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GENERALISED HOLDERIAN FUNCTIONS

S. D E SARKAR AND S. PANDA

The concept of fcth Holderian functions on an interval [a, b] which generalises the no-
tion of Holderian (Lipschitzian) functions of positive order on [a, 6] is introduced. The
relationship of such functions to functions of bounded fcth variation and absolutely &th
continuous functions is examined. Properties induced by higher order derivatives in this
new class of functions are investigated.

1. INTRODUCTION

It is well-known that a function / of. a real variable is said to be Holderian (Lip-
schitzian) of order a > 0 on [a, 6] if there exists a positive constant K such that for
any two points x and y in [a, 6],

If in this definition, a > 1, then / is constant on [a, 6] and if a = 1 then / is absolutely
continuous (consequently of bounded variation) on [a, 6].

Russell [12] introduced the concept of functions of bounded fcth variation (BVt

functions) on [a, b] and studied their properties in detail. As a natural consequence the
definition of absolutely fcth continuous functions (AC* functions) on [a, b] was intro-
duced by Das and Lahiri [2] and they obtained some interrelations between BV*and
AC*functions. The definitions of BV^and A Cj. functions involve higher order divided
differences.

The main purpose of the present paper is to obtain a generalisation of Holderian
functions of positive order using higher order divided differences and to consider the
development of some classical properties with such a framework. To do this, we first
define fcth Holderian functions of positive order on [a, b]. It is observed that such
functions correspond to BVfcand ACfc functions in exactly the same way as Holderian
functions of positive order correspond to functions of classical bounded variation and
absolutely continuous functions. We then exhibit several results concerning higher order
derivatives in this new class of functions.

For background and further information on BV».and AC* functions, we refer the
reader to Russell [13, 14], De Sarkar and Das [4, 5, 6, 7], De Sarkar, Das and Lahiri
[8] and Das and Das [3].
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2. PRELIMINARIES

Let / be a real-valued function denned on the closed interval [a, b] and let k be

a positive integer greater than 1. If scot^i,.• • ,xk are any (k + 1) distinct points, not

necessarily in linear order, in [a, b], then the k th divided difference of / is defined by

k k

Qk(f;*o,*i, • . . , x k )= X)[ / (*0/ I I (*' ~ *>')]•
i=0 j-0

By a ir-subdivision of [o,6] we mean a finite set of points XQ,X%, .. .,xn in [a,b]

with XQ < x\ < . . . < xn and we denote it by ir(xo, x\,..., xn). The number

n-k

Vk(f; [a, b]) = sup ] T (xi+k - Xi)\Qk(f; x{,..., xi+k)\,
* »=o

where the supremum is taken for all 7r-subdivisions of [o, b] is called the total kth

variation of / on [a, 6]. If Vj.(/; [a, 6]) < + oo, then / is said to be of bounded kth

variation, BVk, on [a , i ] . For a; € [a,6] we write Vk(fi(x) = Vfc(/;[o,x]).

L e t x i i 0 < x l t l < ... < x l t k < x2<0 < x2<i < . . . . < x2<k < ••• < x n , o < i n , i <
. . . < x'n}k be any subdivision of [a, b) where x^j £ [a, b]. We say that the intervals
(xito,Xi>k), i = 1,2, . . . ,n form an elementary system I, say, in [a, b]. The system is
denoted by

) , i — 1 , 2 , . . . , n .

We write
n

<r\I\ = X ) (Xi>k ~ xifi)\Qk(f; xito,..., xitk)

and
n

ml = ^2 (xi<k - xifi).,
i=l

The function / is said to be absolutely kth continuous, AC*, on [a,b] if for e > 0,

arbitrary, there exists S('e) > 0 such that for any elementary system / in [a,b] with

ml < 8 the relation <r|/| < e is satisfied.

Let xo be any point in [o,b] and-let x\,X2,- • • ,xk be any set of k distinct points

in [a,b] with the property 0 < |KI — a;0| < \x2 — xo\ < • • • < \xk — xo\. If the iterated

limit
lim . . . lim k\Qk(f;x0,xi,...,xk)

exists, then this limit is called the ktk Reimann* derivative of / at x0 and is denoted

by Dk.f(xo). The ordinary derivative of / of order r at XQ is denoted by f(xo). We

note that when fr{xg) exists, then Drf(xo) exists, and /r(xo) = Drf(xo)-
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3. A:TH HOLDERIAN FUNCTIONS

DEFINITION 3.1: The function / is said to be kth Holderian of order a > 0 with

the constant M > 0 on [a,b] if for any set of (k + 1) points x0 < xj < . . . < xk in

[a, 6] we have

|Qfc_i(/;sco,.xi,...,Xfc_i)-Qfc_i(/;a!i,X2.---i**)| < M{xk - xo)
a.

In this case we write / € Hk(a,M, [a, b]).

We note that for k = 1, the above definition gives the definition of Holderian
functions of order a on [o,i].- When a > 1, by using Lemma 4 of Russell [12], it is
easy to show that Dkf(x) = 0 for all x 6 [a, 6] and consequently / is a polynomial of
degree {k — 1) at most. .

THEOREM 3.1. If f e Hk(a,M,[a,b]), with a > 0, then / f c - 1 exists and is
continuous in [a, b].

PROOF: Let a < c < b and e > 0 be arbitrary. We choose points

Ep_fc+1 < Xp_k+2 < • • • < Xp =? C < Xp+i < ... < Xp+k+l

such that
(*„+*_! - xp.k+1) <(e/(fc - l)!M(fc - l ) ) 1 / a . .

Then we have

\Qk-i(f;*i, • • •, *i+k-i)-Qk-i{f\*i+i, • • •, Zi+fc)| < M(xi+k - Xi)a < e/(k - l)!(fc - 1)

for i = p — k + 1,... ,p — 1. Now combining (k — 1) inequalities we obtain

\(k - l)!<?fc-j(/; xu ..., Zi+fc-O - {k -

for i = p - k + 1 , . . . ,p and j = p — k + 1 , . . . , p . Therefore, Dk~1 f(c) exists and hence

Dk~1f(x) exists in (a, b). By suitable modifications it can be shown that at the end

points a and b, Dk~1 f (of course one-sided) exists. It is easy to see that there exists

a 6 with 0 < 8 < (e/k\M)1/a such that for c, d £ [a, b],

whenever \c — d\ < 6 and so Dk~i f is continuous in [a, 6]. The theorem now follows

from Theorem 4.4 of Bullen and Mukhopadhyay [1] and Theorem'3 of Oliver [11]. u

The following result is immediate.
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THEOREM 3.2. If f e Hk(l, M, [a, 6]), tiien / is ACk on [a, b].

THEOREM 3.3. If the kth divided differences of f are bounded on [a,b] then

f€Hk(l,M,[a,b}).

PROOF: The proof follows readily from Lemma 4 of Russell [12]. D

In connection with Theorem 4 of Russell [12] and Theorem 3.3 above we observe
that if / is BVfcon [a, 6], then / may not be kth Holderian of order 1 with any positive
constant M on [a, b]. Functions which are BVk but not AC/t (see Example 2.2 of De
Sarkar and Das [4]) are examples of such functions.

THEOREM 3.4. If f £ Hk(l,M, \a,b}), then Vk{f) e Hi(l,kM,[a,b]).

PROOF: Let xi and x2 be any two points in [a, b] with X\ < x2. Consider
any IT(ZQ,ZI,... ,zn) subdivision of [xi,X2]- We then have k sets of non-overlapping
intervals (zi, Zj+fe), i G Tr = {r, k + r,2k + r,... < n} and r = 0 , 1 , . . . , k — 1 so that

n-k

\Qk-i(f;zi,...,^i+ib-i)-Qk-i(f;*<+i>• • •»
i = 0

fc-1

r=0 ieTr

Since / G Hk(l,M,[a,b}) it follows that

n-k

^2\Qk-i(f;zi,...,zi+k-i) - Qk-i(f;zi+1,...,zi+k)\
»=0

r=0 i6Tr

< kM(x2 - x j ) .

Therefore Vk(f; [x!,x2]) < kM(x2 — Xi). This implies, in view of Theorem 7 of Russell

[12] that

|VM / ) (x2) - VM / ) (*i) | < kM(x2 - xi)

and thus the theorem is proved. U

THEOREM 3.5. If Vk(f) € Hi{a,M,[a,b)) with a > 0, then f € Hk(a,M,[a,b]).

PROOF: For any set of (k + 1) points y0 < t/i < . . . < yk in [a, b] we have, using
Theorem 5 of Russell [12],

lQfc-i( / ;yo,yi ,--- ,y*-i) - Qk-i{f;yi,y2,--,yk)\

<Vk(f;[y0,yk})
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and so the theorem is proved. U

THEOREM 3.6. Iff e Hk(a, M, [a, b]), a > 0, then f1 € Hk_i{a,(Zk - 5)M,[a,b\).

P R O O F : By Theorem 3.1, f1""1 exists on [a, b\. For any set of k points x$ < x\ <

...< Xk-i in [a, 6] we have, using Theorem 8 of Russell [12],

lQk-2(Z1;so,zi,• • •,sfc-2) - Qk-2(Z1;»!,K2,• • • , x k - i ) \
k-2 fc-1

h=0 h=l

k-2

«=0
fc-2

< 2_^\Qk-i{f;x0,--.,xt,xt,...,xfc_2) — Qfc_i(Z;*i,-•
t=Q

fc-2

t=0

i,.. .,xit_i) — Qfc_i(Z;zi>- • -,xt+i,Ct+iy ->^fc-i)l

where x, < (,, < x,+i when s = 0 , 1 , . . . , fc — 2 aud x,_i < ^, < x, when s = k - 1.

For e > 0, arbritary, the points £o < £i < • • • < Cfc-i c a n be chosen so that

and

< e/2{k - 1)

when t = 0, l , . . . , fe — 2. Thus we get

(3.1) |Qjfc_2 (Z1; »0 , * i , • • •, Xfc-2) - Qk-2
fc-2

t=0

Consider
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for a fixed value of i where 0 ^ t < k — 2. When t = 0 we have

l,tt+ly • • ixk-l)\

; xo,(o,xi, • • • ,xk-2) - Qk-i(f; *i,

We take y0 = x0, yt = fo , % = « i . 3/s = 6 » »r = «r -2 ; r = 4 , 5 , . . . , (fc + 1). Then,
clearly, j/o < 2/i < • • • < 3/fc+i • By Theorem 1 of Russell [12] there exists a number. /?
with 0 < 0 < 1 such that

\Qk-i(/;sco,&>,%i,• • • , Z f c - 2 ) - Q f c - i ( f ; x i , d , x 2 , - - - , X k - i ) \

- Qk-i(f;y2,y3,:• • • ,y*+i)l

< M{yk - 3/0 ) a

When H K * i - 3 w e define

!/t+i = 6» Vt+2 - xt+i, t/t+3 = 6+1)

yt+r = xt+r_2; r = 4,5, . . . , (* + l - * ) .

With this relabelling, using Theorem 1 of Russell [12], it can be shown in a similar
manner that for 1 ^ t < fc — 3,

k_i - xo)
a.

For t = k — 2 we consider

\Qk-l(f\X0,Xi,.. -,Xk-2,(k~2)- Qk-l{f\Xl,X2,. ..,Xk-l, ^fc-

Since xk-2 < £fc-i < ^fc-i > in view of Lemma 3 of Russell [12], we have

\Qk-i(f;xo,xu...,Xk-2,tx-2) - Qk-i{f;x!,x2,...,«fc_i,^_j)l

= \Qk-i(f;x0,zi,...,**-2,^fc-2) - Qk-i(f;x1,x2,...,xk-2,£
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Relabelling the set of points as

Xj=Vj\ 3 = 0 , l , . . . , f c - 2 ,

Vk-l—ik-2, Vk=(k-1, Vk+1 = Xfc_i

and using Theorem 1 of Russell [12] again, we can show that

|Qfc-i(/;so,si,---v*fc-2,&-a)-Q*-i(/;iCi,si:2,.--,Zk-i>fr-i)l

< 2M{xk_1 - * , ) " .

Hence from (3.1) we obtain

\Qk-i ( / ' ; x 0 , x i , . . . , xf e_2) - Qk-i (f1;x1,x2,..., xk-i)

< (3k - 5)M(xfc_! - x o ) a + e.

As e > 0 is arbitrary, the theorem is proved. D

The following corollary follows by straightforward induction.

COROLLARY 3.1. If f € Hk(a,M, [a,b]) with a > 0, then

f € .fffc_r.(a,Mr,[a,&]) vriiere Mr = (3ifc - 5)(3fc - 8) . . . (3ifc - 3r - 2)M for r =

l , 2 , . . . , ( f c - l ) .

THEOREM 3.7. If / f e - 1 e fTi(a,M,[a,6]) with a > 0, then

PROOF: Let x0 < xi < . . . < xk be any set of (k + 1) points in [a, b]. By Milne-
Thomson [10, p.6], fk~l possesses the mean value property on [a, 6], namely, for any
set of k points j/i < yz < . . . < yk in [a, 6] there exists at least one TJ in (yi,yk) such
that

Since Z*"1 G #i (a ,M[a ,6]) we thus have

< [M/(fc - l)!](xfc - xo)Q

and this completes the proof. U

Using Theorem 3.6 we get the following corollary.
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COROLLARY 3.2. If f e Hk-r(a,N, [a,b]) with a > 0, for some r such that 1 <
r < k-2, then f € Hk(oc,Nr,[a,b)), where Nr = [1.4.. .(3k - 3r - 5)N]/[(k - 1)!].

For 0 < a < 1, f £ Hk(a,M,[a,b\) does not imply that / is BVfcon [a,6]. To see
this, consider the following example.

Example 3.1. Let 0 < a < 1. Let / be the function on [0,1] such that f1 = F
where F is the Weierstrass non-differentiable function defined by

- " sin 2*9"*,

where p > 1, q is even and q > (4ir + l)p, with p — qa. Taking

we see (Hardy [9]) that f1 £ #i(a,M,[0,1]). Thus, by Theorem 3.7, / G H2(a, M,[0,1]).
Since /* is not BV on [0,1], it follows from Theorem 7 of Russell [14] that / is

not BV2 on [0,1].
We find the following theorem useful.

THEOREM 3.8. If fk~l is absolutely continuous (AC) on [a,b], then f is ACkon
[a,b).

PROOF: Consider an elementary system I(xiti,.. .,Xiik-i): (xifl,Xi,k), i — 1,2,
. . . ,7i in [a, b]. Then in view of Lemma 4 of Russell [12] we have

<r\I\ = X ] \Qk-i{f; Xi,i,..., xiik) - Qk-i(f; xifi, • • •, *i,*-i)|-
» = 1

Using Milne-Thoinson [10, p.6] it is then easy to see that

where (7t,/?i), for i — 1,2,. . . ,n is a sequence of non-overlapping intervals in [a,b].
The rest of the proof is straightforward. D

We conclude with the following example, which shows that the converse of Theorem
3.2 is, in general, not true.

Example 3.2. Consider the function

on [0,1]. Then /*-1(a;) = ^/x is absolutely continuous (AC) on [0,1] and so, by
Theorem 3.8, / is AC^on [0,1]. For 0 < x < 1 we have

which is unbounded as x —* 0. Consequently fk~1 £ Hi(l,M,[0,l]) for any M > 0
and so, by Theorem 3.5, / £ Hk(\, M, [0, 1]) for any M > 0.
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