
Appendix D

Stratification and stratified Morse theory

In this final appendix we extend the Morse-theoretic decompositions of Ap-
pendix C to handle general algebraic varieties and their complements. More
specifically, we cover results from stratified Morse theory [GM88] that char-
acterize the topology of a stratified space X through changes in topology in
the sublevel sets X≤c as c passes through critical values (in a stratified sense)
of a height function. We develop from scratch the notion of a Whitney strat-
ified space, Morse functions, and stratified critical points. We discuss non-
proper extensions of this material and then summarize a number of basic re-
sults of [GM88], including specific properties enjoyed by complex algebraic
varieties.

D.1 Whitney stratified spaces

Ideally one would use the apparatus of manifolds, developed in the previous
appendices, to do calculus on complex algebraic varieties, however many vari-
eties that appear in interesting combinatorial problems are not manifolds. The
right generalization for our purposes is the notion of a stratified space, which
can contain non-manifold points whose neighborhoods in the variety are not
diffeomorphic to any Euclidean space Rd. One well-known example of such
spaces are manifolds with boundary, and we begin with a recap of these ob-
jects. The following material on manifolds with boundary can be skipped if
desired, as it is subsumed by our discussion of stratified spaces, however we
include it because it is likely familiar to many readers.

A d-manifold with boundary is a subset M ⊂ Rn such that every point
x ∈ M has a neighborhood in Rn whose intersection N with M is either
diffeomorphic to Rd or diffeomorphic to the closed halfspace Rd−1 × [0,∞). In
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514 Stratification and stratified Morse theory

the former case x is called a manifold point or interior point ofM, while in
the latter case x is called a boundary point ofM.

Example D.1. A closed ball in any dimension d is a manifold with boundary,
while a cube [0, 1]d and a simplex {x ∈ Rd : x j ≥ 0 for all j and

∑d
j=1 x j = 1}

are not. /

Example D.2. If H = {(x, y) ∈ R2 : y ≥ 0} is the upper half-plane then H is
a manifold with boundary, the boundary points being the x-axis. Now let K =

{(x, y) ∈ R2 : x, y ≥ 0} denote the positive quarter plane. The map φ(x, y) =

(x2 − y2, 2xy) from K to H, constructed by taking the real and imaginary parts
of (x + iy)2, is analytic and one to one, so it may seem that K is diffeomorphic
to H and thus a manifold with boundary. However, φ−1 is not differentiable at
the origin, and in fact no neighborhood of the origin in K is diffeomorphic to
a neighborhood of the origin in a half-plane. Thus, K is not a manifold with
boundary. /

Exercise D.1. Give an example of a manifoldM ⊆ Rd with closureM whose
boundaryM\M is also a manifold, such thatM is not a manifold with bound-
ary.

A generalization of manifolds with boundary is the notion of a d-manifold
with corners, where every point has a neighborhood diffeomorphic to some or-
thant Rd−k×Rk

≥0 for some k ≤ d; see Figure D.1. Cubes and simplices are mani-
folds with corners, however complex algebraic varieties that are not smooth are
also typically not manifolds with corners. This difficulty is why we introduce
the generality of stratified spaces.

Figure D.1 The closed quadrantM is a manifold with corners, but not a manifold
with boundary.
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D.1 Whitney stratified spaces 515

Stratifications

As a first attempt to perform calculus on an algebraic variety V, one might
partition V into a finite disjoint union of smooth sets and then work on each
piece of the partition. Although such smooth partitions can be easily under-
stood, and easily computed using standard algebro-geometric techniques, they
are not sufficient for our (and many other) purposes. The problem is that the
pieces in an arbitrary smooth partition may not fit together nicely; among other
difficulties, this means the local behavior ofV near points in the same piece of
the partition can be very different.

The issue of determining the “right” type of smooth partition to use for topo-
logical arguments was taken up by Whitney [Whi65b], who introduced what
we now call (Whitney) stratifications. An I-decomposition of a space X ⊆ Rn

is a finite disjoint union
⋃
α∈I Sα of smooth manifolds of various dimensions,

indexed by a partially ordered set I, such that for every α, β ∈ I,

S α ∩ S β , ∅ ⇐⇒ S α ⊂ S β ⇐⇒ α ≤ β. (D.1.1)

Definition D.3 (Whitney stratification). Let Z be a closed subset of Rn. A
Whitney stratification of Z is an I-decomposition of Z with the additional
property that whenever

• α < β, and
• the sequences {xi ∈ S β} and {yi ∈ S α} both converge to some y ∈ S α, and
• the lines `i = xi yi converge to a line `, and
• the tangent planes Txi (S β) converge to a plane T ,

then ` ⊆ T . We call Z a Whitney stratified space.

Remark. In the original definition, in addition to ` ⊆ T (the so-called second
Whitney condition), it was required that Ty(Sα) ⊆ T (the so-called first Whit-
ney condition). The second condition turns out to imply the first, so the first
condition is usually omitted.

This definition is well crafted: the conditions are easy to fulfill – for ex-
ample, every algebraic variety admits a Whitney stratification, see [Whi65b,
Theorem 18.11] or [Hir73, Theorem 4.8] – and the conditions have strong con-
sequences (for instance, they are strong enough for stratified Morse theorems
to hold). Stratifications of algebraic varieties are also effectively computable.
A classic approach to algorithmic stratification through quantifier elimination
and real algebraic geometry, relying on cylindrical algebraic decomposition, is
discussed in [Ran98; MR91]. Recently, [DJ21] and [HN22] have given more
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516 Stratification and stratified Morse theory

practical algorithms1 for the stratification of algebraic varieties using Gröbner
basis computations.

Proposition D.4. Every algebraic variety in Rd or Cd admits a Whitney strat-
ification. �

In examples arising from combinatorial applications, it is often possible to
deduce a stratification directly from the form of the polynomials under consid-
eration.

Example D.5. A smooth manifold is a stratified space with a single stratum.
/

Example D.6. If X is a finite union of affine subspaces of Rn then a Whitney
stratification of X is obtained by taking the set A of all intersections of the
affine subspaces, and choosing the elements of {A \ B : A, B ∈ A with A ) B}
as strata. /

Example D.7. Let Z be a real algebraic curve {(x, y) ∈ R2 : f (x, y) = 0} with f
irreducible and let Y = {(x, y) : ∇ f (x, y) = 0} be the finite set of singular points
of Z. Taking Z \Y to be one stratum and each singleton {(x, y)} for (x, y) ∈ Y to
be another produces a Whitney stratification of Z. The following figure shows
two examples of this, the first curve x2 − y3 having a cusp at the origin and the
second curve 19− 20x− 20y + 5x2 + 14xy + 5y2 − 2x2y− 2xy2 + x2y2 having a
self-intersection at (1, 1). /

Figure D.2 Two curves, each stratified by taking one stratum consisting of a sin-
gular point and another stratum consisting of the rest of the curve.

Let V be any complex variety. As discussed in Chapter 8, it is possible to
decompose V into smooth sets by determining algebraic equations for the set

1 Helmer and Nanda [HN22] give an implementation of both of these algorithms in Macaulay2,
available at http://martin-helmer.com/Software/WhitStrat/.
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D.1 Whitney stratified spaces 517

Σ0 of its singular points, letting S0 = V \ Σ0 encode the smooth points of
V, then recursively computing the sets Σn+1 and Sn+1 of smooth and singular
points of Σn until arriving at some ΣN = ∅. From the previous two examples,
one might get the idea that this decomposition is always a Whitney stratifica-
tion, but Exercise D.6 below shows this not to be the case. It is true, however,
that any stratification must be at least this coarse.

Example D.8. Let Z be a complex algebraic hypersurface in C3 defined by
f (x, y, z) = 0 and suppose ∇ f vanishes along an algebraic curve γ. It is pos-
sible that {γ,Z \ γ} is a Whitney stratification for Z. On the other hand, if γ is
not smooth then a Whitney stratification of Z will have at least three strata, one
containing singularities of γ, one containing the rest of γ, and one containing
Z \ γ. /

Exercise D.2. Compute a Whitney stratification of the real varietyVQ where
Q(x, y, z) = z2 − x2 − y2.

The following exercise implies, with a little more work, that any manifold
with corners (including any manifold with boundary) is a Whitney stratified
space, with strata {S j : 0 ≤ j ≤ d} defined by the union of the open j-
dimensional faces.

Exercise D.3. Let H = Rd
≥0 be the positive orthant, let F be a (open) face of

H and let x be a point of F. Prove directly that the interior S β = H◦ and face
S α = F satisfy the Whitney condition (Definition D.3) at x.

One fundamental result of stratified spaces concerns their local product struc-
ture, implying that the local behavior of a stratified space “looks the same” in
neighborhoods of different points on the same stratum. The proof of this fact
is long and difficult, but we sketch some of it in the next section.

Theorem D.9 (local product structure). Let p be a point in a k-dimensional
stratum S of a stratified space Z. There is a topological space N, called the
normal slice, depending only on S and not the choice of p ∈ S, such that
some neighborhood of p in Z is homeomorphic to Bk × N, where Bk is a k-
dimensional ball. �

We end this section with the following concept.

Definition D.10 (stratification of a pair). If Y ⊆ X are closed subsets of real
space then a stratification of the pair (X,Y) is defined to be a stratification
of X such that intersecting each stratum with Y gives a stratification of Y and
intersecting each stratum with X \ Y gives a stratification of X \ Y .
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518 Stratification and stratified Morse theory

A result of Whitney implies that if (X \ Y,Y) is a decomposition of X into
two smooth manifolds satisfying (D.1.1) then some Whitney stratification of
X refines this, and is a stratification of the pair (X,Y); see, for instance, [LT10,
Proposition 2.1]. Proposition D.4 extends to the following.

Proposition D.11. If V∗ is a complex algebraic variety in Cd
∗ with stratifica-

tion {Sα : α ∈ I} then adding the stratumM = Cd
∗\V∗ produces a stratification

of the pair (C∗d,V∗). �

D.2 Critical points and the fundamental lemma

We now extend the geometric concepts discussed in previous appendices to
stratified spaces.

Critical points for stratified spaces

Fix a Whitney stratification {S α : α ∈ I} of a closed subset X of a smooth
manifold M ⊆ Rn and let f = h|X be the restriction to X of a smooth function
h : M → R.

Definition D.12 (stratified critical points and Morse functions). Any point p ∈
X is contained in a unique stratum S = S (p), and we say that p is a critical
point of the height function h on the stratified space X if p is a critical point
of h|S (p) (in other words, if the restriction of the differential of h to the tangent
space TpS (p) is zero). We call h a Morse function if

(1) the restriction h|S α
is a Morse function for each α ∈ I, meaning that its

critical points are nondegenerate (i.e., its Hessian is nonsingular at each
critical point), and

(2) whenever p ∈ S α is a critical point of h|S α
and T is a limit of tangent planes

Tpi (S β) as pi → p in a stratum S β with β > α, then either T = Tp(S α) or
T contains a tangent vector on which dh(p) does not vanish.

This generalization of Morse functions to stratified spaces appears in [Pig79,
Section 3]; see also [Laz73]. In many contexts it is assumed that Morse func-
tions have distinct critical values – in which case we say we have a Morse
function with distinct critical values – or are proper – in which case we say
we have a proper Morse function. Figure D.3 shows two height functions, one
failing condition (2) in Definition D.12 and one satisfying it: on the left, the
limit of tangent lines at the cusp is horizontal, and is therefore annihilated by
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D.2 Critical points and the fundamental lemma 519

h h

Figure D.3 A non-Morse function (left) and a Morse function (right).

dh. A standard perturbation argument shows that coinciding critical values do
not affect topology.

The stratified version of the Fundamental Morse Lemma (Lemma C.27) is
the following.

Theorem D.13 (Stratified Morse Lemma [GM88, Theorem SMT part A]). Let
X ⊆ Cd

∗ be a stratified space with proper Morse function h and let a < b be
real numbers such that the interval [a, b] contains no critical values of h. If
h−1([a, b]) is compact, then the inclusion X≤a ↪→ X≤b is a homotopy equiva-
lence.

�

Tangent vector fields

The argument behind Theorem D.13 is worth understanding for readers who
have made it this far into the appendices. Both Theorem D.13 and Theorem D.9
will be derived from Thom’s Isotopy Lemma, stated as Lemma D.16 below.
For non-experts, the geometric intuition behind Theorem D.13 is not apparent,
and it can be instructive to pursue a line of reasoning that sometimes fails but
more closely parallels classical Morse theory.

Proposition D.14. In the following cases, the local product structure in Theo-
rem D.9 is induced by a diffeomorphism.

1. When Z is a smooth algebraic hypersurface.
2. When Z is the simplex or the complexification of a simplex.
3. When Z is a hyperplane arrangement.
4. When Z is the product of two spaces on which the local product is induced

by a diffeomorphism.

Proof In Cases 2 and 3, diffeomorphisms can be explicit constructed. Case 1
follows from the smooth implicit function theorem, while Case 4 follows from
taking a product diffeomorphism. �
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520 Stratification and stratified Morse theory

Proof sketch of Theorem D.13 (assuming diffeomorphic product structure)
Step 1: Each stratum S is a smooth manifold. The nonvanishing of the gradient
of h|S implies the existence of a nonvanishing downward gradient vector field
vS parallel to S. More specifically, there is a smooth nonvanishing section of
the tangent bundle (i.e., a map vS : S → TS) such that dh(vS) < 0.

Step 2: By assumption of diffeomorphic local product structure, for each
point p in each k-dimensional stratum S of X there is a Cd-neighborhood N
of p and a smooth change of coordinates in N under which S ∩ N = {z ∈

N : z j = 0 for j > k} and X ∩ N = {z ∈ N : (z j+1, . . . , zd) ∈ N′}, where
N′ is the normal slice consisting of all (d − j)-tuples (z j+1, . . . , zd) such that
(0, . . . , 0, z j+1, . . . , zd) ∈ X. Strata in this neighborhood are the products of
strata of N′ in the first k coordinates with Rd−k. Vectors v tangent to S in
this neighborhood have v j = 0 for j > k and are therefore tangent to all strata
in the neighborhood.

The within-stratum downward gradient flows vS can be stitched together
via a partition of unity to form a single gradient-like flow v with Lipschitz
constant 1. More specifically, each point p in a stratum has a neighborhood
Up in Cd that intersects only strata whose closure contains S(p), the stratum
containing p, and on which dh(vS(p)) < 0. If {ψUp : p ∈ E} is a partition of
unity subordinate to a finite subcover of h−1[a, b] by these neighborhoods, then

v =
∑
p∈E

ψUpvS(p) (D.2.1)

defines the required flow. It is gradient-like because dh(v) is a convex combi-
nation of values dh(vS(p)), which are all negative. It is tangent to each stratum
because v(p′) is a convex combination of vectors v(S(p)) tangent to strata
S(p) whose tangent spaces are contained in the tangent space to p′. Choosing
Up small enough that some constant multiple of each vS(p) can be chosen to
have Lipschitz constant 1 on Up, convexity implies that v globally has Lips-
chitz constant 1.

Figure D.4 shows a picture of this. The left-hand picture shows that the
vector field w(p) = vS(p)(p) is gradient-like but not continuous. It changes
direction sharply when approaching a substratum, because S(p) changes dis-
continuously from one stratum to a substratum. The right-hand picture shows
these blended by a partition of unity, so as to become smooth while remaining
gradient-like.

Step 3: Let c > 0 be the infimum value of |dh(v)| on X, and let Ψ :
X × [0,∞] → X be the flow defined by (d/dt)Ψ(x, t) = v(Ψ(x, t)), stopped
when it hits h−1(c). Such a flow exists and is unique because v is Lipschitz,
being a convex combination of locally constant vector fields (in the natural
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D.2 Critical points and the fundamental lemma 521

Figure D.4 Left: A flow in a 2D stratum that turns sharply when reaching a bound-
ary. Right: A partition of unity blends the flow smoothly between strata (note that
the flow smoothly becomes zero in a neighborhood of the zero-dimensional stra-
tum).

identification of tangent spaces with subspaces of the tangent space to the am-
bient space Rd). Fixing any T ≥ (b−a)/c the time T map defines a deformation
retract of X≤b onto X≤a, proving homotopy equivalence. �

The problem with this sketched proof is that, in general, the local product
structure is not witnessed by a diffeomorphism. This is shown by Whitney’s
counterexample [Whi65a], reproduced in Goresky’s introduction [Gor12] to
Mather’s cleaned up notes [Mat12] as motivation for the work that follows.
Figure D.5 shows three planes and a ruled surface in R3, whose common inter-
section is the x-axis. Intersecting with a plane parallel to the yz-plane moving
down the x-axis results in a configuration of four lines, the first three constant
and the fourth becoming more sloped. Any coordinate system in which the first
three lines remain fixed as the slice moves down the x-axis also fixes the slope
at the origin of the fourth line, and therefore cannot represent the figure as a
product of the x-axis with a four-line configuration.

Figure D.5 Whitney’s counterexample to smooth isotopy.

The trouble is that the category in which one most naturally deals with
stratified spaces is smooth within strata and continuous across strata. Whit-
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522 Stratification and stratified Morse theory

ney’s conditions do not guarantee the existence of a differential structure that
is smooth across strata, even for algebraic hypersurfaces in Euclidean space.
Nevertheless, it is true that there is a continuous isotopy moving the yz-plane to
the right while continuously deforming a sector so that the line of intersection
with the ruled surface in each slice remains identified. Working in the smooth
within strata continuous across strata category, one can obtain a vector field
but it will generally not be Lipschitz. The flow in Step 3 will not necessarily
exist, and the argument falls apart.

Remark D.15. In the neighborhood of a hyperbolic point of a complex alge-
braic hypersurface, a Lipschitz vector field can be constructed explicitly from a
lower-semicontinuously varying family of cones. This is carried out in [BP11]
(see Lemma 5.1 there) and is based on the lengthier development in [ABG70];
the construction is summarized in Section 11.2 of this book. Thus, the three
steps above prove Theorem D.13 when X is a complex algebraic hypersur-
face with all critical points hyperbolic, even though Proposition D.14 will not
necessarily hold.

Isotopy
To repair the stratified gradient flow argument, one needs a statement of Thom’s
Isotopy Lemma strong enough to imply the deformation retract in Step 3 di-
rectly, as well as implying Theorem D.9. This lemma is proved by giving up
on the idea that the desired vector field can be continuous, providing instead a
controlled vector field satisfying a set of axioms allowing one to infer that the
vector field defines a continuous flow with the desired properties. We will not
go into the theory of controlled vector fields, being content to quote where they
are used and referring the reader to [Mat12, Proposition 11.1] for the proof of
the following results and full details of controlled vector fields for stratified
spaces.

Lemma D.16 (Thom’s Isotopy Lemma). Let Z be a Whitney stratified space
Z that is a closed subset of some smooth manifold M, and suppose that π :
M → P is a smooth proper mapping to a connected manifold P such that
the restriction π|S of π to each stratum S of Z is a submersion (surjective
on tangent spaces). Then any smooth vector field V on P has a lift Ṽ to a
controlled vector field on Z. By a lift, we mean that V is a (not necessarily
continuous) section of the tangent bundle of each stratum of Z such that π∗◦Ṽ =

V ◦ π. Although Ṽ is not necessarily continuous, it has a continuous flow Ψ̃

that projects under π to the flow Ψ defined by V on P. The fact that there is a
continuous flow lifting the flow of V implies that π|Z : Z → P is a locally trivial
fiber bundle. �
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Proof of Theorem D.13 Apply Thom’s Isotopy Lemma with manifolds P =

R and M = C∗d, stratified space Z = X ∩ h−1(a − ε, b + ε), and mapping
π = h. If h : X → R has no critical values in [a, b] then it has no critical
values in [a − ε, b + ε], hence h is a submersion on each stratum of X. The
conclusion of the lemma is that the level surfaces of h are fibers of a local
product bundle, hence the flow Ṽ witnesses a strong deformation retraction of
X≤b onto X≤a. �

To conclude this section, we show how Thom’s Isotopy Lemma can be used
to derive the local product topological structure of stratified spaces.

Proof of Theorem D.9 Let Z be a stratified space in Rd and let S be a stratum
of dimension k, with •S denoting a closed tubular neighborhood ofS in Rd and
π : •S → S denoting the projection map. Then •S is a manifold with boundary
oS and an interior which we denote (•S)◦. If the tubular neighborhood was
chosen sufficiently small, then X = Z ∩ •S is naturally stratified with strata
of the form W ∩ (•S)◦ and W ∩ oS, where W runs over strata whose closure
contains S.

The mapping π on X satisfies the conditions of Thom’s isotopy lemma. Con-
sequently, its normal slice N = π−1(p) ∩ Z is stratified by its intersection with
the strata of X. Taking Up to be a small ball around p in the stratum S that con-
tains p, there is a stratum-preserving homeomorphism, smooth in each stratum,
given by π−1(Up)∩Z � Up×N. Since π−1(Up) is a neighborhood of p in Z, we
have shown that each stratum has a neighborhood that is locally a topological
product of a k-ball Up with the normal slice. �

D.3 Description of the attachments

Let V∗ denote the intersection V ∩ Cd
∗ of an affine algebraic hypersurface V

with Cd
∗ , and let M = Cd

∗ \ V. We return to our plan to use Morse theory
to find generators for Hd(M). Because we may want to describe eitherM or
V∗, depending on the situation, results in the literature are often stated in two
parts, so as to cover both cases, and we continue to adhere to this. For what
follows we fix a Whitney stratification {Sα : α ∈ I} of the pair (Cd

∗ ,V∗) as
in Proposition D.11, so that M will be the unique stratum of dimension 2d.
The function h = hr̂ is assumed to be a Morse function and the space X may
denote either V∗ orM. The point p denotes a stratified critical point for h in
the stratum S, and we let N = Np(V) denote the complex normal space toV∗
at p.
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524 Stratification and stratified Morse theory

The tangential Morse data is defined in terms of p and S, regardless of
whether X = V∗ or X =M.

Definition D.17 (tangential Morse data). The tangential Morse data at p is
the homotopy type of the pair (Bλ, ∂Bλ), where λ is the Morse index of h|S at
p and Bλ denotes the ball of dimension λ. By Theorem C.28, this is the Morse
data at p for the height function h|S on the smooth manifold S .

The normal Morse data is defined in terms of the intersection of X with a
slice normal to the stratum S, localized to the point p. If D is an arbitrarily
small disk in Np(V) centered at p then the normal slice at p is N(X) := X ∩D.
To visualize this, it sometimes helps to picture the normal link L(X) at p, de-
fined by L(X) := X ∩ ∂D. When X = V∗ the normal slice N(X) is homeomor-
phic to a cone over L(X) from the point p. In particular, N(X) is contractible.
When X = M the point p is absent from the normal slice, which then retracts
onto L(X), hence N(X) ' L(X).

Example D.18. LetV be the union of two complex planes in complex 3-space
meeting at the line S and let p be a point on S. This line is the stratum con-
taining p, and the tangent space at p or any other point on S is the translation
of S to the origin. The normal space Np(V) at p (or any other point on S) is
the complex two-space orthogonal to S.

First consider the case X = V∗. The intersection of X with a normal plane
to S at p is two complex lines meeting at p. The normal slice N(X) is the inter-
section of this with a ball around p, and thus is two disks joined by identifying
their centers. The link L(X) = X ∩ ∂D is the union of two disjoint circles, each
on one of the complex lines, and the normal slice N(X) is the cone over these
circles.

Alternatively, if X = M then L(X) = X ∩ ∂D is the complement of two
intersecting lines in a small bi-disk, which is the product of two punctured
disks. Each punctured disk retracts to its boundary, so the four-dimensional
space N(X) retracts to the three-dimensional space L(X), which retracts to a
two-dimensional torus S 1 × S 1. /

Definition D.19 (normal Morse data). Let X beV∗ orM. The normal Morse
data for X at p is defined to be the homotopy type of the pair(

N(X) ∩ h−1([c − ε, c + ε]), N(X) ∩ h−1(c + ε)
)
, (D.3.1)

where the disk D in the definition of N(X) is sufficiently small, and ε is a suf-
ficiently smaller positive number. It is proved in [GM88] that these homotopy
types are the same for all D and ε sufficiently small.
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Example D.20. Suppose thatV∗ is a smooth algebraic hypersurface near one
of its points p.

(1) If X = V then N(X) is the single point p. Formally, the homotopy type is
that of ({p}, ∅).

(2) If X =M then N(X) has the homotopy type of (D\0, q), where D is a small
disk and q is a point on the boundary of D. This is the reduced homotopy
type of a circle, cyclic in dimension 1 and null in every other dimension. /

The following theorem is stated for the case X = V∗ in [GM88, Theo-
rem SMT B on page 8] and for the case X =M in [GM88, unnamed theorem
on page 12]; the equivalent characterizations of the homotopy type are stated
in [GM88, pages 7, 66–67, 120–122].

Theorem D.21 (attachments are determined by Morse data). Let X be either
V∗ orM with a Whitney stratification as above, and let p be a critical point
for h in a stratum S with critical value c = h(p).

1. The homotopy type of the attachment at p is the product, in the category of
pairs, of the normal and tangential Morse data as given in Definitions D.19
and D.17.

2. The tangential data for a stratum of codimension k is always the reduced
homology of a (d − k)-sphere: rank 1 in dimension (d − k) and vanishing
otherwise.

3. The normal data has the following characterizations.

(i) When X = V∗, the normal data is homotopy equivalent to the pair
(Cone(`−), `−), where Cone(Y) is the topological quotient Y×[0, 1] /Y×
{1} and `− is the lower halflink defined as the level set of N(X) at height
c − ε for sufficiently small ε > 0.

(ii) When X = M, the normal data is homotopy equivalent to the pair
(L+(X), ∂L+(X)), where L+(X) is the part of L(X) at height at least c.

(iii) When X = M, the normal data is also homotopy equivalent to the
pair (L+(X),L0(X)), where L0(X) is the intersection of L(X) with the
level set {z ∈ X : h(z) = c}.

�

Remark. Goresky and MacPherson have this to say [GM88, page 9]: “Theo-
rem SMT Part B, although very natural and geometrically evident in examples,
takes 100 pages to prove rigorously in this book.”

Example D.22 (complement of S 2 in R3). Let X be the complement of the unit
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Figure D.6 The complement of the unit sphere up to height +1/2.

sphere S ⊆ R3. The function h(x, y, z) = z extends to a proper height function
on R3, which is Morse with respect to the stratification {S , X}.

There are no critical points in X but there are two in S : the South pole and
the North pole. In each case the normal slice is an interval minus a point, so the
normal data is homotopy equivalent to (S 0, S 0

−), where S 0 is two points, one
higher than the other, and S 0

− is the lower of the two points. For the South pole,
which has Morse index 0, the tangential data is a point, so the attachment is
(S 0, S 0

−), which is the addition of a disconnected point. Figure D.6 illustrates
that for −1 < a < 1, the space X≤a is in fact the union of two contractible
components. The North pole has Morse index 2, so the tangential data at the
North pole is (D2, ∂D2), a polar cap modulo its boundary. Taking the product
with the normal data gives two polar caps modulo all of the lower one and
the boundary of the upper one. This is the upper polar cap sewn down along
its boundary, the boundary being a point in one of the components. Thus, one
component becomes a sphere and the other remains contractible. /

Suppose we have a closed space Y ⊂ Rd whose complement X we view as
a stratified space with Morse function h. If p is a critical point for h in some
stratum S then there is a local coordinatization of Y as S × Bp, where Bp is a
small ball of dimension d − k and k is the dimension of S . The set Bp \ Y is
this ball minus the origin, so it is a cone over L(p) with vertex p. Any chain in
Bp \ Y may be brought arbitrarily close to p.
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D.4 Stratified Morse theory for complex manifolds

If X is a complex variety then the Morse data has an alternate description obey-
ing the complex structure of X. Let S be a stratum containing a critical point p,
let N(p) be a small ball in the normal space to S at p, and define the complex
link L(S ) to be the intersection of X with a generic hyperplane A ⊆ N(p) that
comes sufficiently close to p but does not contain it. It is shown in [GM88,
page 16] that the normal Morse data at p ∈ X is given in terms of L(S ) by the
pair

(Cone R(L(S )),L(S )) , (D.4.1)

where Cone R(L(S )) denotes the real cone over L(S ). In other words, the nor-
mal link has the homotopy type of the pair (L(S )× [0, 1] / L(S )×{1} , L(S )×
{0}), where the real cone (the first space of this pair) is defined as a quotient.

Suppose that X has dimension d, the stratum S has dimension k, and the
ambient space has dimension n (all dimensions are complex). Then N(p) is a
complex space of dimension n − k, its intersection with a generic hyperplane
has dimension n − k − 1, and thus

dimCL(S ) = d − k − 1 .

In fact the homeomorphism type of the complex link depends on X and S but
not on the individual choice of p ∈ S , nor the ambient space, nor the choice of
proper Morse function h on the stratified space X (see [GM88, Section II:2.3]).

Suppose next that X is the complement of a d-dimensional variety in Cd+1.
A formula for the Morse data at a point p < X in a stratum S is given [GM88,
page 18] by

(L(S ), ∂L(S )) × (B1, ∂B1) , (D.4.2)

where B1 is a real interval (which can be interpreted as a 1-ball).

Theorem D.23. (i) If X is a complex analytic variety of dimension d then X
has the homotopy type of a cell complex of dimension at most d. (ii) If X is the
complement in a domain of Cn of a complex variety of dimension d then X has
the homotopy type of a cell complex of dimension at most 2n − d − 1.

Remark. The proof of this result in [GM88] is somewhat difficult, mostly
due to the necessity of establishing the invariance properties of the complex
link. The result, however, is very useful. For example, suppose that X is the
complement of the zero set of a polynomial in n variables. Then d = n − 1
and the homotopy dimension of X is at most n. Note that X may have strata
of any complex dimension j ≤ d, and that the complement of a j-dimensional
complex space in Cn has homotopy dimension 2n − 2 j. The theorem asserts
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that the complex structure prevents the dimensions of contributions at strata
of dimensions j < d from exceeding the dimension of the contributions from
d-dimensional strata.

Proof sketch (i) Assume that the variety is embedded inCn and that the height
function h has been chosen to be the square of the distance from a generic
point. We examine the homotopy type of the attachment at a point p in a stra-
tum of dimension k. It suffices, as in the proof of Theorem C.39, to show that
each attachment has the homotopy type of a cell complex of dimension at most
d.

First, if k = d (p is a smooth point) then, as was observed prior to stating
Theorem C.39, the Morse index of h is at most d. The attachment is (Bi, ∂Bi)
where i is the Morse index of h, so in this case the homotopy type of the
attachment is at most d.

When k < d, we proceed by induction on d. The tangential Morse data has
the homotopy type of a cell complex of dimension at most k. The spaceL(S ) is
a complex analytic space, with complex dimension one less than the dimension
of the normal slice, meaning it has dimension d−k−1. The induction hypothesis
shows that the homotopy dimension of L(S ) is at most d − k − 1. Taking the
cone brings the dimension to at most d − k and adding the dimension of the
tangential data brings this up to at most d, completing the induction.

(ii) When X is the complement of a variety V, still assuming h to be the
square of the distance to a generic point, all critical points with respect to
the pair (X,V) are contained in V, not in X. Again it suffices to show that
the attachments all have homotopy dimension at most 2n − d − 1, and again
we start with the case k = d. Here p is a smooth point of V, so the normal
data is the same as for the complement of a point in Cn−d, which is S 2(n−d)−1.
The tangential data has homotopy dimension at most d, so the attachment has
dimension at most 2n − d − 1.

When k < d, we again proceed by induction on d. The link L(S ) is the
complement ofV∩A in a generic hyperplane A. We have directly dimC N(p) =

n − k and dimC(A) = n − k − 1, and dimC(V ∩ A) = d − k − 1 because V has
codimension n − d, intersects A generically, and k ≤ d − 1. The induction
hypothesis applied to the complement of V ∩ A in A shows that L(S ) has the
homotopy type of a cell complex of dimension at most 2(n − k − 1) − (d − k −
1) − 1 = 2n − d − k − 2. The normal Morse data is the product of this with a
1-complex, hence it has homotopy dimension at most 2n−d−k−1, and taking
the product with the tangential Morse data brings the dimension up to at most
2n − d − 1, completing the induction. �

It is useful for the main part of this book to summarize the results from this
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section for complements of manifolds, applying the Künneth formula to obtain
a description of the attachments in terms of specific relative cycles.

Definition D.24 (quasi-local cycles). A (relative or absolute) local cycle at a
point p is a cycle which may be deformed so as to be in an arbitrarily small
neighborhood of p. Given a stratified space with Morse function h, a quasi-
local cycle at a critical point p of the stratification is a cycle C⊥ × C‖, where
C‖ is a disk in S on which h is strictly maximized at p, Bp is a small ball
around p in the normal slice, C⊥ is a local cycle in (Bp \ Y, (Bp \ Y)≤h(p)−ε),
and the product is taken in any local coordinatization of a neighborhood of p
by Bp × S .

Theorem D.25. Let X be the complement of a complex variety of dimension d
in Cd+1. Then X may be built by attaching spaces that are homotopy equivalent
to cell complexes of dimension at most d + 1. Consequently, Hd(X) has a basis
of quasi-local cycles which may be described as B = {σp,i}p,i, where p ranges
over critical points in different strata, and each σp,i ∈ Xc,p. For each fixed p,
the projection π∗ : Xc,p → (Xc,p, X≤c−ε) = Xp,loc maps the set {σp,i} to a basis
for the relative homology group Hd(Xp,loc). �

Notes

The idea to use Morse theory to evaluate integrals was not one of the original
purposes of Morse theory. Nevertheless, the utility of Morse theory for this
purpose has been known for over 50 years. Much of the history appears difficult
to trace: the present authors learned it from Yuliy Baryshnikov, who related it
as mathematical folklore from Arnold’s seminar. The smooth Morse theory
in this chapter (and some of the pictures) is borrowed from Milnor’s classic
text [Mil63]. Stratified Morse theory is a relatively new field, in which the
seminal text is [GM88]; most of our understanding came from this text.

The result usually quoted as the description of the attachment in the strati-
fied case (a stratified version of Theorem C.28) is an unnumbered result named
“Theorem” in [GM88, Section 3.12]. This computes the change in topology of
a stratified space X on which the function h is proper. When h is a continuous
function on Cd

∗ , this requires the subset X to be closed. We are chiefly inter-
ested in the space X = Vc which is not closed. Dealing with nonproper height
functions requires two extra developmental steps. The first is to develop a sys-
tem for keeping track of the change in topology of the complement of a closed
space up to a varying height cutoff. This computation is similar to the one for
the space itself. Goresky and MacPherson state the two results together in a
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later version of the “Main Theorem” of [GM88], and we have followed their
example, stating the results together in Theorem D.21. The second way h can
fail to be proper occurs at infinity. The results of [GM88] across the height
interval [a, b] can be extended to unbounded spaces when there are no critical
points at infinity with heights in [a, b]. This was the motivation for the results
on CPAI derived in [BMP22], which we use in Chapter 7.

Additional exercises

Exercise D.4 (Whitney umbrella). Let f (x, y, z) = x2 + y2z be the polynomial
whose real variety V f forms the Whitney umbrella. Decompose V f into the
union of smooth sets by computing algebraic equations for its singularities, the
singularities of its singularities, and so on until no singularities remain. Either
prove that this decomposition is a Whitney stratification ofV f , or prove that it
is not and find a refinement that is.

Exercise D.5. Let X be the complement in C2 of the smooth curve x2 +y2 = 1.
Define a Morse function and use it to compute the homology of X.

Figure D.7 The real variety in Exercise D.6.

Exercise D.6. Let Q = x2 − y3 − z2y2 and let VQ denote the corresponding
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real affine variety shown in Figure D.7. Compute the set S of singularities of
VQ, and then determine whether {VQ \S , S } is a Whitney stratification ofVQ.
Hint: Consider points xn = (0,−t2, t) ∈ VQ \ S and yn = (0, t, 0) ∈ S .
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