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GENERALISED JORDAN-VON NEUMANN CONSTANTS
AND UNIFORM NORMAL STRUCTURE

S. DHOMPONGSA, P. PIRAISANGJUN AND S. SAEJUNG

We introduce a new geometric coefficient related to the Jordan-von Neumann con-
stant. This leads to improved versions of known results and yields new ones on
super-normal structure for Banach spaces.

1. INTRODUCTION

The notions of normal structure and uniform normal structure play an important
role in metric fixed point theory (see Goebel and Kirk [10]). A number of Banach
space properties have been shown to imply uniform normal structure. Some sufficient
properties for a Banach space X to have uniform normal structure are:

(1) J(X) < 3/2 (see Gao and Lau [6]),
(i) R(X) > 0 (see Gao [5]),
(i) Cni(X) < 5/4 (see Kato, Maligranda and Takahashi [13]), and
(iv) X is a u-space, a class of spaces that includes uniformly convex spaces
and uniformly smooth spaces (see Gao and Lau [6]).

Recently, Kirk and Sims [17] introduced a new variant, ¢-uniform normal structure,
which lies strictly between normal structure and uniform normal structure.

In this paper we introduce a parameterised coefficient Cnj(-, X) generalising the
Jordan-von Neumann constant Cnj(X). Utilising ultraproduct techniques, the coef-
ficient Cnj(-, X) enables us to establish new sufficient conditions for a Banach space
to have uniform normal structure. To achieve this, we first show that the coefficients
Cni(-, X) of the space X and Cyj (-, X ) of its ultrapower X coincide. From this and
some other new results, which also improve the number appearing in property (iii) from
5/4 to (3 + \/3)/4, we can apply the powerful ultraproduct technique to show that
X has uniform normal structure whenever Cnj(1,X) < 2. An example of a Banach
space X is given which has Cnj(1, X) < 2 and hence uniform normal structure, but
for which neither (i) or (iii) apply. An exact determination of the coefficient Cn;(:, X)
is obtained when X is a Hilbert space. More generally, a connection between Cnj(, X)
and the modulus of convexity dx is established. Finally, we investigate the constants
Cni(-, X) when X is a u-space. This leads to an alternative proof of (iv).
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2. PRELIMINARIES

Throughout the paper we let X and X* stand for a Banach space and its dual
space, respectively. By a non-trivial Banach space X we shall mean that either X is a
real space with dim X > 2, or a complex space with dim X > 1. We shall denote by
Bx and Sx the closed unit ball and the unit sphere of X, respectively. For a sequence
(zn) in X, z, = z stands for weak convergence to z. For z € X\{0}, let V, denote
the set of norm 1 supporting functionals at z. This is the subdifferential of the norm
at the point z, which is nonempty by the Hanh-Banach Theorem.

We shall say that a nonempty weakly compact convex subset C of X has the fized
point property (fpp for short) if every nonexpansive mapping T' : C — C has a fixed
point (that is, there exists z € C such that T(z) = z). Recall that T is nonexpansive
if |Tz — Tyl < |lz — yl| for every z,y € C. We shall say that X has the fired point
property (fpp) if every weakly compact convex subset of X has the fpp. Let A be a
nonempty bounded set in X. The number r(A) = inf {sgg lz — yll : = € A} is called

y
the Chebyshev radius of A. The number diam A = sup ||z —y|| is called the diameter

z,y€A .
of A. A Banach space X has normal structure if

(2.1) T(A) < diam A

for every bounded convex closed subset A of X with diam A > 0. When (2.1) holds for
every weakly compact convex subset A of X with diam A > 0, we say X has weak nor-
mal structure. Normal structure and weak normal structure coincide if X is reflexive. A
space X is said to have uniform normal structure if inf {(diam A)/ (r(A))} > 1, where
the infimum is taken over all bounded convex closed subsets A of X with diam A > 0.
Weak normal structure, as well as many other properties imply the fixed point prop-
erty. Some relevant papers are Opial [22], Kirk [16], Sims [24], Garcia-Falset [7], and
Gacia-Falset and Sims [8].

The modulus of converity of X (see [3, 4,19, 20, 21}) is the function dx : [0, 2]
— [0,1] defined by

z+y
2

(2.2) 6x(e)=inf{1—” ”::c,yeSx,le—y”?e}.

When X is non-trivial, we can deduce that

dx(e) = inf{l - “z-;-y

=inf {1~ | Z52| :2,v € Sx, llo - yll = ¢}

|2y € Bxlle - vl > <}

. z+
=1nf{l— H 2 y":z,yEBX,Ilz—y“:E}-
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If 6x(1) > 0, then X has uniform normal structure (see [9]).
The modulus of smoothness of X (see [3, 4, 19, 20]) is the function px : [0,00)
— [0, 00) defined by

(2.3) px(r) = sup{”x + 7yl -;_ lz =il _ l:z,y€ Sx}
= sup{‘%€ —dx+(e) : € €0, 2]}

A space X is called uniformly conver if éx(e) > 0 forall 0 < e < 2. Itis
called uniformly smooth if p'y(0) = ll_l”% (px (r))/7 = 0. Uniformly convex spaces and
uniformly smooth spaces are examples of u-spaces, where a space X is called a u-space
if for any € > 0, there exists § > 0 such that for each z,y € Sx,

(2.4) || Ity

2 “>1—6=>f(y)>1—eforallf€Vz.

The notion of u-spaces was introduced by Lau [18]. Examples of uniformly convex
spaces are the spaces LP(Q) where Q is a measure space such that LP(2) is at least
two dimensional and 1 < p < c0.

A Banach space X is called uniformly nonsquare provided that there exists § > 0
such that if z,y € Sx, then |[z+y||/2 < 1-6 or ||[z—y||/2 < 1-4. Uniformly nonsquare
spaces are superreflexive (see James [11]). Every u-space is uniformly nonsquare (see
Lau [18]), hence, it is superreflexive.

The Jordan-von Neumann constant Cnj{X) of a Banach space X is defined by

Iz + gl + Iz =yl
2(<I” + o)
—sup { L2V 4zl

20l + [T)

(2.5) Cni(X) = sup{ : z,y € X not both zero }

:a:eSx,yeBx}.

REMARK 2.1. We collect together some properties of the Jordan-von Neumann constant
Cni(X) (see [2, 12, 13, 14, 15, 25]):
(1) 1<COn(X)<2.
(2) X is a Hilbert space if and only if Cn3(X) = 1.
(3) Cni(X) =Cny(X7).
(4) X is uniformly nonsquare if and only if Cn3(X) < 2 and this happens if
and only if §x(¢) > 0 for some € € (0,2).
(5) If Cni(X) < 5/4 then X, as well as its dual X*, have uniform normal
structure, and hence both X and X* have the fixed point property.
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One technique used in this paper is the “ultraproduct” technique. We refer to
Askoy and Khamsi [1] and Sims [23] for a complete discussion on the topic. However,
let us briefly recall the construction of an ultrapower of a Banach space X. As a
first step we consider the space l{,,(X) consisting of all bounded sequences (z,) of
elements of X. The norm in lo(X) is given by the formula ||(z.)|| = sgg”xnn,

n

where N is the set of positive integers. Now, let &/ be an ultrafilter on N. The set
N = {(zn) € lo(X) : limy ||za|l = 0} is a closed linear subspace of lo(X). Here,
limy, stands for the limit over the ultrafilter &. The ultrapower X of X with respect
to U is defined to be the quotient space l(X)/AN. By Z we denote the equivalent
class of £ = (z,,). From the definition of the quotient norm, we can derive the following
canonical formula ||Z|| = limy ||za]|. Identifying an element z € X with the equivalence
class of the constant sequence (z,z,...), we can treat X as a subspace of X . In what
follow, we shall consider only non-tr1v1al ultrafilters on the set of positive mtegers
Under this setting, the ultrapower X is finitely representable in X . Consequently, X
inherits all finite-dimensional geometrical properties of X .

DEFINITION 2.2: Let P be a Banach space property. We say that a Banach space
X has the property super-P if every Banach space finitely representable in X has
property P.

THEOREM 2.3. (See [1, Theorem 3.5].) Let X and Y be Banach spaces and

suppose that Y is finitely representable in X . Then there is an ultrafilter U on the set
N such that Y is isometrically isomorphic to a subspace of X .

We remark that when the property P is hereditary: that is, any subspace of a
space with P also has P, one has the following stronger conclusion.

COROLLARY 2.4. (See[l].) Let P be a Banach space property which is inher-
ited by subspaces. Then a Banach space X has super-P if and only if every ultrapower
X of X has P.

THEOREM 2.5. (See [1].) Let X be a Banach space. If X has super-normal
structure, then X has uniform normal structure.

3. RESULTS
Let us begin with our generalisation of the Jordan-von Neumann constant. For
a = 0 define,
Iz + yll? + [l= — 2|*
2/ + llyll® + ll=12
and |ly - || < aflzll}

:z,y,z € X not all zero

Cni(a, X) =sup {
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lz +yll* +llz - 2|*
_ {2||$"2 TP TR x,Y,z € Bx not all zero

and |y - 2| < afjzl|}

 aup { ey e
2ljal? + e + TzIP

: x,vy,2 € Bx of which at least one
belongs to Sx and ||y — z|| < a||:z:||}.

REMARK 3.1.
(1) Obviously, Cny(0,X) = Cni(X) (see (2.5)).
(2) Cnifa,X) is a nondecreasing function with respect to a.
(3) If Cni(a,X) < 2, for some a > 0, then Cnjy(X) < 2 and consequently
X is uniformly nonsquare (see Remark 2.1(4)).
(4) 1+ (4a/4+a%) < Cni(a,X) < 2 forall a > 0 and Cny(a, X) = 2 for all
az?2.
To see that (4) is true, we begin by proving the left inequality. For this, we take
any T € Sx and put y = (a/2)z = —z. We then have y — z = az and so,

Iz +yll* +1lz — 2l _ (1 + (a/2))||z* + (1 + (a/2))||]®

Cni(a, X) 2

2]zl + [lylf? + 1|2 2||zl* + 2(a?/4) |12
201+ (a/2))®  4+4a+ad® gy ta
T 2(1+ (a%2/4)) ©  4+4+a% 4+ a?

Next, we show that Cnj(a, X) < 2. By the triangle inequality, we have
(lzll? + 2lillliyll + lgl®) + (= + 2llzll=]] + [1211%)

(2lzl” + 2ll91%) + (2lll* + 20121)
= 4lizl|? + 2llylI* + 2/lI1?,

llz +yl? + llz - 2|

VASN/AN

from which it is clear that Cnj(a,X) < 2. Finally, we observe that the function
a+ 1+ (4a/4+ a?) is strictly increasing on [0,2] and attains its maximum of 2 at
a = 2. It follows that Cnj(a,X) =2 for all a > 2.

ExAMPLES 3.2. (1) (leo — 1 norm) Let X = R? be equipped with the norm defined

by
Il Izllo  if Z1z2 20,
z|l =
||:B”1 if 12, <0

Take z = (1,1),y = (0,1) and z = (-1,0). Then we have y — z = (1,1) = = and
Iz +yll = |(1,2)], =2, llz—zll = 2, = 2.0zl = 1. So 2 = (4+4)/4
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= (llz + w2 + llz — 2[12) /2llal + l9l12 + 211") < Cna(1, X) < 2. Hence Ca(1,X)
= 2. It is not difficult to see that dx(¢) = max{0, (¢ — 1)/2} and so 6x(1) = 0. We
shall shortly see (Remark 3.12(1)) that this implies Cnj(0, X) > 5/4, however, we do
not know its exact value. This example shows that sometimes it is easy to compute
Cni(a, X) at some point a € (0,2), but not at a = 0.

(2) Let 1 <p< 2 and let the norm on X = R? now be defined by

".’L‘“1 if T1T2
ll=ll =

>0
lzllp if zyz2 <O.

?

Under this norm, it can be shown that Jx(1) = 0, Cn3(X) = 1 + 2%/P~2 J(X)
> 2P and Cnj(1, X) < 2, where James’ nonsquare constant J(X) is defined by J(X)
= sup{min{”x +yll,llz —y} : =y € Sx}. The verification that Cnj(1,X) < 2
follows by an argument similar to that given later in the proof of Theorem 3.15. We
shall shortly see that all spaces X with Cn;(1, X) < 2 have uniform normal structure
(Corollary 3.7). This example also reveals that we may have Cnj(X) close to 2 but still
have uniform normal structure (also see the observation given later at the beginning of
Remark 3.16).

These examples show that information on Cnj{a, X) for general a proves to be
useful. We note in passing that Cnyj(1,l2(X )) < 2 whenever Cnj(1,X) < 2, where
13(X) is the space of sequences (z,) of elements of X for which the sequence of norms
(llzxll) is in Iz, with the norm of (z,) defined to be the l3-norm of (||zn||).

We aim to show that the generalised Jordan-von Neumann constants Cyj(a, X) of
the space X and Cnj(a, X ) of its ultrapower coincide. Before that we need to establish
the continuity of the function Cnj(-, X).

ProrposITION 3.3. Cni(-, X) is a continuous function on [0, 0).

PRrRoOOF: We have already noted that Cyj(-, X) is nondecreasing, thus suppose that

for some a > 0,
supCny(b, X) = a < B < v = inf Cnj(b, X).
b<a b>a

Choose v, | a and Zn,Yn,2n € Bx of which at least one belongs to Sx and such
that ||yn — zn)]l = Wllznll and g(zn,yn,2,) > B for all n € N. Here g(z,y,2)
= (Il + vl + llz - 2I*)/(2l|=1? + liyll> + [|2]|>) . Choose 7, | 1 such that v/ < a
for all n. Thus, g(WnZn, Yn, 2n) = g(:z:n, (y,,/n,,),(z,,/n,,)) < a forall n € N. Take a
subsequence (n') of (n) such that all the sequences

“In’ + yn’”’ ”zn’ - zn'“a ”zn’”’ ”yn’” and ”zn’”

converge. As ||za+w||— (1 — Dllznll < I7azn+wll < |2n +wll+ (72 — 1)llzal| for any
w € X and 7, — 1, we have limg/ ||/ Ty + Yo || = limyy ||2,r + ypr|| and limy, [|9,r2,0
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= zp|| = limyy ||zpr — 24r|]. Consequently, 8 — a < g(Tn, Yn’y 2n') — (' Tnty Ynt, 2n7)
— 0, a contradiction. This finishes the proof when a > 0.

For a = 0, given € > 0 we take a triple (z,,¥n,2,) in BY with at least one of
Tn, Yn, 2n belonging to Sx, ||yn — zn|| = a@nllzall, an 4 0, and

Cni(0+,X) —¢e:= EE%CNJ(G, X)—e< nl_i_)ngog(z,,,yn,z,,).

Put €, = 4oy + a2 and Yn = an||Zal|{||ynll — @nllzal]) . Thus e,,v, — 0. Passing
through subsequences if necessary, we may assume that lim (||za]|2+||yn||?) = b exists.
n—o00

By the choice of (Zy,¥n,2n) We see that b # 0. Next we observe that, for all large n,

[£n + ¥all® + |20 — ynll> + &n
2llznll + 2llynll® — 7n
En + Tng(Tn, Yns Un)
2||znlt? + 2llynll? ~ 7n
€n + 1Cni(X)
2l|lzall? + 2llyall® —

g(zn’ yfh zn) <

< 9(Tn,Yn,yn) +

< Oni(X) +

Thus Cny(0+,X) — € < Cny(X) € Cny(0+, X) for all € > 0. Therefore Cny(0+,X)
= Cnj(X) which implies that Cnj(-, X) is continuous at 0. Hence the continuity of
Cni(-, X) is established. 0

We are now ready to obtain an important tool.
COROLLARY 3.4. Cnj(a,X) = Cni(a, X).

ProoF: Clearly, Cnj(a, X) < CNJ(G,X). To show Cnj(a, X) > Cni(a, )2), let
0 > 0, @ € [0,a] and suppose Z,y,Z € X not all of which are zero and for which
|7-Z|| = |z If £=0, then g(%,%,Z) = 1 < Cni(a, X). If T 0, choose £ > 0
such that € < §||Z||. Since

e e O Y G e

B e E R X R P (R PN

the set {n € N: jcn —c| < § and |lyn — zall < allzn|| + € < (@ + 8)|lza |} belongs to .
In particular,

¢ < 9(TnsYnr 2n) + 96
< Cnjla+8,X)+6 for some n.

The inequality Cnj (a, X ) <€ Cnifa, X) follows from the arbitrariness of § and the
continuity of Cny(-, X). 0

https://doi.org/10.1017/50004972700033694 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972700033694

232 S. Dhompongsa, P. Piraisangjun and S. Saejung (8]

This result also follows from the fact that the parameterised Jordan-von Neumann
constant is finitely determined.
The following Lemma is a modification of [6, Lemma 2.3].

LEMMA 3.5. Let X be a Banach space without weak normal structure, then for
any 0 <e <1 and each 1/2 < r <1, there exist 1 € Sx and z,,13 € rSx satisfying
(i) z2—z3 =azy with la—r|<e,
(i) |jzy —z2]| >1—¢, and
(i) |ler+z2ll > QA +7)— & ||zs+ (—z1)|| > Br—1) -
ProOOF: Put n = min{(e/12r),2 — (1/7)}, and let z, be a sequence in Sx with
Zn 3 0 and
1-n<|lzn1 -2zl <147

for sufficiently large n and for any z € co{zx}p_;. Take ng € N, y € co{z,},2, and a
norm 1 supporting functional f of z; such that

-
Iyl < 1, [(F, 20| <7, 1 =1 < llzmg = 21l || 27m = || < 14+,

and

>2-3n.

21 — Zno
- Z
I es =g =2

21— zﬂo”

Put z1 = (21 — 2ny)/(ll21 — Znoll), 2 = rz1 and z3 = rz,,. We show that (i), (ii)
and (iii) hold. We first note that x2 — z3 = r(21 — 2ny) = 7||21 — Zny||z1. Observe that
1 -7 < |lz1 = Znoll <141, 50 |r|lz1 — 2yl| — 7| < ™1 < &, hence (i) holds. Next, since
1/2<r<1,

lr(l + Iz, — Zno”) - ll = r(l + {|z1 —znOII) -1<r2+n)—-1=(2r—-1)+rn.
This implies

lz1 = 22l = [|[rz1 + (1 = 1)z — 7|21 = 2ng |21 = r2m,
2 rllz1 = znoll = |1 = 7 = rll21 — 2ng ]
>r(2-3n)—-(2r—-1)—my
=2r—-3rp—-2r+1-ry
>1-—e.

Thus (ii) follows.
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To verify (iii) we first note the estimate ||rz; — rz,, — 21| = ”(1 - 1)z + 1(z1
— (21 ~ 2ny)) , £ (1-r)+rm<(1-r)+rn. Using this we have,
o1 — @)l = llo1 = 12l |
2 |lrzng = (rz1 — Zno)|| — lIrz1 — 12y — 24|
2 21|\ 2n, —%H -(l=r)—rn

>2r—-2rm—(1-r)—1rn
>(3r—-1)—=e

We now estimate ||z1 + z2||. From the definition of f, we have

”$1+$2” Z (f,$1+'l‘21) =T+(f,m1)
=T+M:_M

ll21 = zno |

The proof of the Lemma is now complete. 0

We now obtain sufficient conditions for X to have uniform normal structure, the
second of which improves [13, Corollary 4] which states that “A Banach space X with
Cnjy{(X) < 5/4 has uniform normal structure.”

THEOREM 3.6. Let X be a Banach space. If

1+7)2+@3r-1)7°

CNJ(T:X) < 2(1 +'I‘2)

1
, forsome re€ (5’1}’

or
3+V5

4 ’

CNJ(Oa X) <

then X has uniform normal structure.

ProOF: It suffices to show that these conditions imply X has normal structure.
As then, by Corollary 3.4, it follows that X also has normal structure, so X has
super-normal structure, by Corollary 2.4, and hence X has uniform normal structure
by Theorem 2.5.
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For the case Cny(r, X) < ((1 +7) + (3r — 1)%)/(2(1 + 7)) we first observe that
from Remark 3.1(3), X is uniformly nonsquare and so in turn is reflexive. Thus, normal
structure and weak normal structure coincide. It then suffices to prove that X has weak
normal structure.

By the continuity of Cn3(-, X), Cns(r', X) < (1 +7)% + (3r - 1)?)/(2(1 +r2))
for some r’ > r. Choose m € N such that r + (1/m) < r’. Suppose X does not have
weak normal structure. By Lemma 3.5 there exist z,, € Sx and y,,2z, € rSx such
that, for each n € N,

. 1
Yn — Zn = QpZn With |a, — 7| < ,
n+m
2 2 2 1 2
len = 9all? > (1= =) lon +3all? > (147 - ——),
and
len — zal? > ((3r— 1) - ——)"
n n n+m .

Observe that |jyp — znll = an <7+ (1/n+m) <r+ (1/m) < ' and

liminf ||z, + y,]|2 = (1 +7)? and liminf |z, — 2,02 > (3r — 1)
—o0 4 n—roo

Thus

1+7)?+@3r-1)7°

lim inf lln + yn“2 + [lzn — zn”2
2(1 + r2)

n=oo 2|lznl? + |lyall? + llznl|?
< CNJ(T’v X)
(1+7)% 4 (3r —1)°

201 + 12)

(3.1)

N

This contradiction shows that X must have weak normal structure as desired.

For the case Cnj(0,X) < (3 +\/5)/4, we first show that Cnj(0,X)
< ((1+7)*+1)/(2(1 +7?)) for any r € (1/2,1]. The proof of this is the same as
above except that here we consider the lower bound (1 — (1/m + n))2 for ||z — ynl|?
instead of the one for ||z, — z,]|>. Thus (3.1) becomes

(1+7)?+1
2(1+12)

2
(1 + T) + 1 < liminf”z" + y‘"”2 + ”Eﬂ - yn”2
~

0+ S I T ) S WO X) <

which is impossible. The conclusion now follows by noting that ((1+r)* +1)/(2(1 + r2))
achieves a maximum of (3 + v/5)/4 at r = (V5 -1)/2 € (1/2,1]. 0
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NoOTE. The restriction r € (1/2,1] in the first inequality of Theorem 3.6 reflects the
fact that for r < 1/2 the right hand side is less than or equal to one. Indeed, from
Remark 3.1(4) the first inequality in Theorem 3.6 is only possible if

(1+7)?+@3r-1)7° S dr
2(1+72) T 44

that is, if r € (ry, 1] where r; = 0.87 is the real root of the polynomial 223 -322+8z-6.
Thus, Theorem 3.6 only gives us information near r = 1.

COROLLARY 3.7. Let X be a Banach space. If Cnj3(1,X) < 2, then X has
uniform normal structure.

ProoF: This follows immediately from Theorem 3.6 with r = 1. a

Utilising Corollary 3.7, Tasena [26] has shown “Cni(a, X) < (1 4+ a)?/ (1 +a?)
for some a € (0,1] implies X has uniform normal structure”. This improvement of
Theorem 3.6 is quite strong since

(1+a)? 4a  (1+a)®+(3a-1)°
f 1).
1T a2 >max(1+4+a2, >0+ a) ) or a € (0,1)
We now consider the case when X is a Hilbert space, thereby extending Remark
2.1(2).
THEOREM 3.8. Let H be a Hilbert space. Then
4a
H=1+——
Crala, H) tiTa

for all a € [0, 2].

PROOF: Let a € [0,2] and z,y,z € H with z # 0 and ||y — 2| = ¢||z|| for some
a € [0,a]. Then

e +yll® +llz — 21 _ 2ll=)l + liyll® + llIi + 2ll=[llly — 2]

2Mall? + Tyl + T2 202l + Tl + N2l
2a||z||?
DY P :J=|2”+ Ty + 2172
2a|z||?
S T ”y”— /2
4
<1+ ﬁaaz'
Thus, by Remark 3.1(4), Cnj(a, H) =1+ (4a)/(4 + a?). 1]
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QUESTION. Is X a Hilbert space if Cni(a,X) = 1+ (4a)/ (4 + a?) for some a € (0,2)?
Theorem 3.8 and Corollary 3.7 give us the following
COROLLARY 3.9. Every Hilbert space has uniform normal structure.

We now give a connection between the constant Cnj(:, X) and the modulus of
convexity dx(-) (see (2.2)).

THEOREM 3.10. Let X be a Banach space, ¢ € [0,2], and 8 > 0. If
Cni(B, X) < (44 (e — B)*)/(3+ (B+1)?), then 5x(e) > 0.

PROOF: Suppose dx(e) = 0, then there exist z,,y, € Sx such that ||z, —yn|| =€
for all n € N and nler;o |lzn + yn|l = 2. Put 2z, = yn — Brn. Then, for each n € N, we

have yn — 2zn = BZn, ||zall = [lyn — BZn|l <1+ B and |5 = 2zall > |"xn —ynll - ”,B-Tn”I
= e — B|. Thus
_m2 2 _ 2 — 32
4+(E ﬂ)2 s llminf ”xn+gn“ +”-:n zﬂ”2 S CNJ(,B,X) < 4+(€ ﬂ)za
3+(B+1)°  noo 2zl + lynl2 + llzall 3+ (B+1)
a contradiction. 1]
Note that Theorem 3.10 is applicable for all 3 € [0, 81] where B, is the root of the

equation
4B _4+(-8)’
4+82 3+(1+p8)%

The above theorem immediately yields the following.

COROLLARY 3.11. If, for € € [0,2], Cns(0,X) < (4+¢€?)/4, then dx(e) > 0.
In particular, every Hilbert space is uniformly convex, that is, dx(¢) > 0 for every
e €(0,2).

1+

REMARK 3.12.
(1) Corollary 3.11 shows that if Cnj(X) < 5/4, then dx(1) > 0.
(2) Cny(0,X) <2 if and only if Cnj(0,X) < (4 +€2)/4 for some ¢ € (0,2).
Thus, this gives us a simpler proof of [13, Theorem 1] which states that
“Cn3(0,X) < 2 if and only if X is uniformly nonsquare.”
(3) Since Cny(0,X) = Cny(0,X?*), the corresponding results in Theorem 3.6
and Corollary 3.11 hold for X* as well.

QuESTION. Does the equality Cnj(a, X) = Cnj(a, X*) hold for a € (0,2]?

COROLLARY 3.13. If Cnj(-,X) is concave and Cnj(a,X) < (3 + 5
+(5 — v/5)a)/4 for some a € [0,1], then X has uniform normal structure.

Proor: If Cni(1,X) < 2, we are done by Corollary 3.7. Let Cni(1,X) = 2
and suppose that X does not have uniform normal structure. Therefore Cnj(0,X)
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> (3+V5)/4 by Theorem 3.6. By the concavity of Cnj(-,X), we have for all a
€ [0,1],

3+\/5+(5—\/5)a

Cni{a, X) 2 (1 — a)Cni(0, X) + aCni(1, X) 2 1 ,

a contradiction. 0
QUESTION. Is Corollary 3.13 still valid if we drop the assuption of concavity?

REMARK 3.14. In the definition of a u-space (see (2.4)), we can replace z,y in Sx by
z,y € Bx. To see this, we first observe that, ||z]| > ||z + y|| — lly||. Thus,

(3.2) if z,y € Bx and H
then ||z|| > 1 — 26 and |ly|| > 1 — 24.

%” > 1— ¢ for some § > 0,
From (3.2) if we put ' = z/||z|| and 3’ = y/||y|| we obtain

r+y
2

=5

(3.3) ;

H>1-&

> 1 — 34, whenever H

Indeed, (3.3) follows from the fact that ||z’ — z|| < 26 and ||y’ — y|| < 26, together with
the inequality
= +y'll > llz +yll = I’ — 2l = lly" - yll.

Now, given any € > 0, choose § € (0, (3¢)/4) so that for z/,y’ € Sx,

lel+yl
2

>1—6=>f(y’)>1—§foralleVI;.

Then, if z,y € Bx, and ||(z + y)/2|| > 1—(6/3), (3.3) implies that (=’ +y)/2|| >1-6
where 2’ = z/||z|| and ¥ = y/||yl|]. Note, by (3.2), that ||y’ — y|| < (26)/3. Fix
f € V, = V,+ and consider the inequalities

I+ 5> @)+ 2 2 f6) + I ~ ol > F@) + S ) = F) > 1 5,
Consequently, f(y) > 1 — ¢ as required.

THEOREM 3.15. For 1 < p < oo, all LP(Q) spaces satisfy Cny(1, LP(2)) < 2.
Indeed, all u-spaces X have Cnjy(a,X) <2 forall 0 <a < 2.

PROOF: Suppose Cnj(2-4,X) = 2 for all sufficiently small § > 0. For one
such 8 choose I,,yn,zn, € Bx of which at least one belongs to Sx and such that
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lyn — 2nll < (2 = 8)|zn|| for each n and g(zn,Yn, 24) /* 2. Consider

lz + yli* + |z - 2|12

2|l + llyll? + [I=112

< 201=0? + liwll? + 112112 + 2(li=llllgll + l=1ili=])
S 2(jlt? + llyll? + 1=l

2(ll={Hlyll + I=Ml=l)
\
2)|z(1 + llgl® + 11|

(3.4) 9(z,y,2) =

=1+

This implies
2||znllllynll + 2lznllll2n ]l

-1
2lznll? + llynll? + [l2nll?

and then \ \
(llzall = Nlynl)” + (lzall = lizal))
2|lznll + llynll® + lznll?

— 0.

Since, for each n, one of z,,, yn, 2, belongsto Sx, we must have ||z,||, ||yn/l, | 2] = 1
for some subsequence (n’) of (n). From this, together with (3.4), one can conclude
that

(3.5) |Znr + Ynrll, 120 — 2pr|| = 2.

Take fn € V,, for each n. Since X is a u-space, we have, by (3.5) and (2.4),
far (Tt — ypr) = 0 and frr(z,0 + 25/) = 0. Therefore,

2“xn'” = 2fn'(zn’) = fn'(zn’ - yn') + fn’(zn’ + zn’) + fn'(yn’ - zn’)
£ fn'(zn’ - yn’) + fn’(xn’ + zn’) + ”yn’ - zn’”
< fn’(zn’ - yn’) + fn’(xn’ + zﬂ’) +2-4.

Thus, 2 € 2 — ¢ a contradiction. 1!

REMARK 3.16.
(1) In [2], it is shown that Cny(LP) = 2(/9=1 for 1 < p < oo, where
t = min{p,q} and (1/p) + (1/g) = 1. Thus, while Cny(LP) is close
to 2 for p large, or near 1, Theorem 3.15 still applies and says that for
1 < p < o0, all LP spaces have uniform normal structure.
(2) As a measure of uniform nonsquareness, we say X is £-inquadrate (e-
InQ), for 0 < € < 2, if for any sequences (), (y») in Bx,

[|Zn + yn|| = 2 implies limsup ||z, — yn|| < €
n—oo
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In [26], Tasena introduces e-u-spaces and e-u-smooth spaces and proves
that “all e-u-spaces have Cnj(2 —-6,X) < 2 for all § > 2¢”. He also
observes that € — In() spaces are £-u-spaces.

(3) A long standing open problem is whether Cnj(0,X) < 2 implies the
fixed point property. It now appears that Cnj(1, X) < 2 implies uniform
normal structure which in turn implies the fpp. Concerning this open
problem, it is interesting to ask what is the smallest a € (0,1) for which
the fpp follows whenever Cnj(a, X) < 2.
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