S1 is a smooth map of degree n. Then the isomorphism classes of
QuasiP(u) are in bijective correspondence with the set of factors of |n|.

Proof. First of all, isomorphism classes of QuasiP(u) are characterised by Lemma 4. Secondly, by
Lemma 3, any quasiperiodic factorisation into u = U ◦ φ will yield n = deg(u) = deg(U)deg(φ).

Corollary 3. If u1, u2 : S1 → N are homotopic maps, then their categories QuasiP(u1) and QuasiP(u2)
are equivalent.
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(a) (b)

Figure 10. (a) Signature of the sum of a 4-fold symmetric scatterer and a 6-fold scatterer, (b) Response
as a function of scatterer angles at 300 Hz.

3.3. Application: Factorisation categories of CSAS signatures

Let us revisit the CSAS example from Section 2. We remind the reader that for the purposes of this
application, if we distort the sonar sensor’s trajectory there will be a distortion on both the look angle
and the range. In the most general setting, both of these effects can be captured by the phase map φ.
In the specific case of CSAS echoes, the range distortion can be removed easily by time aligning each
pulse separately, assuming the target has a large enough cross section. Therefore, we will assume that
the trajectory distortions only apply to the look angle.

Consider the composite scatterer corresponding to a (2, 3) torus knot shown in Figure 6. There are
many other composite scatterers with the same image in the torus. For instance, if we use P = 4 and
Q = 6 in equations (2.2) and (2.3), we obtain a (4, 6) torus knot signature shown in Figure 10. The
image of the path (though not the path itself) in the torus is shown in Figure 10(b) and is the same as
that of the (2, 3) torus knot shown in Figure 7(a).

We can use Theorem 2 to compare these two signatures, and it is the case that they can be dis-
tinguished by their corresponding QuasiP categories. Notice that the torus has fundamental group
π1(S1 × S1) =Z×Z. There are two cyclic subgroups of π1(S1 × S1) that contain the (4, 6) torus knot,
namely itself and the cyclic subgroup generated by the (2, 3) torus knot. On the other hand, there is only
one cyclic subgroup of π1(S1 × S1) that contains the (2, 3) torus knot. Thus, the QuasiP categories of
the (2, 3) and (4, 6) torus knots differ, and so there is no trajectory distortion that will transform one
CSAS signature into the other. We can therefore conclude that they must be different targets.

4. Comparing functions via common factors

Being apparently topological in nature, one might imagine that if u1, u2 : M → N are homotopic maps,
then their categories QuasiP(u1) and QuasiP(u2) should be equivalent. This turns out to be false, the
results of Section 3.2 (and Corollary 3 in particular) notwithstanding. This section presents two coun-
terexamples to the equivalence of homotopy and the factorisation categories. Taken together, these two
counterexamples establish that QuasiP is a topological invariant distinct from homotopy.

Given that the constructions of QuasiP and Const were motivated by the needs of sonar signa-
tures, this means that the topological information inherent in sonar signatures is not entirely captured by
homotopy equivalence classes for spaces of echoes. On the other hand, homotopy equivalence classes
and equivalence classes of QuasiP and Const categories are related, as will be explored in subsequent
sections of this article.

Example 3. Consider u1, u2 : [0, 1] → [0, 1] in which u1 = 0 and u2 = id. These two maps are evidently
homotopic since h : [0, 1] × [0, 1] → [0, 1] given by:

h(x, t) := tx
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is a smooth homotopy between them. Since u2 has rank 1, this means that any quasiperiodic factorisation
of it u2 = U ◦ φ must be a factorisation into two rank 1 functions. This effectively means that there
is precisely one choice of phase space up to diffeomorphism, and consequently QuasiP(u2) contains
exactly one isomorphism class. On the other hand, u1 need not factor into two rank 1 functions; indeed
the rank of φ may be 0 or 1. Therefore, QuasiP(u1) has two isomorphism classes.

Having equivalent categories of factorisations does not imply that two maps are homotopic, either.

Example 4. Consider the identity map u : S1 → S1 and the antipodal map (−u) : S1 → S1. The maps u
and (−u) have equivalent categories of quasiperiodic factorisations, since both are their own universal
quasiperiodic factorisations (a consequence of [47, Thm. 8]), but they are not homotopic maps.

The net effect of these two examples is that QuasiP(u) is a topological invariant of a smooth
map u : M → N that is distinct from the homotopy class of u. There is still a somewhat more subtle
relationship between homotopies and constant rank factorisation categories.

4.1. Signature equivalence

If we interpret a constant rank factorisation of u = U ◦ φ as a model of a sonar collection, it is natu-
ral to treat φ as representing the trajectory effects and U as representing the target effects. To solve a
sonar classification problem, all that matters is the signature: the U function. Two distinct sonar collec-
tions u1 = U ◦ φ1 and u2 = U ◦ φ2 with identical signatures should therefore be considered equivalent
for the purposes of classification. We capture this idea with a definition of signature equivalence for
factorisations. This section explores what properties are entailed when two collections have equivalent
signatures.

Definition 6. If u1 = U ◦ φ1 and u2 = U ◦ φ2 are quasiperiodic factorisations such that the diagram

(4.1)

commutes, we say that the factorisations of u1 and u2 have equivalent signatures. If instead of quasiperi-
odic factorisations in the diagram (4.1), we chose to use constant rank factorisations, then we say that
the factorizations of u1 and u2 have constant rank equivalent signatures.

While equivalent signatures can also be thought of as a feature of the functions u1 and u2 (rather
than the factorisations), constant rank signature equivalence becomes trivial when thought of this way
(Proposition 13).

If u1 = U ◦ φ1 and u2 = U ◦ φ2 have equivalent signatures, one might think that the categories
of quasiperiodic factorisations QuasiP(u1) and QuasiP(u2) are equivalent. This is not the case, as
demonstrated by the next example.

Example 5. Consider M1 = M2 = N = S1, the unit circle parameterised by an angle θ . Suppose that

u1(θ ) = 2θ ,

and

u2(θ ) = 6θ ,

where we assume that angles outside the range [0, 2π ) are wrapped back into that range. These functions
have universal quasiperiodic factorisations with the same phase space, C = S1, and U = id in both cases.
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The diagram (4.1) becomes

Thus, these two quasiperiodic factorisations have equivalent signatures, but according to Theorem 2,
the categories QuasiP(u1) and QuasiP(u2) are not equivalent, because 2 is prime and 6 is composite.

Calling a signature equivalence an equivalence is legitimate, because it is in fact an equivalence
relation.

Proposition 10. Signature equivalence is an equivalence relation between two functions u1, u2 : M → N.
This remains true for constant rank signature equivalence.

Proof. Symmetry is immediate from the definition. Reflexivity follows immediately upon recog-
nising that every smooth function has a trivial quasiperiodic factorisation. To attempt to establish
transitivity, the diagram we start with is

and what we want to construct is C ′′ so that the diagram

commutes with surjective submersions φ ′ ′
1 and φ ′ ′

3. This can be accomplished by the unique final object in
QuasiP(u2) according to Proposition 6 (or in Const(u2) according Proposition 7 in the case of constant
rank factorisations), since this means that we can expand the corresponding portion of the diagram
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to include such a factorisation of u2 : M2 → N into U′ ′ ◦ φ ′ ′
2. Composing maps from this diagram and the

previous, we have the diagram

which we can use to define φ ′ ′
1 = c ◦ φ1 and φ ′ ′

3 = c′ ◦ φ3. That these two maps are surjective submersions
is a consequence of [47, Lem. 14], which completes the argument.

What do equivalence classes of signature equivalent functions look like? For one, all members of an
equivalence class share the same image set. This provides a rather direct explanation of why classifying
sonar targets using the persistent homology of the space of echoes is effective [49].

Proposition 11. If u1 and u2 are signature equivalent functions, then they have identical image sets.

This need not be true for constant rank signature equivalence.

Proof. Since u1 and u2 are signature equivalent, there is a pair of quasiperiodic factorisations, u1 =
U ◦ φ1 and u2 = U ◦ φ2, where U : C → N for some space C. Suppose that y ∈ N is in the image of u1,
which means y is in the image of U as well. That means there is an x ∈ C such that U(x) = y. Since φ2

is surjective by assumption, x is in the image of φ2, and hence there is a z for which u2(z) = U(φ2(z)) =
U(x) = y. This establishes that image u2 ⊆ image u1.

On the other hand, since φ1 is also surjective by assumption, then a similar argument establishes that
image u1 ⊆ image u2.

Like the functoriality expressed in Propositions 8 and 9, (constant rank) signature equivalence
respects pre- and post-composition with smooth functions.

Proposition 12. Suppose that u1 : M1 → N and u2 : M2 → N have equivalent signatures.

(1) If f : N → N ′ is a smooth map, then (f ◦ u1) and (f ◦ u2) have equivalent signatures.
(2) If g : M′ → M1 is a surjective submersion, then (u1 ◦ g) and u2 have equivalent signatures.
(3) Statements (1) and (2) hold for constant rank versions, mutatis mutandis.

Proof. All of the statements implied by this proposition follow from reasoning about a diagram of
the form

(4.2)

Finally, although Example 5 shows that signature equivalence does not ensure that categories of
quasiperiodic factorisations are equivalent, the categories are related in a more subtle way. Intuitively, the
presence of a signature equivalence between two functions sets up an equivalence between subcategories
within their respective categories of quasiperiodic factorisations. To state this precisely requires the
notion of a coslice category.
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Definition 7. (Standard) If A is an object of a category C, the coslice category (A ↓ C) contains every
object B in C for which there is a morphism A → B. Morphisms of (A ↓ C) consist of commuting
diagrams of the form

where f is a morphism of C.

Briefly, the coslice category (A ↓ C) is equivalent to the subcategory of C generated by all morphisms
and objects ‘downstream’ of A.

Theorem 3. Suppose that u1 : M1 → N and u2 : M2 → N are two maps with equivalent signatures.
Suppose that we write the corresponding quasiperiodic factorisations u1 = U ◦ φ1 and u2 = U ◦ φ2,
respectively. Then the coslice categories (U ◦ φ1 ↓ QuasiP(u1)) and (U ◦ φ2 ↓ QuasiP(u2)) are isomor-
phic (not merely equivalent).

The proof of Theorem 3 relies upon an explicit construction of a functor between the coslice
categories, the mechanics of which are explained in Lemma 5 below.

Lemma 5. Suppose that u1 : M1 → N and u2 : M2 → N are two maps with quasiperiodic factorisations
u1 = U ◦ φ1 and u2 = U ◦ φ2. If u1 = U′ ◦ φ ′

1 is another quasiperiodic factorisation of u1 such that there
is a QuasiP(u1) morphism

where c : C1 → C2 is a smooth map, then this induces another quasiperiodic factorisation of u2 = U′ ◦ φ ′
2

and a QuasiP(u2) morphism

The statement remains true of constant rank factorisations as well.

Proof. This Lemma hinges on the observation that φ ′
1 = c ◦ φ1. We can then simply make the

definition φ ′
2 = c ◦ φ2, because all of the various paths in the diagram for u2
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continue to commute. Notice that commutativity of the original morphism diagram ensures that c be a
surjective submersion, so it follows that φ ′

2 is also a surjective submersion. The statement still holds for
constant rank maps for essentially the same reason: it follows from the definition of morphism that c
must be a constant rank map.

With Lemma 5 in hand, we can prove Theorem 3.

Proof. (of Theorem 3) Observe that Lemma 5 defines a function on objects:

F : (U ◦ φ1 ↓ QuasiP(u1)) → (U ◦ φ2 ↓ QuasiP(u2)).

Dually, the same construction works to define a function:

G : (U ◦ φ2 ↓ QuasiP(u2)) → (U ◦ φ1 ↓ QuasiP(u1)).

We need to establish that (1) F respects morphisms and therefore defines a covariant functor, (2) that
F ◦ G = id, and that (3) G ◦ F = id. Evidently due to the symmetry of the situation, (2) and (3) can be
established simultaneously.

Suppose that we have a morphism m : (φ ′
1, U′) → (φ ′

1
′, U′ ′) in (U ◦ φ1 ↓ QuasiP(u1)), which means

that the following diagram commutes

where c′, c′′, and m are smooth maps (abusing notation by conflating the morphisms with their com-
ponent maps on the phase spaces). Notice in particular that c′ ′ = m ◦ c′. Lemma 5 uses the above to
construct two diagrams for factorisations of u2, namely
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and

But since c′ ′ = m ◦ c′, these two diagrams can be combined into

which is the diagram of a morphism F(m) : (φ ′
2, U′) → (φ ′

2
′, U′ ′) in (U ◦ φ2 ↓ QuasiP(u2)). Incidentally

F(m) is also given by the smooth map m on the phase spaces.
To establish that F and G are inverses, it is merely necessary to compute using the recipe from

Lemma 5:

G(F((φ ′
1, U′))) = G(F((c ◦ φ1, U′)))

= G((c ◦ φ2, U′))

= (c ◦ φ1, U′)

= (φ ′
1, U′)

as desired.

If the factorisations of two functions u1 and u2 are signature equivalent and are final elements in
their respective categories, then their coslice categories are rather small and uninformative. Conversely
(though trivially!), if the factorisations are the trivial ones, then this forces their respective categories to
be isomorphic.

4.2. Constant rank signature equivalences

Constant rank signature equivalences appear to have many of the same features of signature equiva-
lences, since several of the proofs from the statements in Section 4 carry over to constant rank signature
equivalences without much effort. However, constant rank signature equivalences are a relatively coarse
way of comparing two functions, because there are simply too many of them, as will be shown in
Proposition 13. Intuitively, this means that sonar signatures arising in this case have too many degrees
of freedom to be effectively discriminated. This is a bit disappointing because constant rank signa-
ture equivalences are closely related to homotopies (as will be shown in Proposition 14) even though
signature equivalences are not. The solution appears in Definition 8. Instead of considering individ-
ual equivalences, we should consider a category of all possible such constant rank equivalences. This
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idea builds over the next few sections, culminating in Theorem 5, which characterises the category of
constant rank equivalences in terms of coslices.

A close examination reveals that none of the arguments in the proof of Theorem 3 were dependent
on the surjectivity of the phase maps. Therefore, we have the following Corollary.

Corollary 4. Suppose that u1 : M1 → N and u2 : M2 → N are two maps with constant rank factorisations
u1 = U ◦ φ1 and u2 = U ◦ φ2 being constant rank signature equivalent factorisations. Then the coslice
categories (U ◦ φ1 ↓ Const(u1)) and (U ◦ φ2 ↓ Const(u2)) are isomorphic (not merely equivalent).

Constant rank signature equivalences always exist between functions, at least in a trivial form, as the
next Proposition shows.

Proposition 13. Suppose that u1 : M1 → N and u2 : M2 → N are two smooth functions. Recalling that
M1 � M2 is the disjoint union of the two manifolds involved, then

is a constant rank signature equivalence when the vertical ik maps are inclusions and

U(x) =
⎧⎨
⎩

u1(x) if x ∈ M1 ⊆ M1 � M2,

u2(x) if x ∈ M2 ⊆ M1 � M2.

Proof. One merely needs to recognise that the diagram commutes by construction, and that inclusions
are automatically constant rank maps.

The reader is cautioned from reading too much into Proposition 13. Because of Proposition 4, neither
of the constant rank factorisations in Proposition 13 are initial objects in their categories of constant rank
factorisations. If the factorizations in Proposition 13 were initial objects in general, then Corollary 4
would indicate that Const(u) is dependent only on the codomain of u. The truth is quite a bit more
subtle!

Proposition 14. Suppose that u1, u2 : M → N are two maps and that h : M × [0, 1] → N is a smooth
homotopy between them. Then these maps are constant rank signature equivalent.

Proof. The hypothesis means that

commutes. Furthermore, u1 = h ◦ i0 and u2 = h ◦ i1 are both constant rank factorisations.5

Therefore, the constant rank signature equivalence classes contain entire homotopy classes of maps.

5Neither are surjective, so this does not result in quasiperiodic factorisations.
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Proposition 15. Suppose M is a connected manifold, that u1, u2 : M → N are smooth maps, and
that u2 = u1 ◦ f where f : M → M is a diffeomorphism. Then these maps are constant rank signature
equivalent.

Proof. The hypothesis establishes that

commutes; evidently f and idM are of constant rank.

Using Proposition 15 to establish a constant rank signature equivalence along with Corollary 4
provides an alternative proof of Theorem 1, since the factorisations in question are evidently initial
according to Proposition 4.

4.3. Categories of signature equivalences

The fact that constant rank signature equivalences are so common suggests that we abstract further and
consider these equivalences as objects in their own right.

Definition 8. The category CRSE(u1, u2) for each pair of smooth functions u1 : M! → N, u2 : M2 → N
has constant rank signature equivalences as its objects. Specifically, the objects are diagrams of the
form:

(4.3)

in which φ1 and φ2 are constant rank maps. A morphism in CRSE(u1, u2) is determined by a map
c : C → C′ such that the diagram

(4.4)

commutes.

Intuitively, each object of CRSE(u1, u2) defined above is an individual sonar target that could
have yielded both signals u1 and u2 under different sensor conditions. Therefore, a small number of
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isomorphism classes of CRSE(u1, u2) suggests that u1 and u2 are likely from different targets, while a
larger number of isomorphism classes means that it is likely that u1 and u2 arise from similar targets.

Corollary 5. There is a forgetful functor CRSE(u1, u2) → Const(u1) that acts by truncating the diagram
on the left to produce the one on the right:

Evidently there is also a forgetful functor CRSE(u1, u2) → Const(u2) that acts by truncating the top
portion of the diagram instead.

Theorem 4. Suppose that u1 and u2 are smooth maps M → N for a connected manifold M, and that
u2 = u1 ◦ f for some diffeomorphism f. Then the forgetful functors defined in Corollary 5 are surjective
on objects (but not necessarily morphisms).

Proof. Suppose that u1 = U ◦ φ is a constant rank factorisation of u1. By hypothesis, we therefore
have the commutative diagram:

which can be rearranged as:

which is evidently an object in CRSE(u1, u2) whose image through the forgetful functor is U ◦ φ.
Repeating the argument using u1 = u2 ◦ φ−1 completes the proof.

Example 6. Let u1 : R→R be the constant map u1(x) = 0 and u2 : R→R be the identity map u2(x) = x.
The functor in Corollary 5 for CRSE(u1, u2) → Const(u1) is not surjective on objects. To see this, notice
that the constant rank factorisationR→ 	→R of u1 through the single-point space 	 cannot be constant
rank signature equivalent to any constant rank factorisation of u2 and thus must be outside the image of
the functor.

Taking Theorem 4 and Example 6 together, this gives a means for comparing two smooth maps u1,
u2. If the images of CRSE(u1, u2) in Const(u1) and Const(u2) are both large, then the maps are similar.
Homotopies yield another, related notion of similarity between maps as the next example shows.

Example 7. If u1, u2 : M → N are homotopic smooth maps, then the combined effect of Propositions 13
and 14 is that there is a morphism in CRSE(u1, u2) of the form:
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where the Ik and ik maps are the obvious inclusions, U is defined as in Proposition 13, and

c(x) =
⎧⎨
⎩

(x, 0) if x is in the first copy of M

(x, 1) if x is in the second copy of M.

Given the definition of CRSE(u1, u2), it is easy to recast some of the previous results on functoriality.

Proposition 16. Suppose that u1 : M1 → N, u2 : M2 → N and f : N → N ′ are smooth maps. Then f
induces a covariant functor CRSE(u1, u2) → CRSE(f ◦ u1, f ◦ u2) via the construction in statement (1)
of Proposition 12.

Proof. This follows from a tedious (but easy) diagram chase using the diagram in the proof of
Proposition 12. Covariance is assured for the same reason as in Proposition 8.

Proposition 17. The constant rank signature equivalence constructed in Proposition 13 for u1 : M1 → N
and u2 : M2 → N is the initial object of CRSE(u1, u2).

Proof. Suppose that we have an arbitrary object of CRSE(u1, u2), given by the diagram

Consider the map c : (M1 � M2) → C given by:

c(x) =
⎧⎨
⎩
φ1(x) if x ∈ M1 ⊆ M1 � M2

φ2(x) if x ∈ M2 ⊆ M1 � M2

By construction, this map makes the diagram

commute when the ik maps are the inclusions.
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The initial objects of CRSE(u1, u2) and that of Const(u1) are quite incompatible, even if there is a
diffeomorphism u2 = u1 ◦ f ! This is because there is no map c that will make the following diagram
commute:

Moreover, considering the images of these objects of CRSE(u1, u2) in Const(u1), there is precisely
one c that will make the following diagram commute:

Reversing the direction of the c maps in the above two diagrams yields exactly one possible option
in the top diagram, and many options in the bottom one.

On the other hand, final objects of CRSE(u1, u2) and Const(u1) are compatible. This should not come
as a surprise because Proposition 7 asserts that every such final object has the same phase space—
separable infinite-dimensional Hilbert space.

Proposition 18. Suppose that

is a constant rank signature equivalence and that u1 = U ◦ φ1 and u2 = U ◦ φ2 are final objects in
Const(u1) and Const(u2), respectively. Then their constant rank signature equivalence is final in
CRSE(u1, u2).

Proof. Suppose that
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is another object of CRSE(u1, u2). Using the hypothesis that u1 = U ◦ φ1 and u2 = U ◦ φ2 are final
objects, this implies that there is a Const(u1) morphism:

and a Const(u2) morphism

These can be assembled into a larger diagram

To complete the argument, we need to show that the two maps c1, c2 can be replaced with a single
map c : C′ → C, even though c1 and c2 might disagree. To that end, consider (C � C)/∼, where x ∼ y if
there is a z ∈ C′ such that c1(z) = x and c2(z) = y. This construction makes the diagram

commute if U ′ is given by U on both copies of C in (C � C)/∼.
Splicing the two previous diagrams together yields the observation that there is a morphism

https://doi.org/10.1017/S0956792522000365 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792522000365


European Journal of Applied Mathematics 35

Applying finality in Const(u1) once more, we must conclude that the factorisation through (C � C)/∼
is Const(u1)-isomorphic to U ◦ φ1. A similar argument holds for the other factorisation. Therefore,
we must have that (C � C)/∼ is diffeomorphic to C so that c1 and c2 can only disagree up to that
diffeomorphism.

A consequence of Proposition 17 is a characterisation of CRSE(u1, u2) in terms of coslice categories
of Const(u1) and Const(u2).

Theorem 5. If u1 : M1 → N and u2 : M2 → N are two smooth maps, CRSE(u1, u2) is isomorphic to the
coslice category (U ◦ i1 ↓ Const(u1)) (and therefore also to the coslice category (U ◦ i2 ↓ Const(u2))),
where U, i1, and i2 are defined as in Proposition 13.

Proof. Each object of CRSE(u1, u2) already implies the existence of two constant rank factorisations:
u1 = U′ ◦ φ1 and u2 = U′ ◦ φ2.

According to Proposition 17, we have a CRSE(u1, u2) morphism from (U ◦ i1, U ◦ i2) (the initial
object) to (U′ ◦ φ1, U′ ◦ φ2) (an arbitrary object), implying the existence of corresponding morphisms in
Const(u1) and Const(u2). Consequently, this means that the factorisations u1 = U′ ◦ φ1 and u2 = U′ ◦ φ2

can be considered objects in the corresponding coslice categories. Conversely, the construction of the
equivalence between the coslice categories involved in the proof of Theorem 3 is precisely the same
construction as that for CRSE(u1, u2).

4.4. Application: Signature equivalence in CSAS

Recall the CSAS example of a 3-fold symmetric scatterer from Section 2. In that example, signatures
from a 3-fold symmetric scatterer without distortions (Figure 3(b)) and with distortions (Figure 4(a))
were shown. Since they differ only by a smooth trajectory distortion, this is an example of a signature
equivalence (Definition 4.1), since the phase maps are invertible.

Since they differ by a smooth trajectory distortion, which happens to be a diffeomorphism, Theorem 1
argues that the factorisation categories for these two signatures are isomorphic, not just equivalent,
which means that there should be a bijective correspondence between their factorisations. Hence,
Proposition 11 implies that their image sets should be identical. From a practical standpoint, this means
that the set of possible echoes (rows) in Figures 3(b) and 4(a) should be identical. A good way to see
this is to compare their principal components analysis plots, shown in Figure 11. In computing these
plots, pairs of adjacent rows were used as coordinates for each pulse, and the axes (the principal vectors
for Figure 3(b)) are the same for both plots. Adjacent rows were used as a proxy for the derivative of
the phase function, which is of constant rank by Proposition 5. Notice that the two frames of Figure 11
show very similar trajectories; they only differ due to sampling effects because a finite number of pulses
were used.

Leaving the scatterers fixed while changing the relative angle, changes the intercept of the trajectory
along the torus. Equivalently, changing the relative angle simply shifts the underlying function on the
torus, as Figures 12(a)–(b) show. These figures are therefore an example of constant rank signature
equivalence. On the other hand, if the symmetry of the scatterers is changed, this dramatically changes
the function and the torus knot, as shown in Figure 12(a) and (c).
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(a) (b)

Figure 11. Principal components analysis plots of the signature of (a) a 3-fold symmetric scatterer
(Figure 3(b)) and (b) a distorted 3-fold symmetric scatterer (Figure 4(a)).

(a) (b) (c)

Figure 12. Different responses at 300 Hz for (a) the (2, 3) torus knot signature with relative angle 28◦,
(b) the (2, 3) torus knot signature with relative angle 100◦, and (c) the (2, 5) torus knot signature with
relative angle 28◦.

Two targets with the same symmetry class (which have isomorphic Const categories), as in
Figure 12(a)–(b), can be discriminated by constant rank signature equivalence since that is a gener-
alisation of comparing the values of their signatures on a fundamental domain. In the case of changing
the relative angles, these two targets are constant rank signature equivalent. Figure 12(a) and (c) are not
constant rank signature equivalent, since the torus functions (signatures) are different. Evidently, classi-
fying all constant rank signature equivalences would involve classifying all functions on the torus. This
is not particularly easy to do completely, even though it is easy to identify when two such functions are
equal.

5. Conclusion

This article has provided a nearly complete answer as to why topological methods are effective at solv-
ing sonar classification problems. Specifically, topological methods decouple trajectory effects from
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the classification-relevant information contained in a sonar signature. Because of this decoupling,
topological methods can be used when trajectory information is inaccurate or missing.

In answering the practical challenge of understanding sonar classification, this article has defined
several new topological invariants that apply to factorisations of smooth functions and has established
key properties about them. In the case of the category QuasiP, we have a complete characterisation in
the case that applies to CSAS classification problems. This characterisation relies on the computation
of the fundamental group of the space of echoes, which can be estimated from sonar data using persis-
tent homology. Therefore, this article has provided theoretical justification for what was demonstrated
experimentally in [49].

Given the fact that several new invariants were discovered, much work still remains. Although we
understand how to compute the QuasiP category in some cases, we have only a very limited under-
standing of how to characterise the related category Const. The techniques that are effective for QuasiP
are simply uninformative for Const. Additionally, the complete characterisation of QuasiP only applies
to a limited class of synthetic aperture problems, so further work to characterise it under arbitrary sonar
collections still remains.
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