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1. THE MATRIX REPRESENTATION OP PERMUTATIONS.

The n! operations A; of permutations upon n different ordered
symbols correspond to n\ matrices A{ of the ntU order, which have in
each row and in each column only one non-zero element, namely a
unit. Such matrices At are called permutation matrices, since their
effect in premultiplying an arbitrary column vector x = {x1 x2- • • •%»}
is to impress the permutation Â  upon the elements xt. For example
the six matrices of the third order

are permutation matrices. It is convenient to denote them by

Ao = [123], A1 = [132], ...., AB = [321],

where the bracketed indices refer to the permutations of natural
order. Clearly the relation At Aj = Ak entails the matrix relation
AiAj = Ak\ in other words, the n\ matrices A^, give a matrix repre-
sentation of the symmetric group of order n\.

Permutations A; may be classified in the usual manner according
to the cycles which they contain. For example, denoting by (<xj8y) the
operation which replaces the order a/?y by jSya, we may write [2134]
as [(12)34], and [4321] as [(14) (23)]. Symbols unaltered by any
operation count as cycles on one symbol.

The number of symbols affected by the respective cycles in Au

when expressed as parts of a partible integer, as for example 2 + 1 + 1
symbols in [(12)34], or 2 + 2 symbols in [(14) (23)], constitutes a
partition of n which, following MacMahon, we denote by [I2 2], [22]
and the like. We choose the ascending order of parts in a partition
in preference to the more usual descending order for reasons of
convenience.
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2 A. C. AlTKEN

It is well known (c/. Burnside, Theory of Groups, 2nd Edition,
1911, p. 7) that permutations of the same cycle-type, that is, typified
by the same partition of n, are connected by the relation of similarity
or equivalence

H 1

Also, by mere inspection of any permutation matrix A{, we note that
cycles on one symbol correspond to unit elements in the diagonal,
while cycles on more than one symbol correspond to chains of unit
elements all off the diagonal. Hence the sum of the diagonal
elements of Ait the trace or spur or characteristic, is equal to the
number of cycles on one symbol in the permutation Â .

Finally it may be remarked that when A* corresponds to a single
cycle on n symbols, the characteristic determinant \At — xl\ is equal
to l—xn. Hence, and more generally, since no two cycles in Aj have
an index in common, the submatrices corresponding to individual
cycles in an At of cycle-type or class

are isolated, and the characteristic determinant of such an At is
therefore

2. INDUCED MATRICES.

We consider any matrix A (not necessarily a permutation matrix)
of the nth order, and an arbitrary vector transformed by it:

A{x1x2 xn} = {yx y2 . . . . yn}.

The powers and products of the elements z{, of degree r, may be

arranged in dictionary order of suffixes as a vector #w of ( )
\ r )

•elements; and the r-ary powers and products of the yi in the same
way. The matrix which transforms the vector a;W into yw is called
the rth induced matrix ("power transformation") of A. It is denoted
by A[r]; and by convention AiOi is taken to be the scalar number 1.

Induced matrices possess, as is well known, multiplicative pro-
perties, readily established from their definition; namely that if
AB = C then

AM BM = CM,
while
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INDUCED PERMUTATION MATRICES AND THE SYMMETRIC GROUP

It follows at once that the induced matrices of permutation
matrices, AW, have the group properties of the Ait and therefore
constitute a matrix representation of the group At. Hence the vector
of n! elements given by their traces is a group character. For
example when n = 3 we have the induced characters as given below.

Class
No. in Class

AW
AW
AW
Am

[I3]
1

I
3
6

10

[12]
3

1
1
2
2

[3]
2

1

1

With the exception of the unit or scalar character corresponding
to Am these induced characters are not simple; the sum of the squares
of their elements exceeds n\, the order of the group, and so the
representations Am, A&\ . . . . are reducible. Further, the characters
are not all linearly independent; for example the character of A^ is
merely the double of that of A^K

It is proposed to investigate for the general case what these
characters are, and more particularly what relation they bear to the
table of simple group characters.

It is possible to write down these induced characters by rule,
from first principles. For example, if [a/Jy] is the umbral symbol for
any matrix A (not necessarily a permutation matrix) of the third
order, the matrix _4[2] may be umbrally described by paired symbols,
thus,

A^=[aa ap ay PP Py yy],

and in general A^ by r-ary symbols, corresponding to r-ary powers
and products transformed by AW. In the case of a permutation
matrix At = [aPy], any r-ary symbol unaltered in its constituent
indices by the cycles in A,- corresponds to a unit in the diagonal of
AW, while any r-ary symbol that is altered corresponds to a unit off
the diagonal. Hence the trace of AWt which is evidently a permuta-
tion matrix, is the number of r-ary symbols unaltered by A,-.

Consider for example A^, where n = 4. The cycle-types are

[1234], [12(34)], [(12) (34)], [1(234)], [(1234)].
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Trace.
Under [1234] each of the 20 ternary symbols is unaltered. 20
Under [12(34)], 111, 112, 122, 222, 134, 234 remain unaltered. 6
Under [1 (234)] only 111, 234 remain unaltered. 2
All other cycles alter every ternary symbol. 0

Hence the (non-simple) induced character for this case is as
follows:

Class
No. in Class

Character

[I2 2] [22] [13] [4]
6 3 8 6

20

3. THE INDUCED TRACE MATRIX.

Let the traces or characters of the infinite sequence of induced
representations Ai0\ Am, Am, . . . . be taken as the rows of a row-
finite, column-infinite matrix T, the columns corresponding to cycle
type. We shall call T the induced trace-matrix.

For example by applying the rule of the last section we find the
earlier rows of T, for n = 4, to be as follows:

Class I [I4] [I2 2] [22] [13] [4] j
No. in Class ! 1 6 3 8 6 j

T =

1
4

10
20
35
56
84

1
2
4
6
9

12
16

1
1
1
2
2
2
3 . I

Further continuation of the matrix T suggests, what is
the case, that the elements in the respective columns of T
coefficients of 1, x, x2, . . . . in the expansions of

(1 - x)~\ (l-x)-2(l-x2)-\ (I-*2)"2, ( I -*)" 1 (I-*3)"1, (1

actually
are the

= n,

THEOREM 1. If At is of cycle-type

LPl1 P? ]. where

then the traces of Alp, r = 0, 1, 2, , are the coefficients of 1, x,
in the expansion of

{(1 —*»>)"( 1 -x^y-- J-1.

x2,
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Proof. The characteristic determinant of A t is

(1 - zP ' ) a ' ( l —x^Y-- (1)

Now it is known (Franklin, 1894; Hurwitz, 18941) that the latent
roots of .4M are the r-ary powers and products of the latent roots of
A. Hence the trace of AM is the sum of these, namely hr, the com-
plete homogeneous symmetric function of degree r in the roots of A.
But the generating function of the hr is the reciprocal of (1); and the
theorem follows.

4. RELATION TO THE TABLE OF SIMPLE CHARACTERS.

We consider the table G of simple characters of the symmetric
group on four symbols.

Class
No. in Class

[4]
[13]

G [22]
[122]
[I4]

[I4]
1

1

3
2

3
1

[122]
6

1
1

.

I
— 1

[22]
3

1

-1
2
1
1

[13]
8

1

-1

1

[4]
6

1
1

.
1

— 1

The rows give the simple characters, namely the traces of
matrices belonging to the five irreducible representations typified by
the partitions on the left. As we have seen, the rows of T, except
for the first, are non-simple characters. Hence there is a pre-
multiplying matrix M (row-finite, column-infinite) such that MG = T.

Any particular element of M (the rows and columns of which we
suppose numbered 0, 1, 2 . . .) can be determined readily by means of
the fundamental orthogonal relations, due to Frobenius, which exist
between simple characters. For the symmetric group these may be
expressed compactly by the statement

GDG' = n i l ,

where D is a diagonal matrix having in the diagonal the respective
numbers of elements in the similar cycle-classes. Thus when n = 4

D = d i a g [ l , 6, 3, 8, 6].

' References to results mentioned in the text are collected at the end of the paper.
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For example when n = 4 t he element m43 in M is found t h u s :

( 3 5 . 1 . 3 — 9 . 6 . 1 — 3 . 3 . 1 + 2 . 8 . 0 + 1 . 6 . l ) - h 4! = 2,

and in the same way the first several rows of M are found to be :

| [4] [13] [2*] [122] [1*]

1
1

1 2

M = 3
5
6
9

1
2
4
6

10
14

1
1
3
4
7

-

.

1
2
4
6 1

Fur the r continuation of M suggests t ha t the elements in the
respective columns are t he coefficients of 1, x, xz, . . . . in the
expansions of

{(1 - x) (1 - a-2) (1 - x^) (1 - x')}-\ x{(l - xf{\ - z2) (1 - a*)}-1,
X2{{1 - x) (1 ~ x2)2(l -x*)}-1, x3{(l - x)2(l - z2) (1 - x*)}~\

x«{(l - X ) ( l - x2) (1 - x3) (1 - a;4)} - 1 .

These functions will be identified in the general case as being
(except for a common polynomial factor) the "perpetuant" generating
functions arrived at by A. Young in quantitative substitutional
analysis.

5. BlALTBBNANTS AND GEOX7P CHARACTERS.

We begin from the fundamental result of Frobenius, by which an
element gPg in the matrix G of simple group characters is explicitly
determined. Classes of similar cycle type are associated as usual
with partitions

M = [PVPr ••••] (1)

irreducible representations with ?i-part partitions of n,

[A] = [A1A2....An]. (2)

Some of the earlier A's will usually be zero. If rows (numbered
p = 0, 1, 2, . . . . ) correspond to the irreducible representations, and
columns (numbered q = 0, 1, 2, . . . . ) to the distinct classes, then
gpq is the coefficient of

Ju + 1 . . . . X* m si
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where sr is the ordinary power-sum symmetric function of the xit and
A (xu x2, . . . . . xn) is the difference-product. Hence gm must also be
the coefficient of the alternating function

S ± a*. a*.+i.. . . xK +—* in s;; s^ . . . . A (zlt s2 xn), (4)

where the summation is over all signed permutations of the xt.
This classical result admits of more convenient statement; for it

implies that gvq is the coefficient of

A (Aj, A2 + 1, K + n — 1) • /-»
—^—^———- -——• i n s a i s°2 (5).4(0,1,2, n-1) 1U W ' w

where A (X, p, v, .. ..) denotes an alternant, and the right-hand side
is expressed linearly by means of terms like the left-hand side. But
such a quotient of alternants gives Jacobi's symmetric function, e.g.

h0 h3 A

h2

(6)

a "bialternant," expressible as an isobaric determinant with elements
hn in the form

| hKl _ i + j | = \x], (7)

where [A] indicates the partition of n given by the diagonal suffixes.
Hence, denoting isobaric products of power-sums by sM, where [77] is
the partition of n given by the suffixes of the factors sr, we have the
matrix relation

£'{V]}={W- (8)

Now any polynomial relation homogeneous, symmetric, and of
degree n in n variables is true for any further number of variables.
Let symmetric functions (distinguished by roman type) be constructed
from the special infinite set of variables, the powers 1, x, x2, . . . . ,
where x is of less than unit modulus, but otherwise arbitrary. For
these we have evidently s, = (1 — xr)~1.

It follows, from Theorem 1 of § 3, that if we postmultiply the
row-infinite vector

[xt\ = [lX2*....] (9)

by the trace-matrix T we obtain the row-finite vector [sw], the
elements of which are the isobaric power-sum products in (8) above.
Again, transposing the relation MG = T and postmultiplying it by
the column vector {a;-*}, we have

G' M' {xi} = T' M = {sw}. (10)
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Comparing now (10) with (8), we deduce

T H E O R E M 2. The elements in the respective columns of M are the
coefficients of 1, x, x2, . . . . in the expansions of the bialternants h^ in
the variables 1, x, x2, . . . .

6. EVALUATION OF THE BIALTERNANTS.

It remains to find explicit expression for these bialternants.
This has been by Young, who encountered them in substitutional
analysis, and by D. E. Littlewood and A. R. Richardson in treating
of special " *S-functions " (bialternants). We shall essay here a
rather different approach and order of derivation.

For the system of variables in question, the elementary
symmetric functions ar are generated by the function of t,

P(t; x) = (1 - t) (1 - tx) (1 - tx2)...., (1)

and the complete homogeneous symmetric functions hr by the
reciprocal of P(t; x). The latter is really a generating function of
partitions, and we have the known relations1

whence

&r= a — \(i- 2) a — n ' hr = ^ r" (4^

With an n-part partition of n, always in non-descending order of
parts and so usually including zeros for the earlier parts,

[A] = [Ai A2 .. .. An],
we associate the set of numbers

(A+j) = (A2 A2 + l \n + n — 1). (5)

These numbers, which are in strictly ascending order, are the
suffixes of elements in the first row of the bialternant \Ky, they are
also the indices of the x{ in Frobenius' generating function (§5 above) for
the simple group characters. The dual set (A+j)' with respect to
an integer m^. Xn + n — 1 will be defined as the set obtained by
taking those integers from 0 to m which do not occur in (A+j),

1 MacMahon, Gombinatory Analysis (1916), ii, 4, 10.
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subtracting them in turn from m, and arranging the results in
ascending order. Usually we shall take ra = An + n — 1. For
example the dual of (2 3 6) with respect to 6 is (1 2 5 6); with respect
to 7 it is (0 2 3 6 7). Sets (A + j), (A + j)' corresponding to conjugate
partitions are dual with respect to the same m.

With the partition [A] we associate also a certain index

+ ( » - 2 ) A 8 + . . . . +K-i- (6)

The index for the conjugate partition

IAJ ——- I X & • • . . J

is readily found to be

a(A)' = SJA(A-l) . (7)

THEOREM 3. / / the variables are 1, x, x2, . . . . , then the bialternant

hw = x"WA{X+j}/U{X+j}\, (8)
where

and A {A + j} denotes the result of replacing typical factors j3 — a, j8 > a,
in the ordinary difference product A (A -\-j) by factors 1 — x^~a.

Proof. Identities of the type

A {ajSyS} A {jSySe} A {ae} = A {a/3y8e} A {£yS} (10)

are verifiable for the general case by simple inspection.
From the expression for hr in (4) above, the theorem is true for

bialternants of the first order. We assume it true for bialternants
up to the order p — 1. The extension to order p may be illustrated
without loss of generality by the case p = 4. Using a fundamental
identity in determinants, we have

'" 3-1 , Y - 1 )K

{a}!

{a-1}! {/

w > -

{/3}!{y}!
«-21A{a)8y} j

<»-» A{a/3y} A{j3yS}

w
- 1 } ! {

A{a8}

yt)

' -«A{|8y8}

•1-

{y}! {8}!

y-l}!{8-

= a;-!". P-i. v-2, a-3) A{aj3y8}/n{a}!, by (10).
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The validity of the theorem for any order is thus established
step by step.

As an example, consider the elements of the illustrative matrix
M of §4, in the column corresponding to [13]. The bialternant is

x(l — x3)
(l-x).(l-x)(l-x2)(l- x*) (1 - x*)

The expansion of this function generates the elements in question.
In this same illustrative matrix M the columns corresponding to

conjugate partitions may be observed to contain the same non-zero
elements in the same succession; they differ however in the number
of zero elements which appear first of all. This depends on a
theorem concerning the conjugate bialternants h[XJ and hpg- or aw.
The number of zero elements at the heads of the respective columns
will prove to be given by the conjugate indices a (A) and a (A)'.

THEOREM 4. a K] = x°w A {A + j}/II {A + j}!. (11)

Proof. From the expression for ar in (4) above, the theorem is true
for bialternants of the first order. We assume it is true up to order
p — 1, and proceed as in the previous theorem. We have

(a - 1 , / 3 - ], Y - - l , y - 1 , 4 - 1 )
~~•"* (B 1 v — 1 )

{a} ! tf} ! {y} ! ! {y} ! {8}
{aj8y} a;K

{ a _ 1} ! {y _ _ 1} ! { y ! {8 -

A {aj8yS}/II {a} ! , by (10).

The validity of the theorem for any order is thus established as
before.

https://doi.org/10.1017/S0013091500008208 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500008208


INDUCED PERMUTATION MATRICES AND THE SYMMETRIC GROUP 11

An immediate consequence of Theorems 3 and 4 is

THEOREM 5. A {\ +j}/U {X + j} !

is invariant for dual sets (conjugate partitions).

This is a theorem of Young, and is proved directly by him. It
corresponds to the theorem (in ordinary difference products and
ordinary factorials) that the function

is invariant for dual sets; this function being the enumerant of
Young's standard tableaux for the partitions in question or, equally
well, the order of the corresponding irreducible matrix representations
of the symmetric group of order n\, in fact the/(x) of Frobenius.

Returning to the matrix M, let the index a (A) be determined for
the various partitions of n. The rows of M which are ordinally
numbered by these values a (A) will contain 1, 2, 3, . . ..,P(n) non-
zero elements respectively, where P(n) is the number of partitions
of n. They are therefore linearly independent. Picking these rows
out, we may construct from them a non-singular matrix R of
triangular shape in its non-zero elements; and constructing a matrix
U in the same way from the corresponding rows of the trace-matrix
T, we have the relation

RG=U, (12)

whence, from the triangular nature of R, the table 0 of simple
characters may easily be found, row by row.

Thus in the case n = 4 the relation RG = U appears as

1 . . .
1 1 . .
2 2 1 .
3 4 1 1
9 14 7 6

1 1
3 1
2
3 - 1
1 —1

1 1
. _ 1
1

1
1 - 1

1 1 1 1 1
4 2 . 1 .

10 4 2 1 .
20 6 . 2 .
84 16 4 3 .

7. COMPOUND PERMUTATION MATRICES.

The study of the trace-matrix of compound matrices is not BO
interesting. If we include the extreme compounds Am = 1, A<n) = \A\,
the number of compound matrices of any matrix A of order n is only
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n + 1, whereas the number of irreducible representations of the
symmetric group of order n\ is P(n); and for n>4, P(n) exceeds n+ 1.
Hence the information concerning the symmetric group yielded by
the trace-matrix of compound permutation matrices is in general
inadequate. It has been shown, however, by D. E. Littlewood, and
A. R. Richardson, that the trace-matrices of compound permanents
and immanants (determinantal functions bearing to determinants and
permanents the same relation that bialternants bear to symmetric
functions ar and hr) remedy this deficiency.

The trace-matrix T for compounds of permutation matrices is easily
found. Since the latent roots of A{r) are the r-ary products without
repetitions (theorem of Rados, 1891) of the latent roots of A, the
trace of A^ is the elementary symmetric function of degree r in
those roots, namely aT. But the generating function of the ar is
the characteristic determinant of A. As has been seen in §1, the
characteristic determinants for permutation matrices At are of the
form

It follows at once that the coefficients of 1, x, x2,. . . in the expansions
of these multi-binomials for the respective cycle-types are the elements
in the corresponding columns of the trace-matrix T for compounds.

The nature of the premultiplying matrix M in the relation
MQ = T is easy to determine, but without significance, since for n > 4
the rank of M is less than P(n).

A more general question of some interest is what relation the
"Invariant matrices" (in the sense of Schur's classic dissertation)
of permutation matrices bear to the simple characters of the. symmetric
group. We reserve this for further consideration.
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[Added 14th January, 1936. I t has been kindly brought to my notice by a referee
that the method given in this paper (§ 6) for finding simple characters is not entirely
independent of that given by D. E. Littlewood and A. B. Richardson, Quart. J. of
Math. (Oxford Series) 6 (1935), 192, the case of Theorem VII as there enunciated
being taken for which JV—>oo. I wish therefore to draw attention to this fact, while
remarking that the evaluation of simple characters was a secondary issue, the chief
interest being in the properties of a class of invariant matrices.—A. C. A.]
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