Bull. Austral. Math. Soc. Vol. 67 (2003) [225-240]

GENERALISED JORDAN-VON NEUMANN CONSTANTS AND UNIFORM NORMAL STRUCTURE

S. DHOMPONGSA, P. PIRAISANGJUN AND S. SAEJUNG

We introduce a new geometric coefficient related to the Jordan-von Neumann constant. This leads to improved versions of known results and yields new ones on super-normal structure for Banach spaces.

1. INTRODUCTION

The notions of normal structure and uniform normal structure play an important role in metric fixed point theory (see Goebel and Kirk [10]). A number of Banach space properties have been shown to imply uniform normal structure. Some sufficient properties for a Banach space X to have uniform normal structure are:

- (i) J(X) < 3/2 (see Gao and Lau [6]),
- (ii) R(X) > 0 (see Gao [5]),
- (iii) $C_{NJ}(X) < 5/4$ (see Kato, Maligranda and Takahashi [13]), and
- (iv) X is a u-space, a class of spaces that includes uniformly convex spaces and uniformly smooth spaces (see Gao and Lau [6]).

Recently, Kirk and Sims [17] introduced a new variant, ϕ -uniform normal structure, which lies strictly between normal structure and uniform normal structure.

In this paper we introduce a parameterised coefficient $C_{NJ}(\cdot, X)$ generalising the Jordan-von Neumann constant $C_{NJ}(X)$. Utilising ultraproduct techniques, the coefficient $C_{NJ}(\cdot, X)$ enables us to establish new sufficient conditions for a Banach space to have uniform normal structure. To achieve this, we first show that the coefficients $C_{NJ}(\cdot, X)$ of the space X and $C_{NJ}(\cdot, \tilde{X})$ of its ultrapower \tilde{X} coincide. From this and some other new results, which also improve the number appearing in property (iii) from 5/4 to $(3 + \sqrt{5})/4$, we can apply the powerful ultraproduct technique to show that X has uniform normal structure whenever $C_{NJ}(1, X) < 2$. An example of a Banach space X is given which has $C_{NJ}(1, X) < 2$ and hence uniform normal structure, but for which neither (i) or (iii) apply. An exact determination of the coefficient $C_{NJ}(\cdot, X)$ is obtained when X is a Hilbert space. More generally, a connection between $C_{NJ}(\cdot, X)$ and the modulus of convexity δ_X is established. Finally, we investigate the constants $C_{NJ}(\cdot, X)$ when X is a u-space. This leads to an alternative proof of (iv).

Received 24th June, 2002

Supported by Thailand Research Fund under grant BRG/01/2544. The third author was also supported by the Royal Golden Jubilee program under grant PHD/0145/2542.

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9727/03 \$A2.00+0.00.

2. PRELIMINARIES

Throughout the paper we let X and X^{*} stand for a Banach space and its dual space, respectively. By a non-trivial Banach space X we shall mean that either X is a real space with dim $X \ge 2$, or a complex space with dim $X \ge 1$. We shall denote by B_X and S_X the closed unit ball and the unit sphere of X, respectively. For a sequence (x_n) in X, $x_n \xrightarrow{w} x$ stands for weak convergence to x. For $x \in X \setminus \{0\}$, let ∇_x denote the set of norm 1 supporting functionals at x. This is the subdifferential of the norm at the point x, which is nonempty by the Hanh-Banach Theorem.

We shall say that a nonempty weakly compact convex subset C of X has the fixed point property (fpp for short) if every nonexpansive mapping $T: C \to C$ has a fixed point (that is, there exists $x \in C$ such that T(x) = x). Recall that T is nonexpansive if $||Tx - Ty|| \leq ||x - y||$ for every $x, y \in C$. We shall say that X has the fixed point property (fpp) if every weakly compact convex subset of X has the fpp. Let A be a nonempty bounded set in X. The number $r(A) = \inf\{\sup_{y \in A} ||x - y|| : x \in A\}$ is called the Chebyshev radius of A. The number diam $A = \sup_{x,y \in A} ||x - y||$ is called the diameter of A. A Banach space X has normal structure if

$$(2.1) r(A) < \operatorname{diam} A$$

for every bounded convex closed subset A of X with diam A > 0. When (2.1) holds for every weakly compact convex subset A of X with diam A > 0, we say X has weak normal structure. Normal structure and weak normal structure coincide if X is reflexive. A space X is said to have uniform normal structure if $\inf \{(\dim A)/(r(A))\} > 1$, where the infimum is taken over all bounded convex closed subsets A of X with diam A > 0. Weak normal structure, as well as many other properties imply the fixed point property. Some relevant papers are Opial [22], Kirk [16], Sims [24], Garcia-Falset [7], and Gacia-Falset and Sims [8].

The modulus of convexity of X (see [3, 4, 19, 20, 21]) is the function $\delta_X : [0, 2] \rightarrow [0, 1]$ defined by

(2.2)
$$\delta_X(\varepsilon) = \inf \left\{ 1 - \left\| \frac{x+y}{2} \right\| : x, y \in S_X, \|x-y\| \ge \varepsilon \right\}.$$

When X is non-trivial, we can deduce that

$$\delta_X(\varepsilon) = \inf \left\{ 1 - \left\| \frac{x+y}{2} \right\| : x, y \in B_X, \|x-y\| \ge \varepsilon \right\}$$

= $\inf \left\{ 1 - \left\| \frac{x+y}{2} \right\| : x, y \in S_X, \|x-y\| = \varepsilon \right\}$
= $\inf \left\{ 1 - \left\| \frac{x+y}{2} \right\| : x, y \in B_X, \|x-y\| = \varepsilon \right\}.$

If $\delta_X(1) > 0$, then X has uniform normal structure (see [9]).

The modulus of smoothness of X (see [3, 4, 19, 20]) is the function $\rho_X : [0, \infty) \rightarrow [0, \infty)$ defined by

(2.3)
$$\rho_X(\tau) = \sup\left\{\frac{\|x+\tau y\| + \|x-\tau y\|}{2} - 1 : x, y \in S_X\right\}$$
$$= \sup\left\{\frac{\tau\varepsilon}{2} - \delta_{X^*}(\varepsilon) : \varepsilon \in [0, 2]\right\}.$$

A space X is called uniformly convex if $\delta_X(\varepsilon) > 0$ for all $0 < \varepsilon < 2$. It is called uniformly smooth if $\rho'_X(0) = \lim_{\tau \to 0} (\rho_X(\tau))/\tau = 0$. Uniformly convex spaces and uniformly smooth spaces are examples of u-spaces, where a space X is called a *u*-space if for any $\varepsilon > 0$, there exists $\delta > 0$ such that for each $x, y \in S_X$,

(2.4)
$$\left\|\frac{x+y}{2}\right\| > 1-\delta \Rightarrow f(y) > 1-\varepsilon \text{ for all } f \in \nabla_x.$$

The notion of u-spaces was introduced by Lau [18]. Examples of uniformly convex spaces are the spaces $L^{p}(\Omega)$ where Ω is a measure space such that $L^{p}(\Omega)$ is at least two dimensional and 1 .

A Banach space X is called uniformly nonsquare provided that there exists $\delta > 0$ such that if $x, y \in S_X$, then $||x+y||/2 \leq 1-\delta$ or $||x-y||/2 \leq 1-\delta$. Uniformly nonsquare spaces are superreflexive (see James [11]). Every u-space is uniformly nonsquare (see Lau [18]), hence, it is superreflexive.

The Jordan-von Neumann constant $C_{NJ}(X)$ of a Banach space X is defined by

(2.5)
$$C_{NJ}(X) = \sup \left\{ \frac{\|x+y\|^2 + \|x-y\|^2}{2(\|x\|^2 + \|y\|^2)} : x, y \in X \text{ not both zero } \right\}$$
$$= \sup \left\{ \frac{\|x+y\|^2 + \|x-y\|^2}{2(\|x\|^2 + \|y\|^2)} : x \in S_X, y \in B_X \right\}.$$

REMARK 2.1. We collect together some properties of the Jordan-von Neumann constant $C_{NJ}(X)$ (see [2, 12, 13, 14, 15, 25]):

- (1) $1 \leq C_{NJ}(X) \leq 2$.
- (2) X is a Hilbert space if and only if $C_{NJ}(X) = 1$.
- (3) $C_{NJ}(X) = C_{NJ}(X^*).$
- (4) X is uniformly nonsquare if and only if $C_{NJ}(X) < 2$ and this happens if and only if $\delta_X(\varepsilon) > 0$ for some $\varepsilon \in (0, 2)$.
- (5) If $C_{NJ}(X) < 5/4$ then X, as well as its dual X^* , have uniform normal structure, and hence both X and X^* have the fixed point property.

One technique used in this paper is the "ultraproduct" technique. We refer to Askoy and Khamsi [1] and Sims [23] for a complete discussion on the topic. However, let us briefly recall the construction of an ultrapower of a Banach space X. As a first step we consider the space $l_{\infty}(X)$ consisting of all bounded sequences (x_n) of elements of X. The norm in $l_{\infty}(X)$ is given by the formula $||(x_n)|| = \sup_{n \in \mathbb{N}} ||x_n||$, where N is the set of positive integers. Now, let \mathcal{U} be an ultrafilter on N. The set $\mathcal{N} = \{(x_n) \in l_{\infty}(X) : \lim_{\mathcal{U}} ||x_n|| = 0\}$ is a closed linear subspace of $l_{\infty}(X)$. Here, $\lim_{\mathcal{U}}$ stands for the limit over the ultrafilter \mathcal{U} . The ultrapower \tilde{X} of X with respect to \mathcal{U} is defined to be the quotient space $l_{\infty}(X)/\mathcal{N}$. By \tilde{x} we denote the equivalent class of $x = (x_n)$. From the definition of the quotient norm, we can derive the following canonical formula $||\tilde{x}|| = \lim_{\mathcal{U}} ||x_n||$. Identifying an element $x \in X$ with the equivalence class of the constant sequence (x, x, \ldots) , we can treat X as a subspace of \tilde{X} . In what follow, we shall consider only non-trivial ultrafilters on the set of positive integers. Under this setting, the ultrapower \tilde{X} is finitely representable in X. Consequently, \tilde{X} inherits all finite-dimensional geometrical properties of X.

DEFINITION 2.2: Let \mathcal{P} be a Banach space property. We say that a Banach space X has the property super- \mathcal{P} if every Banach space finitely representable in X has property \mathcal{P} .

THEOREM 2.3. (See [1, Theorem 3.5].) Let X and Y be Banach spaces and suppose that Y is finitely representable in X. Then there is an ultrafilter \mathcal{U} on the set N such that Y is isometrically isomorphic to a subspace of \widetilde{X} .

We remark that when the property \mathcal{P} is hereditary: that is, any subspace of a space with \mathcal{P} also has \mathcal{P} , one has the following stronger conclusion.

COROLLARY 2.4. (See [1].) Let \mathcal{P} be a Banach space property which is inherited by subspaces. Then a Banach space X has super- \mathcal{P} if and only if every ultrapower \tilde{X} of X has \mathcal{P} .

THEOREM 2.5. (See [1].) Let X be a Banach space. If X has super-normal structure, then X has uniform normal structure.

3. RESULTS

Let us begin with our generalisation of the Jordan-von Neumann constant. For $a \ge 0$ define,

$$C_{NJ}(a, X) = \sup \left\{ \frac{\|x+y\|^2 + \|x-z\|^2}{2\|x\|^2 + \|y\|^2 + \|z\|^2} : x, y, z \in X \text{ not all zero} \\ \text{and } \|y-z\| \leq a\|x\| \right\}$$

Jordan-von Neumann constants

$$= \sup \left\{ \frac{\|x+y\|^2 + \|x-z\|^2}{2\|x\|^2 + \|y\|^2 + \|z\|^2} : x, y, z \in B_X \text{ not all zero} \right.$$

and $\|y-z\| \leq a\|x\| \right\}$
$$= \sup \left\{ \frac{\|x+y\|^2 + \|x-z\|^2}{2\|x\|^2 + \|y\|^2 + \|z\|^2} : x, y, z \in B_X \text{ of which at least one} \right.$$

belongs to S_X and $\|y-z\| \leq a\|x\| \right\}.$

REMARK 3.1.

- (1) Obviously, $C_{NJ}(0, X) = C_{NJ}(X)$ (see (2.5)).
- (2) $C_{NJ}(a, X)$ is a nondecreasing function with respect to a.
- (3) If $C_{NJ}(a, X) < 2$, for some $a \ge 0$, then $C_{NJ}(X) < 2$ and consequently X is uniformly nonsquare (see Remark 2.1(4)).
- (4) $1 + (4a/4 + a^2) \leq C_{NJ}(a, X) \leq 2$ for all $a \geq 0$ and $C_{NJ}(a, X) = 2$ for all $a \geq 2$.

To see that (4) is true, we begin by proving the left inequality. For this, we take any $x \in S_X$ and put y = (a/2)x = -z. We then have y - z = ax and so,

$$C_{\rm NJ}(a,X) \ge \frac{\|x+y\|^2 + \|x-z\|^2}{2\|x\|^2 + \|y\|^2 + \|z\|^2} = \frac{(1+(a/2))^2 \|x\|^2 + (1+(a/2))^2 \|x\|^2}{2\|x\|^2 + 2(a^2/4)\|x\|^2}$$
$$= \frac{2(1+(a/2))^2}{2(1+(a^2/4))} = \frac{4+4a+a^2}{4+a^2} = 1 + \frac{4a}{4+a^2}.$$

Next, we show that $C_{NJ}(a, X) \leq 2$. By the triangle inequality, we have

$$\begin{aligned} \|x+y\|^2 + \|x-z\|^2 &\leq \left(\|x\|^2 + 2\|x\|\|y\| + \|y\|^2\right) + \left(\|x\|^2 + 2\|x\|\|z\| + \|z\|^2\right) \\ &\leq \left(2\|x\|^2 + 2\|y\|^2\right) + \left(2\|x\|^2 + 2\|z\|^2\right) \\ &= 4\|x\|^2 + 2\|y\|^2 + 2\|z\|^2, \end{aligned}$$

from which it is clear that $C_{NJ}(a, X) \leq 2$. Finally, we observe that the function $a \mapsto 1 + (4a/4 + a^2)$ is strictly increasing on [0, 2] and attains its maximum of 2 at a = 2. It follows that $C_{NJ}(a, X) = 2$ for all $a \ge 2$.

EXAMPLES 3.2. (1) $(l_{\infty} - l_1 \text{ norm})$ Let $X = \mathbb{R}^2$ be equipped with the norm defined by

$$||x|| = \begin{cases} ||x||_{\infty} & \text{if } x_1 x_2 \ge 0, \\ ||x||_1 & \text{if } x_1 x_2 \le 0. \end{cases}$$

Take x = (1,1), y = (0,1) and z = (-1,0). Then we have y - z = (1,1) = x and $||x + y|| = ||(1,2)||_{\infty} = 2$, $||x - z|| = ||(2,1)||_{\infty} = 2$, ||z|| = 1. So 2 = (4+4)/4

= $(||x + y||^2 + ||x - z||^2)/(2||x||^2 + ||y||^2 + ||z||^2) \leq C_{NJ}(1, X) \leq 2$. Hence $C_{NJ}(1, X) = 2$. It is not difficult to see that $\delta_X(\varepsilon) = \max\{0, (\varepsilon - 1)/2\}$ and so $\delta_X(1) = 0$. We shall shortly see (Remark 3.12(1)) that this implies $C_{NJ}(0, X) \geq 5/4$, however, we do not know its exact value. This example shows that sometimes it is easy to compute $C_{NJ}(a, X)$ at some point $a \in (0, 2)$, but not at a = 0.

(2) Let $1 and let the norm on <math>X = \mathbb{R}^2$ now be defined by

$$||x|| = \begin{cases} ||x||_1 & \text{if } x_1 x_2 \ge 0, \\ ||x||_p & \text{if } x_1 x_2 \le 0. \end{cases}$$

Under this norm, it can be shown that $\delta_X(1) = 0$, $C_{NJ}(X) = 1 + 2^{2/p-2}$, $J(X) \ge 2^{1/p}$ and $C_{NJ}(1,X) < 2$, where James' nonsquare constant J(X) is defined by $J(X) = \sup \left\{ \min\{||x + y||, ||x - y\} : x, y \in S_X \right\}$. The verification that $C_{NJ}(1,X) < 2$ follows by an argument similar to that given later in the proof of Theorem 3.15. We shall shortly see that all spaces X with $C_{NJ}(1,X) < 2$ have uniform normal structure (Corollary 3.7). This example also reveals that we may have $C_{NJ}(X)$ close to 2 but still have uniform normal structure (also see the observation given later at the beginning of Remark 3.16).

These examples show that information on $C_{NJ}(a, X)$ for general a proves to be useful. We note in passing that $C_{NJ}(1, l_2(X)) < 2$ whenever $C_{NJ}(1, X) < 2$, where $l_2(X)$ is the space of sequences (x_n) of elements of X for which the sequence of norms $(||x_n||)$ is in l_2 , with the norm of (x_n) defined to be the l_2 -norm of $(||x_n||)$.

We aim to show that the generalised Jordan-von Neumann constants $C_{NJ}(a, X)$ of the space X and $C_{NJ}(a, \tilde{X})$ of its ultrapower coincide. Before that we need to establish the continuity of the function $C_{NJ}(\cdot, X)$.

PROPOSITION 3.3. $C_{NJ}(\cdot, X)$ is a continuous function on $[0, \infty)$.

PROOF: We have already noted that $C_{NJ}(\cdot, X)$ is nondecreasing, thus suppose that for some a > 0,

$$\sup_{b < a} C_{\mathrm{NJ}}(b, X) = \alpha < \beta < \gamma = \inf_{b > a} C_{\mathrm{NJ}}(b, X).$$

Choose $\gamma_n \downarrow a$ and $x_n, y_n, z_n \in B_X$ of which at least one belongs to S_X and such that $||y_n - z_n|| = \gamma_n ||x_n||$ and $g(x_n, y_n, z_n) \ge \beta$ for all $n \in \mathbb{N}$. Here $g(x, y, z) = (||x + y||^2 + ||x - z||^2)/(2||x||^2 + ||y||^2 + ||z||^2)$. Choose $\eta_n \downarrow 1$ such that $\gamma_n/\eta_n < a$ for all n. Thus, $g(\eta_n x_n, y_n, z_n) = g(x_n, (y_n/\eta_n), (z_n/\eta_n)) \le \alpha$ for all $n \in \mathbb{N}$. Take a subsequence (n') of (n) such that all the sequences

$$||x_{n'} + y_{n'}||, ||x_{n'} - z_{n'}||, ||x_{n'}||, ||y_{n'}|| \text{ and } ||z_{n'}||$$

converge. As $||x_n + w|| - (\eta_n - 1)||x_n|| \le ||\eta_n x_n + w|| \le ||x_n + w|| + (\eta_n - 1)||x_n||$ for any $w \in X$ and $\eta_n \to 1$, we have $\lim_{n'} ||\eta_{n'} x_{n'} + y_{n'}|| = \lim_{n'} ||x_{n'} + y_{n'}||$ and $\lim_{n'} ||\eta_{n'} x_{n'} + y_{n'}|| = \lim_{n'} ||x_{n'} + y_{n'}||$

 $|z_{n'}|| = \lim_{n'} ||x_{n'} - z_{n'}||$. Consequently, $\beta - \alpha \leq g(x_{n'}, y_{n'}, z_{n'}) - g(\eta_{n'}x_{n'}, y_{n'}, z_{n'}) \rightarrow 0$, a contradiction. This finishes the proof when a > 0.

For a = 0, given $\varepsilon > 0$ we take a triple (x_n, y_n, z_n) in B_X^3 with at least one of x_n, y_n, z_n belonging to S_X , $||y_n - z_n|| = \alpha_n ||x_n||$, $\alpha_n \downarrow 0$, and

$$C_{\mathrm{NJ}}(0+,X)-\varepsilon := \inf_{a>0} C_{\mathrm{NJ}}(a,X)-\varepsilon < \lim_{n\to\infty} g(x_n,y_n,z_n).$$

Put $\varepsilon_n = 4\alpha_n + \alpha_n^2$ and $\gamma_n = \alpha_n ||x_n|| (||y_n|| - \alpha_n ||x_n||)$. Thus $\varepsilon_n, \gamma_n \to 0$. Passing through subsequences if necessary, we may assume that $\lim_{n \to \infty} (||x_n||^2 + ||y_n||^2) = b$ exists. By the choice of (x_n, y_n, z_n) we see that $b \neq 0$. Next we observe that, for all large n,

$$g(x_n, y_n, z_n) \leqslant \frac{\|x_n + y_n\|^2 + \|x_n - y_n\|^2 + \varepsilon_n}{2\|x_n\|^2 + 2\|y_n\|^2 - \gamma_n}$$

$$\leqslant g(x_n, y_n, y_n) + \frac{\varepsilon_n + \gamma_n g(x_n, y_n, y_n)}{2\|x_n\|^2 + 2\|y_n\|^2 - \gamma_n}$$

$$\leqslant C_{\mathrm{NJ}}(X) + \frac{\varepsilon_n + \gamma_n C_{\mathrm{NJ}}(X)}{2\|x_n\|^2 + 2\|y_n\|^2 - \gamma_n}.$$

Thus $C_{NJ}(0+, X) - \varepsilon < C_{NJ}(X) \leq C_{NJ}(0+, X)$ for all $\varepsilon > 0$. Therefore $C_{NJ}(0+, X) = C_{NJ}(X)$ which implies that $C_{NJ}(\cdot, X)$ is continuous at 0. Hence the continuity of $C_{NJ}(\cdot, X)$ is established.

We are now ready to obtain an important tool.

COROLLARY 3.4. $C_{NJ}(a, X) = C_{NJ}(a, \widetilde{X})$.

PROOF: Clearly, $C_{NJ}(a, X) \leq C_{NJ}(a, \widetilde{X})$. To show $C_{NJ}(a, X) \geq C_{NJ}(a, \widetilde{X})$, let $\delta > 0$, $\alpha \in [0, a]$ and suppose $\widetilde{x}, \widetilde{y}, \widetilde{z} \in \widetilde{X}$ not all of which are zero and for which $\|\widetilde{y} - \widetilde{z}\| = \alpha \|\widetilde{x}\|$. If $\widetilde{x} = 0$, then $g(\widetilde{x}, \widetilde{y}, \widetilde{z}) = 1 \leq C_{NJ}(a, X)$. If $\widetilde{x} \neq 0$, choose $\varepsilon > 0$ such that $\varepsilon < \delta \|\widetilde{x}\|$. Since

$$c := \frac{\|\widetilde{x} + \widetilde{y}\|^2 + \|\widetilde{x} - \widetilde{z}\|^2}{2\|\widetilde{x}\|^2 + \|\widetilde{y}\|^2 + \|\widetilde{z}\|^2} = \lim_{\mathcal{U}} \frac{\|x_n + y_n\|^2 + \|x_n - z_n\|^2}{2\|x_n\|^2 + \|y_n\|^2 + \|z_n\|^2} := \lim_{\mathcal{U}} c_n,$$

the set $\{n \in \mathbb{N} : |c_n - c| < \delta \text{ and } \|y_n - z_n\| \leq \alpha \|x_n\| + \varepsilon < (\alpha + \delta) \|x_n\|\}$ belongs to \mathcal{U} . In particular,

$$c < g(x_n, y_n, z_n) + \delta$$

$$\leq C_{NJ}(a + \delta, X) + \delta \quad \text{for some } n.$$

The inequality $C_{NJ}(a, \tilde{X}) \leq C_{NJ}(a, X)$ follows from the arbitrariness of δ and the continuity of $C_{NJ}(\cdot, X)$.

This result also follows from the fact that the parameterised Jordan-von Neumann constant is finitely determined.

The following Lemma is a modification of [6, Lemma 2.3].

LEMMA 3.5. Let X be a Banach space without weak normal structure, then for any $0 < \varepsilon < 1$ and each $1/2 < r \leq 1$, there exist $x_1 \in S_X$ and $x_2, x_3 \in rS_X$ satisfying

- (i) $x_2 x_3 = ax_1$ with $|a r| < \varepsilon$,
- (ii) $||x_1 x_2|| > 1 \epsilon$, and
- (iii) $||x_1 + x_2|| > (1+r) \varepsilon, ||x_3 + (-x_1)|| > (3r-1) \varepsilon.$

PROOF: Put $\eta = \min\{(\varepsilon/12r), 2 - (1/r)\}$, and let z_n be a sequence in S_X with $z_n \xrightarrow{w} 0$ and

$$1 - \eta < \|z_{n+1} - z\| < 1 + \eta$$

for sufficiently large n and for any $z \in co\{z_k\}_{k=1}^n$. Take $n_0 \in \mathbb{N}$, $y \in co\{z_n\}_{n=1}^{n_0}$ and a norm 1 supporting functional f of z_1 such that

$$||y|| < \eta, |\langle f, z_{n_0} \rangle| < \eta, |1 - \eta < ||z_{n_0} - z_1||, ||z_{n_0} - \frac{z_1}{2}|| < 1 + \eta,$$

and

$$\left\|\frac{z_1 - z_{n_0}}{\|z_1 - z_{n_0}\|} - z_{n_0}\right\| > 2 - 3\eta$$

Put $x_1 = (z_1 - z_{n_0})/(||z_1 - z_{n_0}||)$, $x_2 = rz_1$ and $x_3 = rz_{n_0}$. We show that (i), (ii) and (iii) hold. We first note that $x_2 - x_3 = r(z_1 - z_{n_0}) = r||z_1 - z_{n_0}||x_1$. Observe that $1 - \eta < ||z_1 - z_{n_0}|| < 1 + \eta$, so $|r||z_1 - z_{n_0}|| - r| < r\eta < \varepsilon$, hence (i) holds. Next, since $1/2 < r \leq 1$,

$$\left|r(1 + ||z_1 - z_{n_0}||) - 1\right| = r(1 + ||z_1 - z_{n_0}||) - 1 < r(2 + \eta) - 1 = (2r - 1) + r\eta$$

This implies

$$\begin{aligned} \|x_1 - x_2\| &= \left\| rx_1 + (1 - r)x_1 - r \right\| z_1 - z_{n_0} \|x_1 - rz_{n_0} \| \\ &\geqslant r \|x_1 - z_{n_0}\| - |1 - r - r| \|z_1 - z_{n_0}\| | \\ &> r(2 - 3\eta) - (2r - 1) - r\eta \\ &= 2r - 3r\eta - 2r + 1 - r\eta \\ &> 1 - \varepsilon. \end{aligned}$$

Thus (ii) follows.

To verify (iii) we first note the estimate $||rz_1 - rz_{n_0} - x_1|| = ||(1-r)x_1 + r(x_1 - (z_1 - z_{n_0}))|| \leq (1-r) + r\eta < (1-r) + r\eta$. Using this we have,

$$\begin{aligned} \|x_1 - x_3\| &= \|x_1 - rz_{n_0}\| \\ &\geqslant \|rz_{n_0} - (rz_1 - rz_{n_0})\| - \|rz_1 - rz_{n_0} - x_1\| \\ &\geqslant 2r \|z_{n_0} - \frac{z_1}{2}\| - (1 - r) - r\eta \\ &> 2r - 2r\eta - (1 - r) - r\eta \\ &> (3r - 1) - \varepsilon. \end{aligned}$$

We now estimate $||x_1 + x_2||$. From the definition of f, we have

$$\begin{split} \|x_1 + x_2\| &\ge \langle f, x_1 + rz_1 \rangle = r + \langle f, x_1 \rangle \\ &= r + \frac{\langle f, z_1 \rangle - \langle f, z_{n_0} \rangle}{\|z_1 - z_{n_0}\|} \\ &> r + \frac{1 - \eta}{1 + \eta} \\ &= (r + 1) - \frac{2\eta}{1 + \eta} \\ &> (r + 1) - \varepsilon. \end{split}$$

The proof of the Lemma is now complete.

We now obtain sufficient conditions for X to have uniform normal structure, the second of which improves [13, Corollary 4] which states that "A Banach space X with $C_{NJ}(X) < 5/4$ has uniform normal structure."

THEOREM 3.6. Let X be a Banach space. If

$$C_{
m NJ}(r,X) < rac{(1+r)^2 + (3r-1)^2}{2(1+r^2)}, \quad {
m for \ some} \ \ r \in \left(rac{1}{2},1
ight],$$

or

$$C_{\rm NJ}(0,X)<\frac{3+\sqrt{5}}{4},$$

then X has uniform normal structure.

PROOF: It suffices to show that these conditions imply X has normal structure. As then, by Corollary 3.4, it follows that \tilde{X} also has normal structure, so X has super-normal structure, by Corollary 2.4, and hence X has uniform normal structure by Theorem 2.5.

[10]

For the case $C_{NJ}(r, X) < ((1+r)^2 + (3r-1)^2)/(2(1+r^2))$ we first observe that from Remark 3.1(3), X is uniformly nonsquare and so in turn is reflexive. Thus, normal structure and weak normal structure coincide. It then suffices to prove that X has weak normal structure.

By the continuity of $C_{NJ}(\cdot, X)$, $C_{NJ}(r', X) < ((1+r)^2 + (3r-1)^2)/(2(1+r^2))$ for some r' > r. Choose $m \in \mathbb{N}$ such that $r + (1/m) \leq r'$. Suppose X does not have weak normal structure. By Lemma 3.5 there exist $x_n \in S_X$ and $y_n, z_n \in rS_X$ such that, for each $n \in \mathbb{N}$,

$$y_n - z_n = \alpha_n x_n \text{ with } |\alpha_n - r| < \frac{1}{n+m},$$
$$||x_n - y_n||^2 > \left(1 - \frac{1}{n+m}\right)^2, ||x_n + y_n||^2 > \left(1 + r - \frac{1}{n+m}\right)^2,$$

 \mathbf{and}

$$||x_n - z_n||^2 > \left((3r - 1) - \frac{1}{n + m}\right)^2$$

Observe that $||y_n - z_n|| = \alpha_n < r + (1/n + m) < r + (1/m) \leq r'$ and

$$\liminf_{n\to\infty} \|x_n+y_n\|^2 \ge (1+r)^2 \text{ and } \liminf_{n\to\infty} \|x_n-z_n\|^2 \ge (3r-1)^2.$$

Thus

(3.1)
$$\frac{(1+r)^2 + (3r-1)^2}{2(1+r^2)} \leq \liminf_{n \to \infty} \frac{\|x_n + y_n\|^2 + \|x_n - z_n\|^2}{2\|x_n\|^2 + \|y_n\|^2 + \|z_n\|^2} \\ \leq C_{\text{NJ}}(r', X) \\ < \frac{(1+r)^2 + (3r-1)^2}{2(1+r^2)}.$$

This contradiction shows that X must have weak normal structure as desired.

For the case $C_{\rm NJ}(0,X) < (3+\sqrt{5})/4$, we first show that $C_{\rm NJ}(0,X) < ((1+r)^2+1)/(2(1+r^2))$ for any $r \in (1/2,1]$. The proof of this is the same as above except that here we consider the lower bound $(1-(1/m+n))^2$ for $||x_n - y_n||^2$ instead of the one for $||x_n - z_n||^2$. Thus (3.1) becomes

$$\frac{(1+r)^2+1}{2(1+r^2)} \leq \liminf_{n \to \infty} \frac{\|x_n + y_n\|^2 + \|x_n - y_n\|^2}{2(\|x_n\|^2 + \|y_n\|^2)} \leq C_{\rm NJ}(0, X) < \frac{(1+r)^2+1}{2(1+r^2)}$$

which is impossible. The conclusion now follows by noting that $((1+r)^2+1)/(2(1+r^2))$ achieves a maximum of $(3+\sqrt{5})/4$ at $r = (\sqrt{5}-1)/2 \in (1/2, 1]$.

NOTE. The restriction $r \in (1/2, 1]$ in the first inequality of Theorem 3.6 reflects the fact that for $r \leq 1/2$ the right hand side is less than or equal to one. Indeed, from Remark 3.1(4) the first inequality in Theorem 3.6 is only possible if

$$\frac{(1+r)^2 + (3r-1)^2}{2(1+r^2)} \ge 1 + \frac{4r}{4+r^2},$$

that is, if $r \in (r_1, 1]$ where $r_1 \doteq 0.87$ is the real root of the polynomial $2x^3 - 3x^2 + 8x - 6$. Thus, Theorem 3.6 only gives us information near r = 1.

COROLLARY 3.7. Let X be a Banach space. If $C_{NJ}(1, X) < 2$, then X has uniform normal structure.

PROOF: This follows immediately from Theorem 3.6 with r = 1.

Utilising Corollary 3.7, Tasena [26] has shown " $C_{NJ}(a, X) < (1+a)^2/(1+a^2)$ for some $a \in (0, 1]$ implies X has uniform normal structure". This improvement of Theorem 3.6 is quite strong since

$$\frac{(1+a)^2}{1+a^2} > \max\left(1 + \frac{4a}{4+a^2}, \frac{(1+a)^2 + (3a-1)^2}{2(1+a^2)}\right) \text{ for } a \in (0,1).$$

We now consider the case when X is a Hilbert space, thereby extending Remark 2.1(2).

THEOREM 3.8. Let H be a Hilbert space. Then

$$C_{\rm NJ}(a,H) = 1 + \frac{4a}{4+a^2}$$

for all $a \in [0, 2]$.

PROOF: Let $a \in [0,2]$ and $x, y, z \in H$ with $x \neq 0$ and $||y - z|| = \alpha ||x||$ for some $\alpha \in [0,a]$. Then

$$\begin{aligned} \frac{\|x+y\|^2 + \|x-z\|^2}{2\|x\|^2 + \|y\|^2 + \|z\|^2} &\leqslant \frac{2\|x\|^2 + \|y\|^2 + \|z\|^2 + 2\|x\|\|y-z\|}{2\|x\|^2 + \|y\|^2 + \|z\|^2} \\ &\leqslant 1 + \frac{2\alpha\|x\|^2}{2\|x\|^2 + (\|y-z\|^2 + \|y+z\|^2)/2} \\ &\leqslant 1 + \frac{2\alpha\|x\|^2}{2\|x\|^2 + \|y-z\|^2/2} \\ &= 1 + \frac{4\alpha}{4 + \alpha^2} \\ &\leqslant 1 + \frac{4a}{4 + a^2}. \end{aligned}$$

Thus, by Remark 3.1(4), $C_{NJ}(a, H) = 1 + (4a)/(4 + a^2)$.

0

0

QUESTION. Is X a Hilbert space if $C_{NJ}(a, X) = 1 + (4a)/(4 + a^2)$ for some $a \in (0, 2)$? Theorem 3.8 and Corollary 3.7 give us the following

COROLLARY 3.9. Every Hilbert space has uniform normal structure.

We now give a connection between the constant $C_{NJ}(\cdot, X)$ and the modulus of convexity $\delta_X(\cdot)$ (see (2.2)).

THEOREM 3.10. Let X be a Banach space, $\epsilon \in [0,2]$, and $\beta \ge 0$. If $C_{NJ}(\beta, X) < (4 + (\epsilon - \beta)^2)/(3 + (\beta + 1)^2)$, then $\delta_X(\epsilon) > 0$.

PROOF: Suppose $\delta_X(\varepsilon) = 0$, then there exist $x_n, y_n \in S_X$ such that $||x_n - y_n|| = \varepsilon$ for all $n \in \mathbb{N}$ and $\lim_{n \to \infty} ||x_n + y_n|| = 2$. Put $z_n = y_n - \beta x_n$. Then, for each $n \in \mathbb{N}$, we have $y_n - z_n = \beta x_n$, $||z_n|| = ||y_n - \beta x_n|| \le 1 + \beta$ and $||x_n - z_n|| \ge ||x_n - y_n|| - ||\beta x_n|||$ $= |\varepsilon - \beta|$. Thus

$$\frac{4 + (\varepsilon - \beta)^2}{3 + (\beta + 1)^2} \leq \liminf_{n \to \infty} \frac{\|x_n + y_n\|^2 + \|x_n - z_n\|^2}{2\|x_n\|^2 + \|y_n\|^2 + \|z_n\|^2} \leq C_{\mathrm{NJ}}(\beta, X) < \frac{4 + (\varepsilon - \beta)^2}{3 + (\beta + 1)^2},$$

a contradiction.

Note that Theorem 3.10 is applicable for all $\beta \in [0, \beta_1]$ where β_1 is the root of the equation

$$1 + \frac{4\beta}{4+\beta^2} = \frac{4 + (\varepsilon - \beta)^2}{3 + (1+\beta)^2}.$$

The above theorem immediately yields the following.

COROLLARY 3.11. If, for $\varepsilon \in [0,2]$, $C_{NJ}(0,X) < (4+\varepsilon^2)/4$, then $\delta_X(\varepsilon) > 0$. In particular, every Hilbert space is uniformly convex, that is, $\delta_X(\varepsilon) > 0$ for every $\varepsilon \in (0,2)$.

Remark 3.12.

- (1) Corollary 3.11 shows that if $C_{NJ}(X) < 5/4$, then $\delta_X(1) > 0$.
- (2) $C_{NJ}(0, X) < 2$ if and only if $C_{NJ}(0, X) < (4 + \varepsilon^2)/4$ for some $\varepsilon \in (0, 2)$. Thus, this gives us a simpler proof of [13, Theorem 1] which states that " $C_{NJ}(0, X) < 2$ if and only if X is uniformly nonsquare."
- (3) Since C_{NJ}(0, X) = C_{NJ}(0, X^{*}), the corresponding results in Theorem 3.6 and Corollary 3.11 hold for X^{*} as well.

QUESTION. Does the equality $C_{NJ}(a, X) = C_{NJ}(a, X^*)$ hold for $a \in (0, 2]$?

COROLLARY 3.13. If $C_{NJ}(\cdot, X)$ is concave and $C_{NJ}(a, X) < (3 + \sqrt{5} + (5 - \sqrt{5})a)/4$ for some $a \in [0, 1]$, then X has uniform normal structure.

PROOF: If $C_{NJ}(1, X) < 2$, we are done by Corollary 3.7. Let $C_{NJ}(1, X) = 2$ and suppose that X does not have uniform normal structure. Therefore $C_{NJ}(0, X)$

۵

[12]

 $\geq (3 + \sqrt{5})/4$ by Theorem 3.6. By the concavity of $C_{NJ}(\cdot, X)$, we have for all a $\in [0, 1]$,

$$C_{\rm NJ}(a,X) \ge (1-a)C_{\rm NJ}(0,X) + aC_{\rm NJ}(1,X) \ge \frac{3+\sqrt{5}+(5-\sqrt{5})a}{4},$$

a contradiction.

QUESTION. Is Corollary 3.13 still valid if we drop the assuption of concavity?

REMARK 3.14. In the definition of a u-space (see (2.4)), we can replace x, y in S_X by $x, y \in B_X$. To see this, we first observe that, $||x|| \ge ||x + y|| - ||y||$. Thus,

(3.2) if
$$x, y \in B_X$$
 and $\left\|\frac{x+y}{2}\right\| > 1 - \delta$ for some $\delta > 0$,
then $\|x\| \ge 1 - 2\delta$ and $\|y\| \ge 1 - 2\delta$.

From (3.2) if we put x' = x/||x|| and y' = y/||y|| we obtain

(3.3)
$$\left\|\frac{x'+y'}{2}\right\| > 1 - 3\delta, \text{ whenever } \left\|\frac{x+y}{2}\right\| > 1 - \delta.$$

Indeed, (3.3) follows from the fact that $||x' - x|| < 2\delta$ and $||y' - y|| < 2\delta$, together with the inequality

$$||x' + y'|| \ge ||x + y|| - ||x' - x|| - ||y' - y||.$$

Now, given any $\varepsilon > 0$, choose $\delta \in (0, (3\varepsilon)/4)$ so that for $x', y' \in S_X$,

$$\left\|\frac{x'+y'}{2}\right\| > 1-\delta \Rightarrow f(y') > 1-\frac{\varepsilon}{2} \text{ for all } f \in \nabla_{x'}.$$

Then, if $x, y \in B_X$, and $||(x+y)/2|| > 1 - (\delta/3)$, (3.3) implies that $||(x'+y')/2|| > 1 - \delta$ where x' = x/||x|| and y' = y/||y||. Note, by (3.2), that $||y' - y|| < (2\delta)/3$. Fix $f \in \nabla_x = \nabla_{x'}$ and consider the inequalities

$$f(y) + \frac{\varepsilon}{2} > f(y) + \frac{2\delta}{3} \ge f(y) + \|y' - y\| \ge f(y) + f(y' - y) = f(y') > 1 - \frac{\varepsilon}{2}$$

Consequently, $f(y) > 1 - \varepsilon$ as required.

THEOREM 3.15. For $1 , all <math>L^p(\Omega)$ spaces satisfy $C_{NJ}(1, L^p(\Omega)) < 2$. Indeed, all u-spaces X have $C_{NJ}(a, X) < 2$ for all 0 < a < 2.

PROOF: Suppose $C_{NJ}(2-\delta, X) = 2$ for all sufficiently small $\delta > 0$. For one such δ choose $x_n, y_n, z_n \in B_X$ of which at least one belongs to S_X and such that

۵

 $||y_n - z_n|| \leq (2 - \delta) ||x_n||$ for each n and $g(x_n, y_n, z_n) \nearrow 2$. Consider

$$(3.4) g(x, y, z) = \frac{\|x + y\|^2 + \|x - z\|^2}{2\|x\|^2 + \|y\|^2 + \|z\|^2} \\ \leqslant \frac{2\|x\|^2 + \|y\|^2 + \|z\|^2 + 2(\|x\|\|y\| + \|x\|\|\|z\|)}{2\|x\|^2 + \|y\|^2 + \|z\|^2} \\ = 1 + \frac{2(\|x\|\|y\| + \|x\|\|\|z\|)}{2\|x\|^2 + \|y\|^2 + \|z\|^2} \leqslant 2.$$

This implies

$$\frac{2\|x_n\|\|y_n\| + 2\|x_n\|\|z_n\|}{2\|x_n\|^2 + \|y_n\|^2 + \|z_n\|^2} \to 1$$

and then

$$\frac{\left(\|x_n\|-\|y_n\|\right)^2+\left(\|x_n\|-\|z_n\|\right)^2}{2\|x_n\|^2+\|y_n\|^2+\|z_n\|^2}\to 0.$$

Since, for each n, one of x_n, y_n, z_n belongs to S_X , we must have $||x_{n'}||, ||y_{n'}||, ||z_{n'}|| \to 1$ for some subsequence (n') of (n). From this, together with (3.4), one can conclude that

$$||x_{n'} + y_{n'}||, ||x_{n'} - z_{n'}|| \to 2.$$

Take $f_{n'} \in \nabla_{x_{n'}}$ for each n. Since X is a u-space, we have, by (3.5) and (2.4), $f_{n'}(x_{n'} - y_{n'}) \to 0$ and $f_{n'}(x_{n'} + z_{n'}) \to 0$. Therefore,

$$2\|x_{n'}\| = 2f_{n'}(x_{n'}) = f_{n'}(x_{n'} - y_{n'}) + f_{n'}(x_{n'} + z_{n'}) + f_{n'}(y_{n'} - z_{n'})$$

$$\leq f_{n'}(x_{n'} - y_{n'}) + f_{n'}(x_{n'} + z_{n'}) + \|y_{n'} - z_{n'}\|$$

$$\leq f_{n'}(x_{n'} - y_{n'}) + f_{n'}(x_{n'} + z_{n'}) + 2 - \delta.$$

Thus, $2 \leq 2 - \delta$ a contradiction.

Remark 3.16.

- (1) In [2], it is shown that $C_{NJ}(L^p) = 2^{(2/t)-1}$, for $1 \le p \le \infty$, where $t = \min\{p,q\}$ and (1/p) + (1/q) = 1. Thus, while $C_{NJ}(L^p)$ is close to 2 for p large, or near 1, Theorem 3.15 still applies and says that for $1 , all <math>L^p$ spaces have uniform normal structure.
- (2) As a measure of uniform nonsquareness, we say X is ε -inquadrate (ε -InQ), for $0 \le \varepsilon \le 2$, if for any sequences $(x_n), (y_n)$ in B_X ,

$$||x_n + y_n|| \to 2$$
 implies $\limsup_{n \to \infty} ||x_n - y_n|| \leq \varepsilon$.

In [26], Tasena introduces ε -u-spaces and ε -u-smooth spaces and proves that "all ε -u-spaces have $C_{\rm NJ}(2-\delta, X) < 2$ for all $\delta > 2\varepsilon$ ". He also observes that $\varepsilon - InQ$ spaces are ε -u-spaces.

(3) A long standing open problem is whether $C_{NJ}(0, X) < 2$ implies the fixed point property. It now appears that $C_{NJ}(1, X) < 2$ implies uniform normal structure which in turn implies the fpp. Concerning this open problem, it is interesting to ask what is the smallest $a \in (0, 1)$ for which the fpp follows whenever $C_{NJ}(a, X) < 2$.

References

- A.G. Aksoy and M.A. Khamsi, Nonstandard methods in fixed point theory (Spinger-Verlag, Heidelberg, 1990).
- J.A. Clarkson, 'The von-Neumann-Jordan constant for the Lebesgue spaces', Ann. Math. 38 (1937), 114-115.
- [3] M.M. Day, 'Some characterizations of inner product spaces', Trans. Amer. Math. Soc. 62 (1947), 320-337.
- [4] T. Figiel, 'On the moduli of convexity and smoothness', Studia Math. 56 (1976), 121-155.
- [5] J. Gao, 'Normal structure and the arc length in Banach spaces', Taiwanese J. Math. 5 (2001), 353-366.
- [6] J. Gao and K.S. Lau, 'On two classes of Banach spaces with uniform normal structure', Studia Math. 99 (1991), 41-56.
- J. Garcia-Falset, 'The fixed point property in Banach spaces with NUS-property', J. Math. Anal. Appl. 215 (1997), 532-542.
- [8] J. Garcia-Falset and B. Sims, 'Property (M) and the weak fixed point property', Proc. Amer. Math. Soc. 125 (1997), 2891-2896.
- [9] K. Goebel, 'Convexivity of balls and fixed-point theorems for mappings with nonexpansive square', *Compositio Math.* 22 (1970), 269-274.
- [10] K. Goebel and W.A. Kirk, Topics in metric fixed point theorem (Cambridge University Press, Cambridge, 1990).
- [11] R.C. James, 'Uniformly non-square Banach spaces', Ann. Math. 80 (1964), 542-550.
- P. Jordan and J. von Neumann, 'On inner product in linear metric spaces', Ann. Math. 36 (1935), 719-723.
- [13] M. Kato, L. Maligranda and Y. Takahashi, 'On James and Jordan-von Neumann constants and the normal structure coefficient of Banach spaces', *Studia Math.* 144 (2001), 275–295.
- [14] M. Kato and Y. Takahashi, 'On the von Neumann-Jordan constant for Banach spaces', Proc. Amer. Math. Soc. 125 (1997), 1055-1062.
- [15] M. Kato and Y. Takahashi, 'Von Neumann-Jordan constant for Lebesgue-Bochner spaces', J. Inequal. Appl. 2 (1998), 89-97.
- W.A. Kirk, 'A fixed point theorem for mappings which do not increase distances', Amer. Math. Monthly 72 (1965), 1004-1006.

[16]

- [17] W.A. Kirk and B. Sims, 'Uniform normal structure and related notions', J. Nonlinear Convex Anal. 2 (2001), 129-138.
- [18] K.S. Lau, 'Best approximation by closed sets in Banach spaces', J. Approx. Theory 23 (1978), 29-36.
- [19] J. Lindenstrauss and L. Tzafriri, Classical Banach spaces II. Function spaces (Springer-Verlag, Berlin, Heidelberg, New York, 1979).
- [20] R.E. Megginson, An introduction to Banach space theory, Graduate Texts in Math. 183 (Springer-Verlag, New York 1998).
- [21] V.D. Milman, 'Geometric theory of Banach spaces. Theory of basic and minimal systems', (Russian), Uspekhi Mat. Nauk 25 (1970), 113-174.
- [22] Z. Opial, 'Weak convergence of the sequence of successive approximations for nonexpansive mappings', Bull. Amer. Math. Soc. 73 (1967), 591-597.
- [23] B. Sims, "Ultra"-techniques in Banach space theory, Queen's Papers in Pure and Applied Mathematics (Queen's University, Kingston, 1982).
- [24] B. Sims, 'A class of spaces with weak normal structure', Bull. Austral. Math. Soc. 49 (1994), 523-528.
- [25] Y. Takahashi and M. Kato, 'Von Neumann-Jordan constant and uniformly non-square Banach spaces', Nihonkai Math. J. 9 (1998), 155-169.
- [26] S. Tasena, 'On generalized u-spaces and applications to the fixed point property in Banach spaces', (preprint).

Department of Mathematics Faculty of Science Chiang Mai University Chiang Mai 50200 Thailand e-mail: sompongd@chiangmai.ac.th g4365178@cm.edu