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In this paper, we review different definitions that multi-state k -out-of-n systems have
received along the literature and study them in a unified way using the algebra of monomial
ideals. We thus obtain formulas and algorithms to compute their reliability and bounds for
it. We provide formulas and computer experiments for simple and generalized multi-state
k -out-of-n systems and for binary k -out-of-n systems with multi-state components.
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Nomenclature

S : a coherent system
n: number of components of the system S
m: maximum level of performance of the system S
S = {0, . . . ,m}: possible states of the system S
ci: component i of the system, i ∈ {1, . . . , n}
mi: maximum level of performance of the component ci, i ∈ {1, . . . , n}
Si = {0, . . . ,mi}: possible states of the component ci, i ∈ {1, . . . , n}
φ : S1 × · · · × Sn → S: structure function of the system S
x = (x1, . . . , xn): vector of components’ states
FS,j : set of j -working states of S

FS,j : set of minimal j -working states of S
IS,j : j -reliability ideal of S
G(IS,j): unique minimal monomial generating set of IS,j

HIS,j
: numerator of the Hilbert series of IS,j

βi(I), βi,j(I): Betti numbers and graded Betti numbers of I
I(k,n),j : j -reliability ideal of a simple multi-state k -out-of-n system

Nj : number of components in state j or above, j ∈ {1, . . . ,M}
Sn,(k1,...,kM ): generalized multi-state k -out-of-n system
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In,(k1,...,kM ): j -reliability ideal of a generalized multi-state k -out-of-n system

pi,j : probability that the component i is in level greater than or equal to j
RS,j : probability that the system S is performing at level greater than or equal to j
rS,j : probability that the system S is performing at level j
Sm,n,k: m-multi-state k -out-of-n:G system
Jm
[n,k]: j -reliability ideal of the system Sm,n,k

Nm
[n,k]: number of generators of the ideal Jm

[n,k]

1. INTRODUCTION

We say that a system is a k -out-of-n:G system (G for good) if it works whenever k of
its n components work, and that it is a k -out-of-n:F (F for fail) if it fails whenever k of
its n components fail. k -out-of-n systems are one of the most relevant types of systems
studied in reliability theory due to their theoretical interest and wide range of applica-
tions, cf. [13,23,28]. The multi-state version, which can model more general situations, has
been object of intense research in the last decades and is also applied in a variety of situa-
tions [5,15,25,24,39]. Since the first definition of multi-state k -out-of-n systems [17], several
authors have proposed different definitions and generalizations, together with particular
methods to evaluate the reliability of these systems, see, for instance, [2–4,6,9–11,25] and
references therein.

We list a number of examples of this kind of systems.

1. Power generation. The safety and reliability of power systems is an essential compo-
nent of energy security and is increasing its importance in a period in which there are
likely to be radical changes in energy supply as governments adopt zero net carbon
strategies and use more renewable sources, such as wind power, which may be more
volatile. There are four standard states of generation for an energy unit: (i) available
and in service, (ii) available and not in service (iii) planned outage, (iv) unplanned
outage. Considering that a national electricity grid will have many sources of supply
and different components will be in different states, this represents a challenging
multi-component multi-state network. There is also a strong time aspect leading to
strict definitions such as FOR: Forced Outage Rate and AV: Availability, which form
part of supply contracts and regulation. Recent books are [32,37,47] for a k -out-of-n
approach.

2. DNA repair. DNA damage is a biological process that can upset important functions
such as replication. DNA damage is different from mutation, although both occur.
The system can be in very many states, depending on the amount of cell loss of
different types. Areas of study include the fundamental equilibria between repair and
damage needed to sustain the systems. Initial models make assumptions, similar to
those in reliability, for example, that occurrence at break sites happen independently
[12].

3. Software reliability and Bayes nets. It is natural in several areas of reliability to take
a probabilistic state-space approach. This is particularly true of one of the main
traditions of software reliability and provides an alternative to rule-based formal
methods. An advantage of this approach is that it can model systems as a Bayes
net and link up with modern theories of causation. Also important in such systems
is the idea of degradation which automatically implies different levels of reliability
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and is particularly important in the analysis of safety critical systems; see [18] for a
comprehensive approach.

In the failure of k -out-of-n components, the number k is a simple metric to describe
degradation (mentioned above) and this extends to the multi-state methods addressed here.
A useful way to think of the latter is that there is a damage “frontier” beyond which the
system is deemed to have failed or to have reached a level, for example, at which the unit
may be switched off for maintenance. This may be planned or unplanned (as mentioned
above for power generation). Another way of conceptualizing these issues is that the metric
k is simply a way of counting some (bad) aspect of the system and counting is surely a basic
combinatorial and algebraic activity. Broadly, research on the theory of k -out-of-n methods
divides into (i) combinatorial and algebraic theory, as in this paper, and (ii) simulations
studies, which are typically of a Markovian type. For the combinatorial methods, generating
functions play an important role [51]. In our work, this is reflected in the use of Hilbert series,
which are essentially a type of generating function. For sequential k -out-of-n problems,
one often converts the system into a Markov chain, inspects the ergodic behavior and
benchmarks against probabilistic asymptotics from large deviation theory and boundary
crossing methods. A main tool is that of de Bruijn graphs which track the change of a
moving window between time steps [29]. Signature analysis has also been applied to k -out-
of-n systems [34]. The methods employ the inherent symmetries in the order statistics of
failure events to simplify reliability bounds, [27]. Genome analysis is one science that makes
much use of a type of k -out-of-n analysis under a heading of k-mer: the detection of special
genome sequence of length k out of a much longer sequence [38]. There is a dominance of
computer base search methods in the area and some also use the de Bruijn graph methods.
The idea of a “special sequence” makes the field quite close to percolation theory where the
sequence is a percolation through a lattice structure of some kind.

The algebraic method for the analysis of system reliability associates a monomial ideal
to a coherent system and by studying algebraic properties of this ideal obtains information
about the system and its reliability [43–46], see Appendix A for a basic introduction to
this method. The principal objective is to obtain general extensions of classical Bonferroni
bounds in multi-state system reliability. It is a general method that can be adapted to dif-
ferent kinds of systems, both binary and multi-state. In this paper, we review the different
definitions of multi-state k -out-of-n systems, study them in an algebraic way and apply the
algebraic method as a unified way to compute their reliability. The foundation has two parts:
a description of the system, including the idea of a state, and the stochastic model which
defines the occupancy of the state. The next step is to map the system into an algebraic
object called a monomial ideal, which can be handled via combinatorial algebra, including
the use of computer algebra (already well developed for this purpose). The compact inclu-
sion–exclusion formulae needed for the bounds start by being distribution-free and require
special Betti numbers which are attached to the “live” terms in the formulae. For simple
probability models, it is then straightforward to obtain the actual probability bounds.

A problem for the reliability computation of these systems is the computational burden
when complexity increases. Several algorithms have been proposed to compute the exact
reliability of these systems, see [4,8,33,50,53]; also, Ding et al. proposed in [10] a framework
for reliability approximation. Our approach, while enumerative, shows good performance
and can provide both exact reliability and bounds in the case of i.i.d. components and in
the case of independent non-identical components.

The outline of the paper is the following: in Section 2, we give a quick overview of the
algebraic method for system reliability analysis, in particular, when applied to multi-state
systems. In Section 3, we show the first definitions of multi-state k -out-of-n systems, give
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an algebraic version of them and use it to analyze the reliability of this kind of systems. In
Section 4, we study generalized multi-state k -out-of-n systems and in Section 5, we focus
on a type of binary k -out-of-n systems with multi-state components and give an example
of the application of these systems. A simple storage problem is used for illustration.

2. ALGEBRAIC RELIABILITY OF MULTI-STATE SYSTEMS

Let S be a system with n components that can be in any of a set of m + 1 possible states
S = {0, . . . , m}. Each component ci of S can be in a discrete number of ordered states Si =
{0, . . . , mi}. The states of the system are also ordered and measure the overall performance
of the system. We assume that state j represents better performance than state i whenever
j > i. We define a structure function φ that for each n-tuple of component states outputs
the state of the system, that is, φ : S1 × · · · × Sn → S. We say that the system is coherent
if φ(x) ≥ φ(y) whenever x > y, which means that the component states given by x are
greater than or equal tothose given by y and there is at least one improvement. Conversely,
φ(x) ≤ φ(y) whenever x < y. If m1 = · · · = mn = 1, then we say that the system has binary
components. If m = 1, then we say that the system is itself binary. We have therefore the
following types of systems with respect to their number of states:

• If m = 1 and mi = 1 for all i, we have a binary system with binary components.
These are usually simply referred to as binary systems.

• If m > 1 and mi = 1 for all i, we have a multi-state system with binary components.
• If m = 1 and there is at least one component i such that mi > 1, we have a binary

system with multi-state components.
• If m > 1 and there is at least one component i such that mi > 1, we have a multi-state

system with multi-state components.

We basically follow here the notation in [20,36] but we allow a more general kind of
systems, since we do not restrict to the case that max(S) ≤ max(Si)∀i. For other definitions
of multi-state systems and a review of multi-state reliability analysis, we refer to [17,31,30,52]
and the references therein.

Let S be a coherent system with n components and let FS,j be the set of tuples of com-
ponents’ states x such that φ(x) ≥ j for some 0 < j ≤ m. The elements of FS,j are called
j-working states of S. Let FS,j be the set of minimal j -working states, that is, states in FS,j

such that the degradation of the performance of any component provokes that the over-
all performance of the system is degraded to some j′ < j. Let now R = k[x1, . . . , xn] be a
polynomial ring over a field k. Each tuple of components’ states (s1, . . . , sn) ∈ S1 × · · · × Sn

corresponds to the monomial xs1
1 · · ·xsn

n in R. The coherence property of the system is equiv-
alent to saying that the elements of FS,j correspond to the monomials in an ideal, denoted
by IS,j and called the j-reliability ideal of S. The unique minimal monomial generating set
of IS,j , denoted G(IS,j), is formed by the monomials corresponding to the elements of FS,j

(see [42, §2] for more details). Hence, obtaining the set of minimal cuts of S amounts to
compute the minimal generating set of IS,j .

In order to compute the j-reliability of S (i.e., the probability that the system is per-
forming at least at level j ), we can use the numerator of the Hilbert series of IS,j , denoted
by HIS,j

. The polynomial HIS,j
gives a formula, in terms of x1, . . . , xn that enumerates all

the monomials in IS,j , that is, the monomials corresponding to the states in FS,j . Hence,
computing the (numerator of) the Hilbert series of IS,j provides a way to compute the
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j -reliability of S by substituting xa
i by pi,a, the probability that the component i is at least

performing at level a, as explored in [42, §2] (for the binary case).
Often, in practice, it is more useful to have bounds on the j -reliability of S rather than

the exact formula. In order to have a formula that can be truncated at different summands to
obtain bounds for the j -reliability in the same way that we truncate the inclusion–exclusion
formula to obtain the so-called Bonferroni bounds, we need a special way to write the
numerator of the Hilbert series of IS,j . This convenient form is given by the alternating sum
of the ranks in any free resolution of the ideal IS,j . Every monomial ideal I has a minimal
free resolution, which provides the tightest bounds among the aforementioned ones. The
ranks of the free modules in the minimal free resolution are called the Betti numbers of the
ideal and are denoted by βi(I), or by βi,j(I) in the graded case. In general, the closer the
resolution is to the minimal one, the tighter the bounds obtained, see for example, [42, §3].

In summary, the algebraic method for computing the j -reliability of a coherent system
S works as follows:

1. Associate with the system S its j -reliability ideal IS,j .
2. Obtain the minimal generating set of IS,j to get the set FS,j .
3. Compute the Hilbert series of IS,j to have the j -reliability of S.
4. Compute any free resolution of IS,j . The alternating sum of the ranks of this res-

olution gives a formula for the Hilbert series of IS,j , that is, the unreliability of S,
which provides bounds by truncation at each summand.

The choice between steps (3) or (4) depends on our needs. If we are only interested in
computing the full reliability formula, then we can use any algorithm that computes Hilbert
series in step (3). However, if we need bounds for our system reliability, then we can compute
any free resolution of IS,j and thus perform step (4). If the performing probabilities of the
different components are independent and identically distributed (i.i.d.), then in points
(3) and (4) of this procedure, we only need the graded version of Hilbert series and free
resolutions. Otherwise, we need their multigraded version. For more details and the proofs
of the results described here, we refer to [42,45]. To see more applications of this method in
reliability analysis, we refer to [43,44,46].

3. SIMPLE MULTI-STATE k-OUT-OF-n SYSTEMS

The first definition of multi-state k -out-of-n systems was given by El-Neweihi et al. in the
seminal work [17]. They define multi-state systems as follows:

Definition 3.1 (El-Neweihi et al. [17]): A system of n components is said to be a multi-state
coherent system (MCS) if its structure function φ satisfies:

1. φ is increasing.
2. For level j of component i, there exists a vector (·i,x) such that φ(ji,x) = j while

φ(li,x) �= j for l �= j for i = 1, . . . , n and j = 0, . . . ,M .
3. φ(j) = j for j = 0, . . . , M , where j = (j, . . . , j).

Where (ji,x) means that the state of the ith component in x is j. Observe that this
definition is more restrictive than ours in the sense that they assume every component has
the same number of states, which is in turn the number of states of the system, that is, M.
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The definition of multi-state k -out-of-n systems in [17] is:

Definition 3.2 (El-Neweihi et al. [17]): A system is a multi-state k-out-of-n system if its
structure function satisfies

φ(x) = x(n−k+1) (3.1)

where x(1) ≤ x(2) ≤ · · · ≤ x(n) is a non decreasing arrangement of x1, . . . , xn.

Observe that this definition satisfies the conditions given in Definition 3.1. It is easy to
check that φ is an increasing function and φ(j) = j for all j = 0, . . . ,M . To see condition
(2), just observe that there always exists a non decreasing arrangement of x1, . . . , xn in
which φ(ji,x) = j while φ(li,x) �= j for l �= j for i = 1, . . . , n and j = 0, . . . ,M . Taking the
vector in which the first n − k + 1 components are lower than j and the rest of them are
greater than j, we have that condition (2) is satisfied.

Remark 3.3: This kind of systems are called simple multi-state k-out-of-n systems in [28].

We describe now the j -reliability ideal of these multi-state k -out-of-n systems:

Proposition 3.4: The ideal

I(k,n),j =

〈 ∏
σ⊆{1,...,n}

|σ|=k

xj
i | i ∈ σ

〉

is the j-reliability ideal of a multi-state k-out-of-n system as defined in Definition 3.2.

Proof: First of all, we need to check that all μ ∈ G(I(k,n),j) satisfy φ(μ) = j. Let xμ =
xj

i1
xj

i2
. . . xj

ik
be a generator of I(k,n),j , with {i1, . . . , ik} ⊆ {1, . . . , n}. If we make a nonde-

creasing arrangement of xi1 , . . . , xik
, we obtain the vector (0, . . . , 0, j, . . . , j) in which the

first n − k components are in state 0 and the other components are in state j. Applying the
structure function φ to this vector, we have that φ(0, . . . , 0, j, . . . , j) = j.

Now, if xν ∈ I(k,n),j , there exists xμ ∈ G(I(k,n),j) such that μ ≤ ν. This implies φ(μ) ≤
φ(ν) and since φ(μ) = j and φ is an increasing function, we obtain φ(ν) ≥ j.

Finally, if l < j and φ(ν) = l , we must have xν �∈ I(k,n),j . Since φ(ν) = l < j , we have
that there are at most, k − 1 variables with exponent greater or equal to j. This implies
that there does not exist any σ ∈ {1, . . . , n} with |σ| = k such that

∏
xi∈σ xj

i |xν , hence
xν /∈ I(k,n),j . �

In [6], Boedigheimer and Kapur define customer-driven reliability models for multi-state
systems. They consider systems with M states in which component i can be in Mi states.
They describe such systems using upper and lower boundary points, which are enough to
describe the system completely and are defined as follows

Definition 3.5: We say x is a lower boundary point (l.b.p.) to level j iff φ(x) ≥ j and
y < x implies that φ(y) < j, for j = 1, . . . ,M . An upper boundary point (u.b.p.) to level j
is an n-tuple x such that φ(x) ≤ j and y > x implies that φ(y) > j, for j = 0, . . . ,M − 1.

Observe that the lower boundary points to level j are the minimal monomial generators
of the j -reliability ideal of the system. To describe upper boundary points algebraically, we
need the concept of maximal standard pairs [48].

https://doi.org/10.1017/S0269964820000224 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964820000224


ALGEBRAIC RELIABILITY OF MULTI-STATE k-OUT-OF-n SYSTEMS 909

Definition 3.6: Let I be a monomial ideal in R = k[x1, . . . , xn] and σ ⊆ {1, . . . , n}. The
pair (xμ, σ) is a standard pair for I if it satisfies:

• supp(xμ) ∩ σ = ∅, where supp(xμ) is the set of indices i ∈ {1, . . . , n} such that xi

divides xμ.
• for all monomials xν such that supp(xν) ⊆ σ we have that xμxν /∈ I.
• (xμ, σ) �⊆ (xν , τ) for any other (xν , τ) satisfying the two previous conditions.

We say that (xμ, σ) is a maximal standard pair if there is no other standard pair (xν , σ)
such that xμ divides xν .

Maximal standard pairs are in one-to-one correspondence with upper boundary points.

Theorem 3.7: Let IS,j be the j-reliability ideal of a coherent system S for which component
i can be in states (0, . . . , Mi). Then μ +

∑
i∈σ 1Mi

is an upper boundary point of S for level
j− 1 if and only if (xμ, σ) is a maximal standard pair of IS,j.

Proof: ⇒) Let α be an upper boundary point of S for level j − 1. Let σ ⊆ {1, . . . , n} be
the set of components of S such that αi = Mi. We have that σ �= {1, . . . , n} that is, there
exists at least one component i such that αi �= Mi hence α is of the form α = μ +

∑
i∈σ 1Mi

.
φ(α) < j implies xα /∈ IS,j , and we claim that (μ, σ) is a standard pair for IS,j . To see this,
let xμxν such that supp(xν) ⊆ σ. If νi ≤ Mi then clearly xμxν /∈ IS,j because μ + ν ≤ α and
φ(α) < j. Now, since xα /∈ IS,j we know there is no minimal generator of IS,j that divides
xα and since Mi = αi is the maximal power to which variable i can possibly be raised to in
any generator of IS,j then no generator will divide xαxν for any ν such that supp(xν) ⊆ σ
hence (μ, σ) is a standard pair. Assume now that (μ, σ) is not maximal. Then there is some
i′ /∈ σ such that (μ + 1i′ , σ) is a standard pair for IS,j . Then xμxi′

∏
i∈σ xMi

i /∈ IS,j i.e.,
φ(α + 1i) < j which contradicts the assumption that α is an upper boundary point of S for
level j − 1.

⇐) Let (xμ, σ) be a maximal standard monomial of IS,j , that is, xμ /∈ IS,j and xμxν /∈
IS,j for all xν such that supp(xν) ⊆ σ. Let xα = xμ

∏
i∈σ xMi

i . Since xα /∈ IS,j we know that
φ(α) < j. Let now β > α, we can assume without loss of generality that β = α + 1i for
some i /∈ σ. Suppose xβ /∈ IS,j . Then there is no minimal generator of IS,j that divides xβ

but since Mi is the maximal state of component i, then there is no minimal generator of
IS,j that divides xβxν for any ν such that its support is a subset of σ. Finally, since the
difference between xμxi and xβ is a monomial whose support is in σ, we have that (xμxi, σ)
is a standard pair for IS,j , which is in contradiction with the fact that (xμ, σ) is maximal,
hence xβ ∈ IS,j and α is an upper boundary point of S for level j − 1. �

Using upper and lower boundary points, Boedigheimer and Kapur define multi-state
k -out-of-n systems as follows.

Definition 3.8 (Boedigheimer and Kapur [6]): φ is a multi-state k-out-of-n:G structure
function if, and only if, φ has

(
n
k

)
lower boundary points to level j (j = 1, . . . , M) and

(
n

k−1

)
upper boundary points to level j (j = 0, . . . ,M − 1).

The minimal generating set of the ideal I(k,n),j in Proposition 3.4 has
(
n
k

)
elements,

that is, this system has
(
n
k

)
lower boundary points. The maximal standard pairs of I(n,k),j

are (
∏

i∈σ xj−1
i , {1, . . . , n} − σ) for all σ ⊆ {1, . . . , n} such that |σ| = n − k + 1, that is, the
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Table 1. Upper and lower boundary points for the system in Example 3.10

Level Lower boundary points Upper boundary points

0 (0, 0, 0, 0, 1), (0, 0, 0, 2, 0), (0, 0, 2, 0, 0),
(0, 3, 0, 0, 0), (4, 0, 0, 0, 0)

1 (0, 0, 0, 1, 1), (0, 0, 1, 0, 1), (0, 1, 0, 0, 1), (1, 0, 0, 0, 1), (1, 1, 1, 2, 1), (1, 1, 2, 1, 1), (1, 3, 1, 1, 1),
(0, 0, 1, 1, 0), (0, 1, 0, 1, 0), (1, 0, 0, 1, 0), (0, 1, 1, 0, 0) (4, 1, 1, 1, 1)
(1, 0, 1, 0, 0), (1, 1, 0, 0, 0)

2 (0, 0, 2, 2, 0), (0, 2, 0, 2, 0), (2, 0, 0, 2, 0), (0, 2, 2, 0, 0), (2, 3, 2, 2, 1), (4, 2, 2, 2, 1)
(2, 0, 2, 0, 0), (2, 2, 0, 0, 0)

3 (3, 3, 0, 0, 0)

number of upper boundary points of S for j − 1 is
(

n
n−k+1

)
=
(

n
k−1

)
. Hence, Proposition 3.4

is a proof of the equivalence of Definitions 3.2 and 3.8 in the case that Mi = M for all i.
If we allow that the number of states of each of the components can be different, then

the situation is more complicated. Let nj be the number of components such that their
maximum performance level Mi is bigger than or equal to j. If nj ≥ k then the system
behaves as a multi-state k -out-of-n system by setting φ as in Definition 3.2. The number of
lower and upper boundary points does however vary. The lower boundary points are given
by the tuples that have k components at level j and n − k components at level 0, and there
are

(
nj

k

)
such tuples. And if nj ≥ k then the upper boundary points for level j are given by

the tuples in which k − 1 components are at their maximum level (strictly bigger than j ),
the other component such that its maximum level is bigger than j is exactly at level j and
the rest of the components are at level min{Mi, j}. The number of such tuples is

(
nj+1

k

)
.

Hence the system behaves at level j as a k -out-of-nj system according to Definition 3.8. In
fact, if we only consider those components whose maximum performance level is bigger than
j then the system behaves at level j as a k -out-of-nj system according to both definitions.

We can then generalize the ideal in Proposition 3.4 allowing different number of levels
for each component:

Definition 3.9: Let S be a multi-state system with levels {0, . . . , M} and such that each
component i has Mi+1 levels of performance {0, . . . , Mi}. Let nj ≤ n be the number of
components such that Mi ≥ j for each j ∈ {0, . . . , M} (for ease of notation, we consider
that these are components 1, . . . , nj). S is a multi-state k-out-of-n system if for every j ∈
{1, . . . , M} the j-reliability ideal of S, IS,j, is of the form

IS,j =

〈 ∏
σ⊆{1,...,nj}

|σ|=k

xj
i | i ∈ σ

〉
.

Example 3.10: Let S be a system such that S1 = {0, 1, 2, 3, 4}, S2 = {0, 1, 2, 3}, S3 = S4 =
{0, 1, 2} and S5 = {0, 1} and let φ(x) = x(4). Observe that n1 = 5, n2 = 4, n3 = 2, n4 = 1.
The system behaves as a 2-out-of-5 for levels j= 1,2,3 according to Definition 3.2 and as
a 2-out-of-nj system for levels j= 1,2,3 according to Definition 3.8. The lower and upper
boundary points are given in Table 1.

The reliability ideals for this system are

IS,1 = 〈x1x2, x1x3, x1x4, x1x5, x2x3, x2x4, x2x5, x3x4, x3x5, x4x5〉
IS,2 = 〈x2

1x
2
2, x

2
1x

2
3, x

2
1x

2
4, x

2
2x

2
3, x

2
2x

2
4, x

2
3x

2
4〉

IS,3 = 〈x3
1x

3
2〉.
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4. GENERALIZED MULTI-STATE k-OUT-OF-n SYSTEMS

In [24], Huang, Zuo and Wu introduced generalized multi-state k -out-of-n systems allowing
different number of components for a system to perform at each level j naturally extending
the capabilities of the systems studied in the previous section and providing more flexibility
to describe practical situations. The definition in [24] is the following

Definition 4.1 (Huang et al. [25]):: An n-component system is called a generalized multi-
state k-out-of-n:G system if φ(x) > j, 1 ≤ j ≤ M whenever there exists an integer value l
(j ≤ l ≤ M) such that at least kl components are in state l or above.

If we denote by φ the structure function of the system S and by Nj the number
of components in state j or above, then this definition can be rephrased by saying that
φ(S) ≥ j if

Nj ≥ kj

Nj+1 ≥ kj+1

...

NM ≥ kM

Hence, we can denote a generalized multi-state k -out-of-n system by Sn,(k1,...,kM ). When
k1 ≤ · · · ≤ km the system is called an increasing generalized multi-state k -out-of-n:G sys-
tem, and if k1 ≥ · · · ≥ km the system is said to be decreasing. Huang et al. provide
formulas for both cases and an enumerative algorithm for the evaluation of the reliability
of generalized multi-state k -out-of-n systems when the sequence (k1, . . . , kM ) is monotone.

Continuing this line M. J. Zuo and Z. Tian defined in [54] generalized multi-state
k -out-of-n:F systems.

Definition 4.2 (Zuo and Tian [54: ):] An n-component system is called generalized
multi-state k-out-of-n:F system if φ(x) < j, 1 ≤ j ≤ M whenever the states of at least kl

components are below l for all l such that j ≤ l ≤ M .

Using this definition, they provide a correspondence between generalized multi-state
k -out-of-n:G systems and generalized multi-state k -out-of-n:F systems. They study these
systems when the sequence (k1, . . . , kM ) is not necessarily monotone and provide an effi-
cient algorithm that is recursive on M, the number of performance levels. This algorithm
outperforms the one in [24] which is recursive in n.

Using the ideals in Proposition 3.4, we can immediately describe the reliability ideal of
a generalized multi-state k -out-of-n:G system given by (k1, . . . , kM ).

Proposition 4.3: The j-reliability ideal of a generalized multi-state k-out-of-n system S =
Sn,(k1,...,kM ) is given by

IS,j = In,(kj ,...,kM ) =
M∑
i=j

I(ki,n),i.

Example 4.4: We study here Example 8 in [24] with the algebraic method and recover
the exact same results given there. The system in this example is a generalized multi-
state k-out-of-3:G system with four states (0, 1, 2, 3) such that k1 = 3, k2 = 2 and k3 = 2,
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hence it is a decreasing generalized multi-state k-out-of-n:G system. The probabilities of the
different components are given by p1,0 = 0.1, p1,1 = 0.2, p1,2 = 0.3, p1,3 = 0.4, p2,0 = 0.1,
p2,1 = 0.1, p2,2 = 0.2, p2,3 = 0.6, p3,0 = 0.1, p3,1 = 0.2, p3,2 = 0.4, p3,3 = 0.3, where pi,j is
the probability that component i is performing at level j.

• For the system to be in state 3, there must be at least two components in state 3
or above (k3 = 2). Hence, the corresponding ideal is IS,3 = 〈x3y3, x3z3, y3z3〉. The
numerator of the Hilbert series is HIS,3 = x3y3 + x3z3 + y3z3 − 2(x3y3z3) and when
plugging the probabilities in, we have that the probability that the system is in state
3 or above, denoted RS,3, is 0.396, which equals the probability that the system is
exactly in state 3, denoted rS,3.

• The system is in state 2 or above if at least two components are in state 2 or above,
hence IS,2 = I(2,3),2 + I(2,3),3 = I(2,3),2 = 〈x2y2, x2z2, y2z2〉. The numerator of the
Hilbert series is HIS,2 = x2y2 + x2z2 + y2z2 − 2(x2y2z2) and we obtain RS,2 = 0.826
and rS,2 = RS,2 − RS,3 = 0.826 − 0.396 = 0.430.

• Since k1 = 3, the system is in state 1 or above if all three components are
in state 1 or above or if at least two components are in state 2 or above or
if at least two components are in state 3 or above. The corresponding ideal
is then IS,1 = I(3,3),1 + I(2,3),2 + I(2,3),3 = I(3,3),1 + I(2,3),2 = 〈xyz, x2y2, x2z2, y2z2〉,
HIS,1 = xyz + x2y2 + x2z2 + y2z2 − (xy2z2 + x2yz2 + x2y2z) and we obtain RS,1 =
0.89 and rS,1 = RS,1 − RS,2 = 0.89 − 0.826 = 0.064.

• Finally, rS,0 = RS,0 − RS,1 = 1 − 0.89 = 0.11.

Using the reliability ideals of generalized multi-state k -out-of-n:G systems given in
Proposition 4.3, we can develop a recursive method to compute their reliability. The method
is recursive on M, the number of performance levels and can be used for any sequence
(k1, . . . , kM ) describing the system, not necessarily monotone. This method is an enumer-
ative one that can be used even when the component’s probabilities are not i.i.d. For the
i.i.d. case, our method is equivalent to the one in [54] in terms of computational complexity.
We will use the technique of Mayer–Vietoris trees, which were introduced in [40,41], see
Appendix B for an explanation of the method. For ease of the notation, we assume that the
sequence (k1, . . . , kM ) is strictly decreasing. In any other case, the only difference is that
some of the summands that compose the ideal In,(kj ,...,kM ) will be missing, as we saw in
Example 4.4 but this fact does not affect the algorithm description or its performance.

Let 1 ≤ j ≤ M and In,(kj ,...,kM ) =
∑M

i=j I(ki,n),i the j -reliability ideal of the system.
We sort the generators of In,(kj ,...,kM ) in ascending degree and lexicographically within
each degree. For constructing the Mayer–Vietoris tree, we will use as pivot always the last
generator. First, we use as pivots the generators of I(kM ,n),M . We denote each of them by
xM

σ =
∏

xi∈σ xM
i for σ ⊆ {1, . . . , n} and |σ| = kM . For each of these generators, we obtain

as left child in the Mayer–Vietoris tree the ideal denoted by Iσ,M given by

Iσ,M = In−kM ,(kj−kM ,...,kM−1−kM ) +
∑

xi /∈σ,xi<max(σ)

〈xM
i 〉,

where In−kM ,(kj−kM ,...,kM−1−kM ) ⊆ k[[n] − σ]. On each of the nodes of the tree, we use as
pivots the monomials in

∑
xi /∈σ,xi<max(σ)〈xM

i 〉 and proceed in the same way when the node
is Iσ,M = In−kM ,(kj−kM ,...,kM−1−kM ). Finally, after using all the generators of In,(kj ,...,kM )

as pivots, we are left with the ideal In,(kj ,...,kM−1). This procedure leads to the following
recursive formula for the Betti number of In,(kj ,...,kM ) (we give here the version for i.i.d.
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components)

βα(In,(kj ,...,kM )) = βα(In,(kj ,...,kM−1))

+
n−kM−2∑

i=0

(
n

kM + i

)(
i + kM − 1

kM − 1

)
pkM+i
≥M

× βα−i+1(In−kM−i,(kj−kM−i,...,kM−1−kM−i))

+
(

n

kM + α − 1

)(
α + kM − 2

kM − 1

)
pkM+α−1
≥M

×
⎛⎝M−1∑

i=j

(
n − kM − (α − 1)
ki − kM − (α − 1)

)
p

ki−kM−(α−1)
≥i

⎞⎠
+ pkM+α

≥M

n−kM∑
i=1

(i + 1)
(

ı
α

)
. (4.1)

The complete derivation of this formula is straightforward but somewhat tedious. It is based
on the analysis of the branches of the Mayer–Vietoris tree, as described in Appendix B.
Observe that the computation for (k1, . . . , kM ) is done in terms of cases with strictly less
than M levels, and hence the recursion is on the number of performance levels and not on
the number of variables. The efficiency of this method is equivalent to the one in [54].

Remark 4.5: There are several algorithms to compute the reliability of generalized multi-
state k-out-of-n systems. Some of them are restricted to identical independent components.
Among these, the algorithm in [24] is as we have seen enumerative (hence of low efficiency)
and applicable to monotonic patterns, the one in [54] is also enumerative but more efficient
and is applicable to monotonic and non-monotonic patterns. The algorithm in [8] is non
enumerative and more efficient than the previous ones. For the case of independent but not
necessarily identical components, the algorithm by [53] uses a finite Markov chain imbedding
(FMCI) approach and is adequate for small size systems, as is the algorithm in [50]. Other
more efficient algorithms include [8], based on conditional probabilities, or [33] using multi-
valued decision diagrams. Our algebraic approach is enumerative and applicable to both kinds
of systems (with independent and identical components and with independent nonidentical
components) and produces not only the full reliability formulas but also bounds.

4.1. Quality of the algebraic bounds

For a polynomial ring R = k[x1, . . . , xn] , Hilbert’s syzygy theorem (cf. [16] for instance)
states that the length of any resolution of an ideal in R is bounded above by n + 1. In
our context, this means that the algebraic method using the Betti numbers of reliability
ideals produces a compact version of the inclusion–exclusion identity and thus a series of
Bonferroni-like bounds for the system’s reliability such that if the system S has n com-
ponents then the reliability formula, given by the Hilbert series numerator of IS , has at
most n + 1 summands. Every truncation of this formula provides a bound for the reliability.
We compare these bounds with the following ones considered in [20] for some generalized
k -out-of-n multi-state systems.

If we denote by ym, m = 1, . . . ,Mp the minimal path vectors of a given multi-state
system S,with structure function φ then a lower bound for the reliability of S is given
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Table 2. Probabilities pi,j , that is, P (ci ≥ j) for the components of several generalized
multistate k -out-of-n systems

Level c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11 c12 c13 c14

1 0.5 0.6 0.4 0.5 0.6 0.4 0.5 0.6 0.4 0.5 0.6 0.4 0.5 0.6
2 0.2 0.15 0.1 0.2 0.15 0.1 0.2 0.15 0.1 0.2 0.15 0.1 0.2 0.15
3 0.1 0.05 0.05 0.1 0.05 0.05 0.1 0.05 0.05 0.1 0.05 0.05 0.1 0.05

Table 3. Number of minimal paths and cuts for several generalized multistate k -out-of-n
systems

Sytem Level # minimal paths # minimal cuts

S8,(4,2,1) 1 106 168

S8,(4,2,1) 2 36 8

S8,(4,2,1) 3 8 1

S11,(4,2,1) 1 396 495

S11,(4,2,1) 2 66 11

S11,(4,2,1) 3 11 1

S14,(4,2,1) 1 1,106 1,092

S14,(4,2,1) 2 105 14

S14,(4,2,1) 3 14 1

(assuming independent components) by

l′φ(p) = max
1≤m≤Mp

(
n∏

i=1

P (xi ≥ ym
i )

)
= max

1≤m≤Mp

(
n∏

i=1

p
ym

i
i

)
.

On the other hand, if the minimal cuts of S are given by zm, m = 1, . . . ,Mc then we have
the lower bound

l∗∗φ (p) =
Mc∏

m=1

n∐
i=1

P (xi ≥ zm
i )) =

Mc∏
m=1

n∐
i=1

p
zm

i +1
i

where for real numbers p ∈ [0, 1] we define
∐n

i=1 pi = 1 −∏n
i=1(1 − pi).

Example 4.6: Let k1 = 4, k2 = 2, k3 = 1 and let n= 8,11,14. Let us consider the multi-
state generalized k-out-of-n:G systems In,(4,2,1) for the following probabilities, independent
but not identical (Table 2).

The number of generators (i.e., number of minimal paths) of each of the systems
considered are given in Table 3 we also give the number of minimal cuts.

The results are summarized in Tables 4 and 5 in which we consider the probability of the
system performing at levels 1 to 3. In the tables, column li indicates a lower bound given by
the first i summands of the Hilbert series numerator of the corresponding j-reliability ideal,
while column ui denotes an upper bound given by the first i summands. An asterisk indicates
that the bound is sharp. Cells with a minus sign − indicate that the bound is meaningless
(i.e., upper bounds above 1 or lower bounds below 0).

The results in Tables 4 and 5 allow us to discuss the strengths and weaknesses of our
method. First of all, for systems with big number of generators, the first bounds are useless
due to the fact that each of the first summands of the compact inclusion–exclusion formula
consists of a large number of inner summands. As the number of variables increases, we
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Table 4. Lower bounds for several generalized multi-state k -out-of-n systems

System Level l2 l4 l6 l8 l10 l12 l14

S8,(4,2,1) 1 — — 0.419984 0.779916

S8,(4,2,1) 2 — 0.480262 0.530988 0.531611

S8,(4,2,1) 3 0.42 0.435844 0.435914*

S11,(4,2,1) 1 — — — — 0.0.914949 0.937376*

S11,(4,2,1) 2 — 0.357057 0.654349 0.666748 0.666865 0.666866*

S11,(4,2,1) 3 0.4975 0.541256 0.541819 0.541821*

S14,(4,2,1) 1 — — — 0.870386 0.984878

S14,(4,2,1) 2 0.670885 0.765189 0.767655 0.767675*

S14,(4,2,1) 3 0.627826 0.627844*

Table 5. Upper bounds for several generalized multi-state k -out-of-n systems

System Level u1 u3 u5 u7 u9 u11 u13 u15

S8,(4,2,1) 1 — — — 0.825892 0.782246*

S8,(4,2,1) 2 — 0.750481 0.538913 0.531642 0.531612*

S8,(4,2,1) 3 0.55 0.43725 0.435916 0.435914*

S11,(4,2,1) 1 — — — — — 0.938269 0.937376*

S11,(4,2,1) 2 — - 0.741715 0.668326 0.666872 0.666866*

S11,(4,2,1) 3 0.75 0.547875 0.541858 0.541821*

S14,(4,2,1) 1 - — — — — — 0.992941 0.985126*

S14,(4,2,1) 1 - - — 0.785541 0.767936 0.767677 0.767675*

S14,(4,2,1) 1 0.95 0.6455 0.628081 0.627845 0.627844*

obtain a collection of useful bounds that compare well with the bounds considered in [20] as
we can see in Table 6. Observe that l∗∗φ (p) behaves very well in case we have a multistate
parallel system, as is the case in level 3 of our systems. This is because the minimal cuts
are unique in these cases. We have considered low working probabilities in our system, since
our bounds are sharper in this case. In case our probabilities are high, we can consider the
unreliability of the dual systems and thus obtain close bounds. All our bounds were computed
in less than 1 s on a laptop.1 It is worth noting that the performance of our method does
not depend on having identical or non-identical probability distributions in the components
of the system.

5. BINARY k-OUT-OF-n SYSTEM WITH MULTI-STATE COMPONENTS

The following multi-state generalization of k -out-of-n systems was introduced in [40]. Let
Sm,n,k be a system with k components, each of which can be in a set of states {0, 1, . . . ,m}.
Sm,n,k is called an m-multi-state k -out-of-n:G system if the system works whenever the
sum of the states of the n components is bigger than or equal to k. Note that this kind of
systems allows k to be bigger than n. This is an example of a binary system with multi-state
components. This kind of systems are useful to model different situations like the following
examples:

1 CPU: intel i7-4810MQ, 2.80 GHz. RAM: 16 Gb.

https://doi.org/10.1017/S0269964820000224 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964820000224


916 P. Pascual-Ortigosa, E. Sáenz-de-Cabezón and H. P. Wynn

Table 6. Lower bounds considered in [20] for some generalized multi-state k -out-of-n
systems

System Level l′φ(p) l∗∗φ (p)

S8,(4,2,1) 1 0.108 0.0510583

S8,(4,2,1) 2 0.1 0.0710738

S8,(4,2,1) 3 0.1 0.435914*

S11,(4,2,1) 1 0.1296 0.35674

S11,(4,2,1) 2 0.1 0.125414

S11,(4,2,1) 3 0.1 0.541821*

S11,(4,2,1) 1 0.1296 0.762837

S11,(4,2,1) 2 0.1 0.211015

S11,(4,2,1) 3 0.1 0.627844*

* indicates that the bounds are sharp.

• A storehouse has n storage facilities each of which has a capacity of m units. At
any given time, each of the facilities is partially full, leaving a real capacity smaller
than or equal to m units. The system is said to work if it is capable to store a new
arriving lot that consists of k storage units.

• A set of n pumps and pipes contributes to a global pipe that covers the needs of a
power plant. Each individual pipe may supply water at different levels {0, . . . , m}
and we consider that the system is working if the combined supply (sum of all the
individual supplies) is above level k.

The reliability ideal of Sm,n,k, denoted by Jm
[n,k] is generated by all monomials xμ in n

variables such that the degree of xμ is k and μj ≤ m for all 1 ≤ j ≤ n. To obtain the number
of generators of the system (i.e., the minimal working states) and the Betti numbers, needed
to compute the reliability function and bounds for it in the algebraic approach, we can
proceed as follows.

First, we list all the generators in a precise ordering, following Proposition 3.2.14 in
[40]: For each i from m descending to 0 and for each variable xj for j from 1 to n (we call
xj the distinguished variable in each step) we form all monomials xμ such that

• the first j − 1 variables have an exponent strictly smaller than i
• the variable xj has an exponent equal to i
• the remaining last n − j variables have an exponent smaller than or equal to i
• the degree of xμ equals k

Using this ordering and Corollary 3.2.25 in [40], we can obtain the Betti numbers of
Jm

[n,k] using only one more piece of information, namely, for each generator xμ of Jm
[n,k] we

need to know the number of variables before xj that have a nonzero exponent in xμ. So when
we list the generators of Jm

[n,k] we keep track of how many of the first j − 1 variables have
a nonzero exponent with the notation we just described. The method for this computation
of the Betti numbers of a monomial ideal is described in detail in [40,41].

For this, let j be the distinguished variable and i ≤ m fixed, the exponent of xj in xμ.
Now, for each p between 0 and k − i, which represents the sum of the exponents of the first
j − 1 variables of xμ, and for each l between 0 and j − 1, which represents the number of
variables among the first j − 1 ones whose exponent is different from zero, we count all the
possible ways to obtain the sum p using l summands each of which is between 1 and i − 1.
This number is called the number of restricted compositions of p in l summands between 1
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and i − 1 and is denoted C(p, l, 1, i − 1) in [26]. Since we have l nonzero summands among
the first j − 1 variables, we can choose them in

(
j−1

l

)
ways. For each of these choices we

have that the exponents of the last n − j variables sum up to k − i − p and each of these
exponents is between 0 and i. The number of such compositions is C(k − i − p, n − j, 0, i).
Hence, putting all these considerations together we have the following result.

Lemma 5.1: The number of generators of Jm
[n,k] is

Nm
[n,k] =

k∑
i=0

n∑
j=1

k−i∑
p=0

j−1∑
l=0

C(p, l, 1, i − 1)
(

j − 1
l

)
C(k − i − p, n − j, 0, i). (5.1)

All these generators have degree k, hence β0,k(Jm
[n,k]) = Nm

[n,k] and β0,j(Jm
[n,k]) = 0 for all

j �= k. Each generator contributes to βi,k+i(Jm
[n,k]) with

(
n−l−1

i

)
elements, hence the formula

for the Betti numbers of Jm
[n,k] is

βi,k+i(Jm
[n,k]) =

k∑
i=0

n∑
j=1

k−i∑
p=0

C(p, l, 1, i − 1)
(

j − 1
l

)
C(k − i − p, n − j, 0, i)

(
n − l − 1

i

)
(5.2)

and βi,j(Jm
[n,k]) = 0 if j �= k + i.

Remark 5.2: The number of restricted compositions of an integer with a given number
of bounded summands can be obtained using a certain generating function, as shown in
[1,14,19]. The following closed formula for some types of restricted compositions can be
found in Theorem 2.1 in [26] which can be used to explicitly compute the numbers in Lemma
5.1 using that C(k − i − p, n − j, 0, i) = C(k − i − p + n − j, n − j, 1, i + n + j):

C(n, k, 1, b) =
∑

i2=α2,i3,...,ib

max{0,αj}≤ij≤min{βj ,γj}

b∏
l=2

(
k −∑l−1

j=2 ij
il

)
,

where

αj = n − k(j − 1) −
b∑

l=j+1

(l − j + 1)il

βj = k −
b∑

l=j+1

il

γj =

⎢⎢⎢⎢⎢⎢⎢⎢⎣
n − k −

b∑
l=j+1

(l − 1)il

j − 1

⎥⎥⎥⎥⎥⎥⎥⎥⎦ .

In order to obtain the necessary information to construct the reliability polynomial
and bounds from the Betti numbers of Jm

[n,k] , we need their multigraded version. For this,
let xμ a minimal generator of Jm

[n,k] and xj its distinguished variable. Let (xi1 , . . . , xil
)

be the l variables among the first j − 1 that appear with a nonzero exponent in xμ. Let
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i = 3 i = 2

x x3yt, x3zt, x3yz, x3y2, x3z2, x3t2 x2y2z, x2y2t, x2yz2, x2yt2, x2z2t, x2zt2, x2yzt

y y3zt, y3z2, y3t2, xy3z, xy3t, x2y3 y2z2t, y2zt2, xy2zt, xy2z2, xy2t2

z z3t2, xz3t, yz3t, xyz3, x2z3, y2z3 xz2t2, yz2t2, xyz2t

t xyt3, xzt3, yzt3, x2t3, y2t3, z2t3 xyzt2

Pxµ = {x1, . . . , x̂j , . . . , xn} \ {xi1 , . . . , xil
}. Then the multidegrees of the contribution of xμ

to βi,k+i(Jm
[n,k]) are xμ

∏
xi∈σ xi for each subset σ of Pxµ of cardinality i. Observe that the

resolution of Jm
[n,k] is k -linear, i.e., βi,jJ

m
[n,k] = 0 for all j �= k + i.

Example 5.3: Let S be a system with four components, each of which has possible states
{0, 1, 2, 3} such that the system is working whenever the sum of the states of the components
is bigger than or equal to 5. The ideal of this system is J3

[4,5] ⊆ R = k[x, y, z, t] and is
minimally generated by the following 40 monomials, sorted as described before.

And from this we have that β0,5(J3
[4,5]) = 40, β1,6(J3

[4,5]) = 92, β2,7(J3
[4,5]) = 72,

β3,8(J3
[4,5]) = 19 and βi,j(J3

[4,5]) = 0 otherwise. Observe that, for instance, the multidegrees
of the two contributions of xz3t to β1,6(J3

[4,5]) are xyz3t and xz3t2, and the multidegree of
its contribution to β2,7(J3

[4,5]) is xyz3t2 since Pxz3t = {y, t}.

We finish with an example of application of these systems.

5.1. Storage problem using binary k-out-of-n systems with multi-state components

Binary k -out-of-n systems with multi-state components can be used to model storage prob-
lems in which the storage capacity is distributed among several containers. To illustrate
this, let S be the set of n tanks in a wine cellar where grape is received in the harvesting
season. Each of the tanks Ti, i = 1, . . . , n has a total capacity of Ci tons and when a tractor
arrives at the cellar, the staff distributes the new coming grapes among different tanks so
that the wine produced in the tanks is sufficiently homogeneous in terms of the origin of
the grapes.

The filling procedure is the following: let G be the number of loads of grapes in the
incoming tractor (a load consists of 100 kg). We use a discrete measure of time, namely time
t means that we have already stored in the tanks the grapes of t tractors. We denote by lt a
measure of the level of the set of tanks after time t. We can consider lt as the average of the
levels of each of the tanks, the minimum or the maximum among them. We choose a level
l ≤ min{C1, . . . , Cn} that we do not want to pass after storing the new coming grapes. Let
m = l − lt and observe that in principle l is chosen so that m<G. Among all the possibilities
to perform the required load, we choose one randomly. Let us denote by pt

i,j the probability
that at time t the empty space in tank Ti is at least j. We have that pt

i,0 = 1 for all i and
pt

i,j ≥ 0 for all 0 ≤ j ≤ m. If one or more of the tanks is full at time t we continue with the
same procedure on the remaining tanks. Our goal is to study the probability p(l), l > lt
that we can store the G new coming grape loads in the n tanks so that no tank is filled
beyond l and assuming all tanks are already filled to level lt. This situation can be modeled
by a binary G-out-of-n system with multi-state components, in which each component can
be in states {0, . . . , m}.

Example 5.4: Consider a cellar with n= 5 tanks with a capacity of 15 tons each. After a
certain time t, the maximum level on any of the tanks is 12.5 tons, that is, 125 loads. A
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Figure 1. Probability that we can fill the 5 tanks in Example 5.4 up to level at most l for
l from 125 to 140.

tractor arrives with 15 loads of grapes and we want to describe how p(l) behaves for l>125.
We have modeled the probabilities pi,j as pi,j = 1 − ( 10

150j)3/2 for all i, and 0 ≤ j ≤ 15,
and pi,j = 0 if j>15, that is, in our case, all tanks have the same probability distribution.
Under these conditions, we have a binary 15-out-of-5 system with multi-state components
such that each component can be in states {0, . . . , m = l − 125} for each l. Using the results
in Section 5, we have that the ideal of this system is Jm

[5,15]. The number of generators
of this ideal, according to the formula given in Lemma 5.1, gives the number of different
ways to allocate the grapes meeting the requirements of the described procedure. Taking into
account the probabilities of each of the tanks, we can compute the probability that we can
meet the requirements using the multigraded Betti numbers as computed in Lemma 5.1. We
used an implementation of the formulae (5.1) and (5.2) and algorithms to obtain the set of
generators and Hilbert series of the corresponding ideals within the computer algebra system
Macaulay2 [21]. The results are shown in Figure 1 and Table 7, in which we also show the
time (in seconds) taken for the computation of the full list of multigraded Betti numbers,
from which we compute the probability in each case.

6. CONCLUSIONS AND FURTHER WORK

The paper shows how to apply the authors’ work on algebraic reliability to multi-state prob-
lems. The key to the extension is to find the right monomial ideal for a suitable generalization
of a k -out-of-n system. From this, the main technical problem is to find the Betti numbers
which give tight reliability bounds: generalized extensions of Bonferroni bounds. Multi-unit
storage, an increasingly important application, has a natural multi-state description and
results are given for some simple examples.

The methods of this paper should be extendable to any multi-state systems in which
there is an identifiable state, or collections of states, which indicates a level of degradation
of the system and for which extremal state may lead to the failure of the system. There are
two parts of the theory, one based on the algebra and combinatorics of the system and its
degradation and the other the stochastic behavior of the system.

Future work, therefore, will concentrate on both parts of the theory: algebraic and
stochastic and, of course, the interplay between the two. We are aware that stochastic

https://doi.org/10.1017/S0269964820000224 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964820000224


920 P. Pascual-Ortigosa, E. Sáenz-de-Cabezón and H. P. Wynn

Table 7. Probabilities, number of generators and times to compute multigraded Betti
numbers for the data in Example 5.4

Level l p(l) # gens Time

125 0 — —
126 0 — —
127 0 — —
128 0.32768 1 0
129 0.78926 121 0.016
130 0.92148 651 0.126
131 0.95644 1451 0.532
132 0.97187 2226 1.140
133 0.97805 2826 1.594
134 0.98136 3246 2.057
135 0.98321 3526 2.274
136 0.98413 3701 2.470
137 0.98453 3801 2.799
138 0.98466 3851 2.821
139 0.98469 3871 2.834
140 0.98469 3876 2.821

processes are indexed by time and that therefore the works should give greater priority to
the time behavior bringing in, at least, the standard models of failure. For the algebraic side,
each “special” state or pattern is likely to lead to different algebra, that is a different ideal
or collection of ideals. On the stochastic side, we are eager to allow the behavior systems
to be controlled by causal graph (network) based on stochastic models, partly because they
too are increasingly covered by algebraic theory, [49]. Multi-state modeling has become
increasingly part of areas such as disease modeling and emergency planning, often under
a heading of component and system degradation. Future research will continue to combine
Markov and other models of movement between states with the ideal theory describing the
detailed structure of failure.

Finally, we should declare that the importance of energy storage, and energy networks,
is likely to lead to more work in that area. We hope also to facilitate the application to
genomics, with suitable collaborations.
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APPENDIX A. A VERY SHORT INTRODUCTION TO THE ALGEBRAIC METHOD
IN RELIABILITY

In order to illustrate the algebraic method for system reliability analysis, we will use a simple
example in which we will use all the concepts involved. A general detailed description and plenty
of more elaborate examples can be found in [35,42–46] where the interested reader can find full
proofs of the relevant results for this approach.

Our simple example is a multi-state parallel system S depicted in Figure A1 (i.e., it is a 1-out-of-
2 multi-state system). Let {c1, c2} be the components of S and for each component let S1 = {0, 1, 2}
and S2 = {0, 1, 2, 3} be the performance levels of c1 and c2, respectively. The structure function of S
is given by φ(s) = max{s1, s2} for s = (s1, s2) ∈ S1 × S2. Since we have a two-component system,
we can algebraically model its states in a polynomial ring with two variables, R = k[x1, x2] with k
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Figure A1. Multi-state parallel system.

(a) (b)

Figure A2. Relation between state space of the system and monomials. (a) State space
of the system S. (b) Equivalence between state space and monomials.

a suitable field, we can consider k = R. First of all, we observe the correspondence between states
of the system S and monomials in R.

Figure A2a shows the state space of system S i.e., {(s1, s2) : s1 ∈ S1 and s2 ∈ S2}. Now, we
make each state (s1, s2) ∈ S1 × S2 correspond with the monomial xs1

1 x
s2
2 in R. These monomials

are represented in Figure A2b so that the correspondence becomes clear.
Let us consider now the j -working states of S for each j, i.e., FS,j consists of the tuples

s = (s1, s2) such that φ(s) ≥ j, j ∈ S. We have

FS,1 = {(0, 1), (0, 2), (0, 3), (1, 0), (1, 1), (1, 2), (1, 3), (2, 0), (2, 1), (2, 2), (2, 3)},
FS,2 = {(0, 2), (0, 3), (1, 2), (1, 3), (2, 0), (2, 1), (2, 2), (2, 3)},
FS,3 = {(0, 3), (1, 3), (2, 3)}.

The minimal j -working states, denoted FS,j , are the tuples in which if any component decreases
its performance level, the performance of all the system decreases to j′ < j. Then, we obtain

FS,1 = {(0, 1), (1, 0)},
FS,2 = {(0, 2), (2, 0)},
FS,3 = {(0, 3)}.

Having the relation between tuples of components’ states and monomials into account and the
coherence property of the system, we have that the j -working states correspond to the monomials
in an ideal of R which we will denote IS,j it is easy to see that the unique minimal monomial
generating set of IS,j , the j -reliability ideal of S is the one corresponding to the minimal j -working
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(a) (b) (c)

Figure A3. j -reliability ideals for system S. (a) 1-reliability ideal of system S. (b)
2-reliability ideal of system S. (c) 3-reliability ideal of system S.

states of the system. In our example, we have that

IS,1 = 〈x1, x2〉,
IS,2 = 〈x2

1, x
2
2〉,

IS,3 = 〈x3
2〉.

That ideals are represented in Figures A3a, A3b and A3c, respectively.
Observe that while the set of possible states of the system is finite, we have an infinite number

of monomials in our ideal. We will deal with this issue when assigning the probability distribution
to the system’s components and describe its reflection at the ideal level. A powerful tool in commu-
tative algebra to describe the structure of a monomial ideal is the Hilbert series, which is a short
way to enumerate the set of monomials in a monomial ideal. It is based on the inclusion–exclusion
principle and consists in adding up all the multiples of the minimal generators of the ideal, substract
the multiples of the pairwise least common multiple of minimal generators, add again the multiples
of the threefold least common multiples of minimal generators and so on. There are compact ways
to obtain the Hilbert series, which are beyond the scope of this paper. For full details, we refer the
reader to the references at the beginning of this Appendix.

Finally, to use the Hilbert function in order to obtain the j -reliability of the system, we assign
probabilities to monomials. Let’s say that pi,j is the probability that component i is in state at
least j, we then assign to the j th power of variable i the probability pi,j and the probability of a
monomial is given by the product of the probabilities assigned to its individual powers. Observe
that if a variable is raised to a power that does not correspond to any state of the corresponding
component, then its assigned probability is 0 and this removes all except a finite set of monomials
from the final result, except exactly those corresponding to possible states of the system.

As for this example, let us assign p1,1 = 0.7, p1,2 = 0.3, p2,1 = 0.7, p2,2 = 0.2, p2,3 = 0.1.
The numerator of the Hilbert series for level 1 is HIS,1 = x1 + x2 − x1x2. Graphically, this can

be seen as:

• The ideal 〈x1〉 contains the monomials in the shaded area in Figure A4a.

• The ideal 〈x1〉 contains the monomials in the shaded area in Figure A4b.

• The ideal 〈x1x2〉 (i.e., generated by the pairwise least common multiples of the generators
of the ideal -just one such pair in this case-) contains the monomials in the shaded area in
Figure A4c.
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(a) (b) (c)

Figure A4. Using HIS,1 to obtain the monomials in 〈x1, x2〉. (a) Monomials in 〈x1〉. (b)
Monomials in 〈x2〉. (c) Monomials in 〈x1x2〉.

Assigning the corresponding probabilities to the monomials in HIS,1 we obtain that the 1-
reliability for S is 0.91.

Proceeding in the same way, we have that the numerator of the Hilbert series for levels 2 and
3 are HIS,2 = x2

1 + x2
2 − x2

1x
2
2 and HIS,3 = x3

2, respectively and the 2-reliability of S is 0.38 and
the 3-reliability of S is 0.1.

APPENDIX B. MAYER–VIETORIS TREES

Let I ⊆ S = k[x1, . . . , xn] be a monomial ideal and G = {g1, . . . , gr} a monomial generating set
(unless otherwise stated we will always consider that G is the unique minimal monomial generating
set of I ). Fix any numbering of the elements in G and let Ii = 〈g1 . . . , gi〉 be the subideal generated
by the first i generators of I. For each i, we have the following exact sequence

0 −→ Ii−1 ∩ 〈gi〉 j−→ Ii−1 ⊕ 〈gi〉 l−→ Ii −→ 0. (B.1)

Assume that free resolutions F
′
i and F̃i are known for I ′i = Ii−1 and Ĩi = Ii−1 ∩ 〈gi〉 respectively.

Then, a (not necessarily minimal) resolution Fi of Ii is obtained as the mapping cone of the chain

complex morphism ψ : F̃i −→ F
′
i that lifts the inclusion j, cf. [7,22].

Using recursively sequence (B.1) on i, we can compute a free resolution F = Fr of I that is
called an iterated mapping cone resolution. Observe that this process preserves (multi) degrees.
The ideals involved in this process can be displayed as a binary tree. The root of this tree is I and
every node J = 〈f1 . . . , fj〉 has J ′ = 〈f1, . . . , fj−1〉 as right child and J̃ = J ′ ∩ 〈fj〉 as left child.
This is called a Mayer–Vietoris tree of I, cf. [41].

Each node in a Mayer–Vietoris tree is assigned a position and a dimension. The root has
position 1 and dimension 0 and the right and left children of a node with position p and dimension
d are given positions 2p + 1 and 2p, respectively, and dimensions d and d + 1, respectively. We say
that a node is relevant if it is either the root or if its position is even. The multidegrees of the
minimal generators of the relevant nodes of dimension d in a Mayer–Vietoris tree are then the
multidegrees of the generators of the dth module of the iterated mapping cone resolution F of I
described by the tree. Let MVT(I)d,μ be the set of the positions of the relevant nodes of dimension
d of a given Mayer–Vietoris tree of I having xμ as a minimal generator. If a monomial xμ appears
only once as generator of a relevant node in the tree then if d is the dimension of that node and
p its position let MVT(I)′d,μ = {p} otherwise MVT(I)′d,μ = ∅ for all d. Note that if MVT(I)′d,μ is
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not empty, then MVT(I)′d,μ = MVT(I)d,μ. Since the minimal free resolution of I is a subresolution
of F we have that for any Mayer–Vietoris tree the following result holds [41].

Proposition 1: For any Mayer–Vietoris tree of I

#MVT(I)′d,μ ≤ βd,μ(I) ≤ #MVT(I)d,μ.

The generators of the relevant nodes of MVT(I) provide upper and lower bounds for the Betti
numbers of the ideal without actually computing the resolution. These bounds can be improved
using several criteria and are sharp in several families of ideals, see [41] for details. A simple useful
criterion is the following:

Proposition 2: Let μ be a multidegree such that there are generators of multidegree μ in relevant
nodes of MVT(I) of dimensions d1 . . . dk such that no two of them are consecutive, then

βdi,μ(I) = #MVT(I)di,μ.

We say that two generators e
(i)
σ and e

(i−1)
τ of F with the same multidegree form a reduction

pair if the coefficient of e
(i−1)
τ in ϕ(e

(i)
σ ) is a non-zero scalar, that is, if we can reduce F by deleting

e
(i)
σ and e

(i−1)
τ and adjusting ϕi. Reduction pairs appear only in compatible nodes. Let J and J ′ two

nodes of MVT(I) whose first common ancestor is K and such that J is a descendant of K̃ and J ′

is a descendant of K′ we say J and J ′ are compatible if dim(J) − dim(K̃) = dim(J ′) − dim(K′).
Compatibility of J and J ′ can be read from the binary expression of their positions. We can
therefore ensure that βd,μ(I) is bigger than or equal to the number of generators of multidegree μ
in relevant nodes of dimension d in MVT(I) such that they have no compatible generator. Hence,
if there are no compatible generators, we obtain the Betti numbers of I directly from MVT(I).

Example 3: Let us consider Mayer–Vietoris trees of ideals of consecutive linear k-out-of-n:G
systems. Theses systems work if at least k consecutive components of the n components of the
system work. The corresponding ideal is of the form Ik,n = 〈x1 · · ·xk, . . . , xn−k+1 · · ·xn〉. The
Mayer–Vietoris tree of the ideal of the consecutive linear 2-out-of-5 system, taking as pivot always
the last generator, is

From this tree, we obtain that β0,2(I2,5) = 4, β1,3(I2,5) = 3, β1,4(I2,5) = 1 and β2,5(I2,5) = 1.
Moreover, the numerator of the Hilbert series of this ideal is

HNI2,5 = (x1x2 + x2x3 + x3x4 + x4x5) − (x1x2x4x5 + x3x4x5 + x2x3x4 + x1x2x3) + x1x2x3x4x5

As one can see, the node at position 3 of MV T (Ik,n) is just Ik,n−1 so the contribution of this
branch of the tree is just a smaller case of the same kind. The analysis of the other branch of
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the tree is also straightforward and we can easily come up with a recursive formula for the Betti
numbers of Ik,n as was shown in [42]. Using this kind of reasoning on Mayer–Vietoris trees, we
come out with recursive formulas like (4.1).
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