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GENERALISED JORDAN-VON NEUMANN CONSTANTS
AND UNIFORM NORMAL STRUCTURE

S. DHOMPONGSA, P. PIRAISANGJUN AND S. SAEJUNG

We introduce a new geometric coefficient related to the Jordan-von Neumann con-
stant. This leads to improved versions of known results and yields new ones on
super-normal structure for Banach spaces.

1. INTRODUCTION

The notions of normal structure and uniform normal structure play an important
role in metric fixed point theory (see Goebel and Kirk [10]). A number of Banach
space properties have been shown to imply uniform normal structure. Some sufficient
properties for a Banach space X to have uniform normal structure are:

(i) J(X) < 3/2 (see Gao and Lau [6]),
(ii) R(X) > 0 (see Gao [5]),

(iii) CNJ(X) < 5/4 (see Kato, Maligranda and Takahashi [13]), and
(iv) X is a u-space, a class of spaces that includes uniformly convex spaces

and uniformly smooth spaces (see Gao and Lau [6]).

Recently, Kirk and Sims [17] introduced a new variant, (/"-uniform normal structure,
which lies strictly between normal structure and uniform normal structure.

In this paper we introduce a parameterised coefficient Cnj(-,X) generalising the
Jordan-von Neumann constant Ctu(X). Utilising ultraproduct techniques, the coef-
ficient Cwj(-,X) enables us to establish new sufficient conditions for a Banach space
to have uniform normal structure. To achieve this, we first show that the coefficients
CNJ(-,X) of the space X and C N J ( - , ^ ) of its ultrapower X coincide. Prom this and
some other new results, which also improve the number appearing in property (iii) from
5/4 to (3 -I- \/5) /4, we can apply the powerful ultraproduct technique to show that
X has uniform normal structure whenever CNJ(1,X) < 2. An example of a Banach
space X is given which has C^j(l,X) < 2 and hence uniform normal structure, but
for which neither (i) or (iii) apply. An exact determination of the coefficient CNJ(-,X)

is obtained when X is a Hilbert space. More generally, a connection between CNJ(> X)
and the modulus of convexity Sx is established. Finally, we investigate the constants
CWJ(-,X) when X is a u-space. This leads to an alternative proof of (iv).
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2. PRELIMINARIES

Throughout the paper we let X and X* stand for a Banach space and its dual
space, respectively. By a non-trivial Banach space X we shall mean that either X is a
real space with dim X ^ 2, or a complex space with dim X ^ 1. We shall denote by
Bx and Sx the closed unit ball and the unit sphere of X, respectively. For a sequence
(xn) in X, xn -^ x stands for weak convergence to x. For x € X\{0}, let Vx denote
the set of norm 1 supporting functional at x. This is the subdifferential of the norm
at the point x, which is nonempty by the Hanh-Banach Theorem.

We shall say that a nonempty weakly compact convex subset C of X has the fixed
point property (fpp for short) if every nonexpansive mapping T : C —t C has a fixed
point (that is, there exists x 6 C such that T(x) — x). Recall that T is nonexpansive
if \\Tx — Ty\\ < ||x — y\\ for every x,y £ C. We shall say that X has the fixed point
property (fpp) if every weakly compact convex subset of X has the fpp. Let A be a

nonempty bounded set in X. The number r(A) — inf{sup ||a; — y\\ : x € .4} is called
y€A

the Chebyshev radius of A. The number diam A — sup ||z — y\\ is called the diameter
x,yeA

of A. A Banach space X has normal structure if

(2.1) r(A)<diamA

for every bounded convex closed subset A of X with diam .A > 0. When (2.1) holds for
every weakly compact convex subset A of X with diam A > 0, we say X has weak nor-

mal structure. Normal structure and weak normal structure coincide if X is reflexive. A
space X is said to have uniform normal structure if inf < (diam.<4)/(r(j4)) > > 1, where
the infimum is taken over all bounded convex closed subsets A of X with diam A > 0.
Weak normal structure, as well as many other properties imply the fixed point prop-
erty. Some relevant papers are Opial [22], Kirk [16], Sims [24], Garcia-Falset [7], and
Gacia-Falset and Sims [8].

The modulus of convexity of X (see [3, 4, 19, 20, 21]) is the function Sx : [0,2]
-¥ [0,1] defined by

(2.2) 6x(e) - inf { l - | | ^ | :x,y€ Sx, \\x - y\\ 2 e).

When X is non-trivial, we can deduce that

5x(e) = inf { l - l l ^ l l :x,ye Bx, \\x - y\\ > e}

= inf {l - l^j^H : xty 6 Sx, \\x - y\\ = e\
v II £, 11 )

https://doi.org/10.1017/S0004972700033694 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700033694
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If <5x(l) > 0, then X has uniform normal structure (see [9]).

The modulus of smoothness of X (see [3, 4 , 1 9 , 20]) is the function px • [0,oo)

—> [0, OQ) denned by

(2.3)

= sup{y-«5x.(e):£G[O,2]}.

A space X is called uniformly convex if Sx(e) > 0 for all 0 < e < 2. It is
called uniformly smooth if p'x(0) — lim.(px{T))/T = 0. Uniformly convex spaces and
uniformly smooth spaces are examples of u-spaces, where a space X is called a u-space
if for any e > 0, there exists 6 > 0 such that for each x,y € Sx,

(2.4) ||^~2~^|| > 1 ~ < 5 =

The notion of u-spaces was introduced by Lau [18]. Examples of uniformly convex
spaces are the spaces 1^(0) where Cl is a measure space such that 1^(0) is at least
two dimensional and 1 < p < oo.

A Banach space X is called uniformly nonsquare provided that there exists <5 > 0
such that if x, y S Sx, then ||x+j/||/2 ^ 1-8 or ||x—y\\/2 ^ 1 — 6. Uniformly nonsquare
spaces are superreflexive (see James [11]). Every u-space is uniformly nonsquare (see
Lau [18]), hence, it is superreflexive.

The Jordan-von Neumann constant CNJ(X) of a Banach space X is denned by

(2.5) CMX) = sup { llX^2
+

+ 'j* jj;2f :x,yGXnot both zero }

REMARK 2.1. We collect together some properties of the Jordan-von Neumann constant
(see [2, 12, 13, 14, 15, 25]):

(1) l ^ C N j ( X ) ^ 2 .
(2) X is a Hilbert space if and only if Ctij(X) — 1.
(3) C N jp0 = CN J(X').
(4) X is uniformly nonsquare if and only if C^j(X) < 2 and this happens if

and only if Sx(e) > 0 for some e £ (0,2).
(5) If CNJ(^0 < 5/4 then X, as well as its dual X*, have uniform normal

structure, and hence both X and X* have the fixed point property.
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One technique used in this paper is the "ultraproduct" technique. We refer to
Askoy and Khamsi [1] and Sims [23] for a complete discussion on the topic. However,
let us briefly recall the construction of an ultrapower of a Banach space X. As a
first step we consider the space loo{X) consisting of all bounded sequences (xn) of
elements of X. The norm in loo(X) is given by the formula ||(^n)|| = sup||xn||,

ngN

where N is the set of positive integers. Now, let U be an ultrafilter on N. The set
J\f = {(xn) € loo{X) : timu \\xn\\ = 0} is a closed linear subspace of loo(X). Here,
lirn^ stands for the limit over the ultrafilter U. The ultrapower X of X with respect
to U is defined to be the quotient space loo(X)/M. By x we denote the equivalent
class of x = (xn). Prom the definition of the quotient norm, we can derive the following
canonical formula ||x|| = \ITQU \\xn\\. Identifying an element x 6 X with the equivalence
class of the constant sequence (x, x,...), we can treat X as a subspace of X. In what
follow, we shall consider only non-trivial ultrafilters on the set of positive integers.
Under this setting, the ultrapower X is finitely representable in X. Consequently, X
inherits all finite-dimensional geometrical properties of X.

DEFINITION 2.2: Let P b e a Banach space property. We say that a Banach space
X has the property super-V if every Banach space finitely representable in X has
property V.

THEOREM 2 . 3 . (See [1, Theorem 3.5].) Let X and Y be Banach spaces and
suppose that Y is finitely representable in X. Then there is an ultraSlter U on the set
N such that Y is isometrically isomorphic to a subspace of X.

We remark that when the property V is hereditary: that is, any subspace of a
space with V also has V, one has the following stronger conclusion.

COROLLARY 2 . 4 . (See [1].) Let V be a Banach space property which is inher-
ited by subspaces. Then a Banach space X has super-V if and only if every ultrapower
X of X has V.

THEOREM 2 . 5 . (See [1].) Let X be a Banach space. If X has super-normal
structure, then X has uniform normal structure.

3. RESULTS

Let us begin with our generalisation of the Jordan-von Neumann constant. For
a > 0 define,

CNJ(a,X) = sup { % $ l ^ ^ ••*>** eX «* ^1 zero
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^ p f [ M p V i ] S : x'y'z e Bx not •" zer°
and | | j / — z|| ^ a||x|| \

{ llx + t/ll2 4- llx — z\\2

2||x||2 + |M|2 + |Nl2 : x ' 2/' * e B * o f w h i c h a t l e a s t o n e

belongs to Sx and ||t/ — z\\ < a||x|| >.

REMARK 3.1.

(1) Obviously, CNj(0,X) = CN3(X) (see (2.5)).
(2) CNj(a, X) is a nondecreasing function with respect to a.
(3) If CNJ(O,X) < 2, for some a ^ 0, then CNJ(-X') < 2 and consequently

X is uniformly nonsquare (see Remark 2.1(4)).
(4) 1 + (4a/4 + a2) < Cuj{a,X) < 2 for all a ^ 0 and CNj(a,X) = 2 for all

O 2.

To see that (4) is true, we begin by proving the left inequality. For this, we take
any x € Sx and put y = (a/2)x — —z. We then have y — z — ax and so,

\\x + y\\2 + \\x - z\\* _ (1 + (a/2))2||x||2 + (1 +

_ 2(1 + (a/2))2 _ 4 + 4a + a2 _ 4a

2(1 +(a2/4)) 4 + a 2 4 + a2'

Next, we show that CNJ(O, X) ^ 2. By the triangle inequality, we have

||x + y\\2 + \\x - z\\2 < {\\x\\2 + 2\\x\\\\y\\ + \\y\\2) + {\\x\\2 + 2\\x\\\\z\\ + \\z\\2)

from which it is clear that C^j(a,X) ^ 2. Finally, we observe that the function
a i-> 1 + (4a/4 + a2) is strictly increasing on [0,2] and attains its maximum of 2 at
a = 2. It follows that CNj(a,X) = 2 for all a ^ 2.

EXAMPLES 3.2. (1) (Zoo - 'i norm) Let X — K2 be equipped with the norm defined
by

f Halloo ifxix2 ^ 0,

[ ||x||i if X1X2 ^ 0.

Take x = (1,1), y = (0,1) and z = (-1,0). Then we have y - z = (1,1) = x and

II* + »H = l lu.^L = 2> i^-^i = II^'^IL = 2'NI = J- So 2 = (4
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+ N | 2 ) ^ CN J(1 ,X) < 2. Hence Cm(l,X)
= 2. It is not difficult to see that 6x(e) = max{0, (e - l ) /2} and so Sx(l) = 0. We
shall shortly see (Remark 3.12(1)) that this implies C N J ( 0 , X) ^ 5/4, however, we do
not know its exact value. This example shows that sometimes it is easy to compute

(a, X) at some point a € (0,2), but not at a = 0.

(2) Let 1 < p < 2 and let the norm on X = R2 now be defined by

MIxlU i f x ^ O ,

\ \\x\\p ifxiXa^O.

Under this norm, it can be shown that 6X(1) = 0, CNj(X) = 1 + 22 /P~2 , J(X)
^ 2xlp and CNJ(1,-X") < 2, where James' nonsquare constant J(X) is defined by J(X)
— sup|min{||x + y||,||x - y} : x,y € Sx\. The verification that CNj(l,X) < 2
follows by an argument similar to that given later in the proof of Theorem 3.15. We
shall shortly see that all spaces X with CNJ(1, X) < 2 have uniform normal structure
(Corollary 3.7). This example also reveals that we may have CNJ(X) close to 2 but still
have uniform normal structure (also see the observation given later at the beginning of
Remark 3.16).

These examples show that information on CNJ (a, X) for general a proves to be
useful. We note in passing that CNJ(1,^2(X)) < 2 whenever CNJ(1,-X") < 2, where
h(X) is the space of sequences (xn) of elements of X for which the sequence of norms
(||xn||) is in l2, with the norm of (xn) defined to be the Z2-norm of (||xn||).

We aim to show that the generalised Jordan-von Neumann constants CNJ (a, X) of
the space X and C N J ^ ! X) of its ultrapower coincide. Before that we need to establish
the continuity of the function C N J ( - , X ) .

PROPOSITION 3 . 3 . CNJ(-,-X") is a continuous function on [0,oo).

PROOF: We have already noted that CNJ(-, X) is nondecreasing, thus suppose that
for some a > 0,

supCNJ(6, X) = a < 0 < 7 = inf CNj(6, X).
b<a b>a

Choose 7n | a and xn,2/n,zn e Bx of which at least one belongs to S* and such
that ||yn - zn|| = 7nlkn|| and g(xn,yn,zn) ^ /3 for all n G N. Here g{x,y,z)
= (II* + 2/II2 + II* " -z||2)/(2||z||2 + IMI2 + IMIa) • Choose Vn | 1 such that -yn/Vn < a
for all n. Thus, g{r]nxn,yn,zn) = g{xn,(yn/r)n),(zn/vn)) < a for all n € N. Take a
subsequence (n') of (n) such that all the sequences

Wx^ + un,\U\xn, - zn,U\xn,\\A\\i~>\\ and ||zB,||

converge. As | |xn + u; | | - (7/n - l ) | |xn | | ^ ||r?n2;n + w|| ^ | |xn + w|| + (7/n - l) | |xn | | for any

w 6 X and r]n -* 1, we have lim,,/ \\r}n'Xni +yn#|| = l i n v ||*n' +Vn'\\ and lim,,/ ||f;n/a;n/
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- zn>\\ = l i n v ||xn/ - zn<\\. Consequently, @ - a ^ g{xn>,yni,zn>) - g{vn'Xn>,yn',zn>)
-» 0, a contradiction. This finishes the proof when a > 0.

For a = 0, given e > 0 we take a triple (xn,yn,zn) in Bx with at least one of
xn, 2/n, 2r» belonging to Sx, ||j/n - zn\\ = an||xn||, an 4- 0, and

CNj(0+,X) - e := infCNj(a,X) -e < tim^gixn^n^n).

Put en = 4an + a2 and 7 n = an||a;n||(||j/n|| - a n | | x n | | ) . Thus £rn,7n ->• 0. Passing
through subsequences if necessary, we may assume that lim (||xn||2 + ||2/n||

2) = b exists.
n—Kx>

By the choice of (xn, yn,zn) we see that 6 ^ 0 . Next we observe that, for all large n,

alx v v)
9[ n ' 2 / n ' 2 /" ' l

Thus CNJ(0+,X) - e < CNJ(X) ^ CN}(0+,X) for all e > 0. Therefore CNJ(0+,X)
= CNJ(A") which implies that C^j(-,X) is continuous at 0. Hence the continuity of
CNJ(-,X) is established. D

We are now ready to obtain an important tool.

COROLLARY 3 . 4 . CNj(a,X) = CNj(a, X).

PROOF: Clearly, CN](a,X) ^ CNJ(a,X). To show CNJ{a,X) ^ CNj(a,X), let
S > 0, a € [0,a] and suppose x,y,z e X not all of which are zero and for which
\\y - z|| = a||x||. If x = 0, then ^(x, y, z~) = 1 ̂  Cnj{a, X). If x ^ 0, choose e > 0
such that e < S\\x\\. Since

c : =
, ,,2
| | |

the set {neN:\cn-c\<6 and | | y n - z n | | ^ a | | x n | | + e < (a +<$)||a;n||} belongs toW.
In particular,

c<g(xn,yn,zn)+6

^ C*Nj(a + S, X) + 5 for some n.

The inequality CNj(a, X} ^ CNj(a, -X̂) follows from the arbitrariness of 6 and the
continuity of CNJ(,X). U
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This result also follows from the fact that the parameterised Jordan-von Neumann
constant is finitely determined.

The following Lemma is a modification of [6, Lemma 2.3].

LEMMA 3 . 5 . Let X be a Banach space without weak normal structure, then for
any 0 < e < 1 and each 1/2 < r ^ 1, there exist x\ 6 Sx and X2,x3 € rSx satisfying

(i) X2 — X3 = ax\ with \a — r\ < e,
(ii) ||xi — x2|| > 1 — e, and

(iii) ||xj + x2|| > (1 + r) - e, \\x3 + (-xi) | | > (3r - 1) - e.

PROOF: Put 77 = min{(£/12r),2 — (1/r)}, and let zn be a sequence in Sx with

z,,-4 0 and

1 - 77 < \\zn+l - z\\ < 1 + 77

for sufficiently large n and for any z € co{zfc}£=1- Take no e N, y e co{zn}"2=1 and a
norm 1 supporting functional / of z\ such that

|

and

>2-3r7.

Put xi = (21 -z n o ) / ( | | z i -«n0ll) . ^2 = rzx and x3 = rzn o. We show that (i), (ii)
and (iii) hold. We first note that X2 — 23 = r(z\ — zno) = r\\zi — zno\\x\. Observe that
1 — 77 < \\z\ — znQ\\ < 1 4- r), so \r\\zi — zno\\ — r\ < rr\ < e, hence (i) holds. Next, since
1/2 < r < 1 ,

- zno||) - = r r(2 +»,) - 1 = (2r - rV.

This implies

- x2\\ - \\rxi -r\\zi -

> r(2 - 37?) - (2r - 1) - rr)

— 2r- 37-77 - 2r + 1 - T77

> 1 - e .

Thus (ii) follows.
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To verify (iii) we first note the estimate ||T\ZI — rznQ — xi | | = (1 — r)xx + r(xi

- (zi - zno)) < (1 - r) + rrj < (1 - r) + rrj. Using this we have,

- rzno)\\ - \\rzi - rzno -

> 2r - 2rrj - (1 - r) - rq

> (3r - 1) - e.

We now estimate ||xi + X2II. From the definition of / , we have

X! + rzt) =r + (f
(f, Zl) ~(f, Zn0)•

\\z
1 - 7 ?

> r +

> (r + 1) - e.

The proof of the Lemma is now complete. D

We now obtain sufficient conditions for X to have uniform normal structure, the
second of which improves [13, Corollary 4] which states that "A Banach space X with
Cn){X) < 5/4 has uniform normal structure."

THEOREM 3 . 6 . Let X be a Banach space. If

or

then X has uniform normal structure.

PROOF: It suffices to show that these conditions imply X has normal structure.
As then, by Corollary 3.4, it follows that X also has normal structure, so X has
super-normal structure, by Corollary 2.4, and hence X has uniform normal structure
by Theorem 2.5.
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For the case CNJ(r, X) < ((1 + rf + (3r - l)2)/(2(l + r2)) we first observe that
from Remark 3.1(3), X is uniformly nonsquare and so in turn is reflexive. Thus, normal
structure and weak normal structure coincide. It then suffices to prove that X has weak
normal structure.

By the continuity of CNJ(;X), CNJ{r',X) < ((1 + rf + (3r - l)2)/(2(l + r2))
for some r' > r. Choose m € N such that r + (1/m) ^ r'. Suppose X does not have
weak normal structure. By Lemma 3.5 there exist xn £ Sx and yn,zn € rSx such
that, for each n € N,

Vn~ zn — anxn with \an-r\<
n + m

and

Observe that \\yn - zn\\ = an < r + (1/n + m) < r + (1/m) < r' and

liminf| |xn+yn| |2 ^ (1 + r)2 and liminf ||xn - Zn\\2 ̂  (3r - I)2.
n—^oo • n—too

Thus

(*,\ (1 + rf + (3r - I)2 [|xn + yn\\
2 + [|xn - znf

v"-1/ 2(1 + r2) ^ F v - " o n _ i i 2 • I I . . n 2 i n _ i i 2

( 3 r - l ) 2

2(1+ r2)

This contradiction shows that X must have weak normal structure as desired.

For the case CNJ(0,X) < (3 + y/5)/4, we first show that CNj(0,X)

< ((1 + r)2 + l) /(2(l + r2)) for any r G (1/2,1]. The proof of this is the same as

above except that here we consider the lower bound (l — (1/m + n)) for ||xn — yn\\
2

instead of the one for ||xn — zn\\
2. Thus (3.1) becomes

2(1+ r») < h ^ 2(||*.|P + ||fa|P) < C N J ( O > X ) < 2(1+r»).

which is impossible. The conclusion now follows by noting that ((1 + r) + l)/(2(l + r2))

achieves a maximum of (3 + s/E)/4 at r = (s/E - l)/2 £ (1/2,1]. •
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NOTE. The restriction r e (1/2,1] in the first inequality of Theorem 3.6 reflects the
fact that for r ^ 1/2 the right hand side is less than or equal to one. Indeed, from
Remark 3.1(4) the first inequality in Theorem 3.6 is only possible if

(1 + r)2 + (3r - I)2 4r
2(l 2) "r2) " 4 + r 2 '

that is, if r e (ri, 1] where n = 0.87 is the real root of the polynomial 2x3—3z2+8rc-6.
Thus, Theorem 3.6 only gives us information near r = 1.

COROLLARY 3 . 7 . Let X be a Banach space. If CNJ(1,X) < 2, then X has

uniform normal structure.

PROOF: This follows immediately from Theorem 3.6 with r = 1. D

Utilising Corollary 3.7, Tasena [26] has shown uCNJ(a,X) < (1 + a ) 2 / ( l +a 2 )
for some a € (0,1] implies X has uniform normal structure". This improvement of
Theorem 3.6 is quite strong since

)2 / 4a (l + a)2 + ( 3 a - l ) 2

We now consider the case when X is a Hilbert space, thereby extending Remark

2.1(2).

THEOREM 3 . 8 . Let H be a Hilbert space. Then

4(7

for all a € [0, 2].

PROOF: Let a € [0,2] and x,y,z € H with x ^ 0 and ||y — z\\ = a\\x\\ for some

a 6 [0, a]. Then

||x + y\\* + \\x - *||2 2HSH2 + |M | 2 + \\z\\2 + 2\\x\\\\y - z\\
2|N|2 |M|2 | N | 2 " 2| | | | 2 |M|2 N | 2

2a||x||

2a||x||

4 + a 2

4a
^ + 4 + a2 '

Thus, by Remark 3.1(4), CNJ(a, H) = 1 + (4a)/(4 + a 2 ) .
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QUESTION. IS X a Hilbert space if Cni(a,X) = l + (4a)/(4 + a2) for some a € (0,2)?

Theorem 3.8 and Corollary 3.7 give us the following

COROLLARY 3 . 9 . Every Hilbert space has uniform normal structure.

We now give a connection between the constant CNJ(-,X) and the modulus of
convexity Sx{-) (see (2.2)).

THEOREM 3 . 1 0 . Let X be a Banach space, e G [0,2], and 0 ^ 0. If
CNj(/3, X)<(4 + (e- /3)2)/(3 + (0 + I)2), then 6x(e) > 0.

PROOF: Suppose 6x{e) = 0, then there exist xn,yn £ Sx such that ||xn — yn\\ — e
for all n e N and lim ||xn + yn\\ = 2. Put zn = yn - 0xn. Then, for each n € N, we

n—*oo

have yn-zn =0xn, \\zn\\ = \\yn-0xn\\ < l + /3 and | |zn-zn | | ^ |||xn -yn\\ - \\0xn\\\
= \e-0\. Thus

) 2,. • fl|gn + »n||2 + | |»n-^n||a
 < ^ /fl Y ^ 4 + (g - /3)2

hmint —-—rr= r—IT:—n—r^r ^ ^N](PX) <
2 | | | | 2 + | | | | 2 | | | | 2

a contradiction. D

Note that Theorem 3.10 is applicable for all 0 € [0,0\) where 0X is the root of the
equation

40 =A+(e-0f
4 + 02

 3 + ( l + ^)2 '
The above theorem immediately yields the following.

COROLLARY 3 . 1 1 . If, for e e [0,2], CNJ(0,X) < (4 + e2)/4, then 5x(e) > 0.
In particular, every Hilbert space is uniformly convex, that is, Sx{£) > 0 for every
e e ( 0 , 2 ) .

REMARK 3.12.

(1) Corollary 3.11 shows that if CNJ(X) < 5/4, then 6X{1) > 0.
(2) CNj(0, X) < 2 if and only if CNj(0, X) < (4 + <r2)/4 for some e e (0,2).

Thus, this gives us a simpler proof of [13, Theorem 1] which states that
" C N J ( 0 , X ) < 2 if and only if X is uniformly nonsquare."

(3) Since CNJ(0, X) — CNJ(0, X'), the corresponding results in Theorem 3.6
and Corollary 3.11 hold for X* as well.

QUESTION. Does the equality CNJ(O,X) = CNJ(O,X*) hold for a € (0,2]?

COROLLARY 3 . 1 3 . If CNj(-,X) is concave and C^j(a,X) < (3 + y/E
+ (5 — \/5)a)/4 for some a e [0,1], then X has uniform normal structure.

PROOF: If CNj(l,^O < 2, we are done by Corollary 3.7. Let CNj(l,X) = 2
and suppose that X does not have uniform normal structure. Therefore C N J ( 0 , X )
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^ (3 + \ /5)/4 by Theorem 3.6. By the concavity of Cnj(-,X), we have for all a

G[0,l] ,

3
CNJ(a, X) > (1 - a)CNJ(0, X) + oCN J( l , X) >

a contradiction. D

QUESTION. IS Corollary 3.13 still valid if we drop the assuption of concavity?

REMARK 3.14. In the definition of a u-space (see (2.4)), we can replace x,y in Sx by
x, y € Bx • To see this, we first observe that, ||x|| ^ ||x + y\\ - \\y\\. Thus,

(3.2) if x, y G Bx and —-— > 1 - 5 for some 8 > 0,

then ||x|| >l-28 and \\y\\ ^1-26.

From (3.2) if we put x' = x/ | |z | | and y' = y/\\y\\ we obtain

(3.3) II- —II > 1 - 38, whenever ll^-y^ll > 1 - 5.

Indeed, (3.3) follows from the fact that ||x' — x|| < 26 and \\y' — y\\ < 28, together with
the inequality

\\x' + y'\\>\\x + y\\-\\x'-x\\-\\y'-y\\.

Now, given any e > 0, choose 6 G (0, (3e)/4) so that for x', y' G Sx,

H^-y^ l > 1 - * => f(v') > 1 - I for all / € Vx>.

Then, if x, y G Bx, and ||(x + y)/2\\ > 1-(8/3), (3.3) implies that ||(x' + y')/2\\ > 1-6
where x' = x/| |x| | and y' = y/ | | j / | | . Note, by (3.2), that | | j / ' - y|| < (2<J)/3. Fix
/ € Vx = Va,» and consider the inequalities

/(v) H— > fiV) -\ ^ f\V) + V "~ V\\ ^ /(V) + /(V ~ V) :

Consequently, /(y) > 1 — e as required.

THEOREM 3 . 1 5 . For 1 < p < oo, all 1^(0) spaces satisfy CNj( l , IS(n)) < 2.
Indeed, all u-spaces X have CN](a,X) < 2 for all 0 <a<2.

PROOF: Suppose CWJ(2 - 8,X) = 2 for all sufficiently small 6 > 0. For one

such 8 choose xn,yn,zn £ Bx of which at least one belongs to Sx and such that
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\\yn - zn\\ ^ (2 - S)\\xn\\ for each n and g(xn,yn,zn) /*• 2. Consider

(34) a(x v z) - J!£±idi!±Jl£Z£Jll
(3.4) s(x,y,z)-2M2 + M 2 + M 2

||x||||Z||)
2||z||2 + | | j , | | 2 + | | z | |2 - *

This implies

and then
(bn | | - | | i /n | | ) 2 + (| |xn | |- | |zn | |)2

Since, for each n, one of xn, yn, zn belongs to Sx, we must have ||xn/||, \\yn'\\, \\zn'\\ -+ 1
for some subsequence (n1) of (n). From this, together with (3.4), one can conclude
that

(3-5) ||S!i'+i/n'll.ll*n'-*n'||->2.

Take /„> € Vx , for each n. Since X is a u-space, we have, by (3.5) and (2.4),

fn'(zn' - Vn') -*• 0 and fn>{xni + zni) ->• 0. Therefore,

2||xn/|| = 2fn,{xn>) = fn>{xn> - yn>) + fn>(xn> + zn>) + fn,(yn, - zn>)

^ fn>(xn> - yn>) + fn'(xn> + zn,) + \\yn, - zni\\

^ fn'(xn, -yn') + / „ ' ( ! „ ' + zn>) + 2-5.

Thus, 2 < 2 - S a contradiction. D

REMARK 3.16.

(1) In [2], it is shown that Cm(LP) = 2^t'>~1, for 1 ^ p ^ oo, where
t - min{p,g} and (1/p) + (1/g) = 1. Thus, while CNj(LP) is close
to 2 for p large, or near 1, Theorem 3.15 still applies and says that for
1 < p < oo, all IP spaces have uniform normal structure.

(2) As a measure of uniform nonsquareness, we say X is e-inquadrate (e-

InQ), for 0 ^ £ < 2, if for any sequences (xn), (yn) in Bx,

\\xn + yn\\->2 implies limsup | | i n - yn\\ ^ e.
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In [26], Tasena introduces £-u-spaces and e-u-smooth spaces and proves

that "all e-u-spaces have Cnj(2-6,X) < 2 for all 6 > 2e". He also

observes that e — InQ spaces are e-u-spaces.

(3) A long standing open problem is whether C N J ( 0 , A") < 2 implies the

fixed point property. It now appears that C N J ( 1 , X) < 2 implies uniform

normal structure which in turn implies the fpp. Concerning this open

problem, it is interesting to ask what is the smallest a € (0,1) for which

the fpp follows whenever CNJ(O, X) < 2.
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