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ON S-CLASS NUMBER RELATIONS OF ALGEBRAIC TORI

IN GALOIS EXTENSIONS OF GLOBAL FIELDS

MASANORI MORISHITA

Introduction

As an interpretation and a generalization of Gauss' genus theory on

binary quadratic forms in the language of arithmetic of algebraic tori,

Ono [02] established an equality between a kind of "Euler number E{Kfkγ9

for a finite Galois extension K/k of algebraic number fields and other

arithmetical invariants associated to K/k. His proof depended on his

Tamagawa number formula [01] and Shyr's formula [Sh] which follows

from the analytic class number formula of a torus. Later, two direct proofs

were given by Katayama [K] and Sasaki [Sa].

In this paper, we generalize Ono's formula to S-arithmetical one,

including the function field case, and give a new direct proof using

Nisnevich cohomology. We also give a formula by applying our method

to a similar exact sequence of tori associated to two linearly disjoint

Galois extensions Ku K2/k of global fields. We think that Nisnevich

cohomology is a natural and suitable tool to connect class sets of affine

group schemes and etale (or flat) cohomology and to study their functorial

behavior. ([Nl] and [N2]).

The contents of this paper are as follows. In § 1 we introduce our

invariants Es(K/k) and ES(KU K2/k), and in § 2 we state our main results.

In § 3 we prove the surjectivity of the norm map. In § 4 we give a brief

review of Nisnevich topology and cohomology for our purpose. In § 5 we

prove our theorems, and in § 6 we discuss some examples.
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me a problem, a vast generalization of Gauss' genus theory using (non-

abelian) algebraic groups. I hope to come back to this beautiful problem

some time in the future.

§ 1. The invariants Es(K/k) and ES(KU Kjk)

Let k be a global field. For a place υ of k, let kv denote the com-

pletion of k at v and Θv the ring of integers in kv. Let S be a finite set

of places of k which is non-empty and contains all archimedean places,

Soo. Let Θs be the ring of S-integers in k, Θs = C]v$s®υi a n ( i

Spec Φs. For a finite set of places P of k containing S, we put

kA(P):= Π * . X Π 0 .

and

Let G be an affine group scheme of finite type over X with the

smooth generic fibre. We define the S-class set CS(G) of G by the set of

double cosets:

CS(G) = G(kA(S))\G(kA)IG(k)

and call its cardinality the S-class number of G over X.

Let K, i£j and K2 be finite Galois extensions of k such that Kxf]K2

= k, and let S* and St be the set of places of K and Kt (ί = 1,2),

respectively, lying above S. Let ΘSκ and 0β< be the normalizations of Θs

in K and Ku and put X x : = Spec Θ8κ, X,: = Spec ΘSi (ί = 1, 2). Then, let

us consider the following two exact sequences of group schemes or etale

sheaves on X induced by the norm maps N and Nt associated to the

Galois coverings XκjX and XJX (i — 1, 2) respectively:

(1.1) o — • T—> Π GM$Xχ - ^ > Gm,x —> 0
Xκ/X

(1.2) 0 — > Γ' — * Π G β f I 1 X Π G., x , ^ ^ Gro,^ — > 0
Xl/X X*/X

where GTO)F: = SpecZfί, t"1] XSPecz^ f° r a scheme Y, \\Z/γ denotes the

Grothendieck functor of sealer restriction ([D-G]), JVΊ iV2 means the product

of iVΊ and 2V2, and T, Tf are defined as the kernels of N, Nx 2V2 respectively.

For the surjectivity of N and Ni>N2> we will give a proof in §3.
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Let us denote by hktS, hKt8χ9 hKuS. hTyS and hτ,iS the S-class numbers

of G m > z , X\χκ/xGm,χκ, X\xi/xG<m,χv T7 and T respectively. Here, hkfS9 hκ,

and hKitSi are nothing but the S-class numbers of k, K and Kt. Now we

define our invariants Es(Kjk) and ES(KU K^k) by the alternative products

of the S-class numbers taken along the sequences (1.1) and (1.2) respec-

tively, namely,

(1.3) Es(Klk): = h

 h**

(1.4) ES(KU K2/k): = hf^'hK2,S2 #

We remark that ESΰo(Klk) coincides with Ono's E(Klk) for the number

field case ([02]).

§ 2. Statement of results

To state our results, let us prepare more notations. For a place v of

k, we choose a place w of K and a place z of KxKt lying above u, and

denote by wγ and w2 the restrictions of z to Kx and K2 respectively, and

put Mv: = KltaιΓ\K2m. Let Θw and ΘMv be the ring of integers in Kw and

Mv respectively, and let S'r be the set of finite places of k which ramify

in KJk or K2jk. For a Galois extension E/F of fields, let E'\F denote

the maximal abelian subextension of EjF. For norm maps, we put N: =

Nκ/*> Nt: = Λ^./fc (i = 1, 2), iV,: = Λ^^^, and NMυ: = JV^/^ for simplicity.

i?x denotes the group of invertible elements in a ring R. Finally, [*]

denotes the cardinality of a set #.

THEOREM. Notations being as above, we have

(2 1) E (Klk) = [HlfcCHI XlvesJKί,: K]
[K':k](0$:NO8x)

(22) E(K K Ik) - P ^ C T Uves Wv: kv] \\^s e(M'Jkv)
9 WNΦϊNβtt(JJΓlΔ'nNJ**

where J: = Π ^ * ? X Π β ; \ β ^ ΔΊ = {xe
and e(K'sjkυ) denote the ramification indices of K'JK and M'v\kv respectively,

and the Tate-Shafarevich groups over k, IlI^Γ) and IlIfcίTO, are given by

the kernels of the natural maps:

Wt(T) =
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Ulk(T) =
v

In the following, we put I: = J/JΠA' γ[sus^NMvMζ for simplicity.

COROLLARY 1. Assume k is a number field and S = STO. Then we
have

( 2 4 ) E ( K

(2.4) ESJKU

where we put Θv = kv for v e £}„, and <Dky Θκ and Θκ. are the rings of

integers in k, K and Kt (i = 1, 2) respectively.

Remark. (2.3) is nothing but Ono's Theorem [02], § 2.

COROLLARY 2. Assume that S is enough large such that hkyS — hKySκ =

hKuSi = hTtS — hτ,iS = 1 (i = 1, 2) and S contains all ramified places of k.

Then we have the following formulas for the Tate-Shafarevich groups.

(2.5) αi
[υes

Ylves [Mv : kυ]

where I - J/JΠ Δf l\vesNMvMζ.

COROLLARY 3. If K/k is cyclic, and if KJk or K2/k is cyclic, then we

have

(2.7) Es(Klk)

/OQ\ F (K K lh\ — ΓUes \MV '. kυ] \[v§se (MJkv)
(2.8) ES(KU KJk) (^^(Pϊ^ϊ)!!]

where e(KJkv) and e(Mv/kv) denote the ramification indices of KJkv and

Mυ/kΌ respectively.

§ 3. The surjectivity of the norm map

Let A be a Dedekind domain with the field of fractions F. Let E be

a finite Galois extension of F and let B be the integral closure of A in

E. Put X: = Spec A and Y: == Spec B.

The purpose of this section is to show the surjectivity of the norm

map:
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N: Π G m > r —-> Gm,xΠ >
Y/X

defined in the following way. For each U in Xet, define

N(U): Homx(£7, Π GntY) = (B®AΓ(U, 0υ)Y > Γ(U, 0Ό)Y
Y/X

= Hαmx(I7, G W f Z )

by N(U)(b®γ): = NB/A(b)γn, where NB/A : B -> A is the norm map associated

to the Galois extension EjF and n = [E: F].

Then, we can easily see that these maps {N(U)} commute with

restriction maps and so N defines a morphism of sheaves on Xβt.

To show the surjectivity of N, let us see the map Ns induced on the

stalks at each geometric point x associated to xeX:

N, : (Π Gm,F)* = (B®AAfY > (AfY = (GΛ,X) 3
Y/X

where Af- denotes the strict henselization of A at x.

Let yi (1 < ί <g) be the points in Y lying above x with / = [κ(yύ : fc(x)]

= the degree of the extension of the residue fields, and let Bf- be the

strict henselization of B at yt. Finally let Ff- and Ef denote the fields

of fractions of Af- and Bft respectively.

Then, via a canonical isomorphism

Bsh Γ>sh ϋ s h
Vίij Viij — Vi

we can see

where Nitj: B^itJ = Bf. —> Af- is the norm map associated to the Galois

extension EψJFB^. So, it suffices to show the surjectivity of each Nitj

which, however, follows from that the cohomological dimension of Ff < 1

([Se], Π-3.1, 4.3).

§ 4. Nisnevich topology and class sets

The aim of this section is to introduce a certain Grothendieck topology,

called Nisnevich topology, and state a theorem which connects a class

set of an affine group scheme and etale cohomology. For the details of

proofs in the following, we refer to [N2].

Let X be any noetherian scheme. We define a Grothendieck topology
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Xms on X by the following: As a category, Xms is the same as the small

etale site on X. A family of morphisms (φt: [/*—>[/) in Xms is a covering

if and only if for any xeU, there exists an index i and y e Ut such that

04(y) = % and A ( y) ~ «(x), where κ(x) and «(y) are the residue fields of U

and Ui at Λ and y respectively. The cohomology H$is(X, 2F) for any sheaf

of group IF on Xms are defined in the usual way (cf. [M.A]).

Let X = Spec R, R is a Dedekind domain and let G be an affine group

scheme of finite type over X with the smooth generic fibre. Then we can

define the class set C(G) in the obvious way. (If X is ours in § 1, it is

CS(G) in § 1.)

The next theorem is the main property of Nisnevich cohomology for

our purpose.

THEOREM ([Nl], [N2]) We have a canonical bίjection

(4.1) m,ls(X,G)~C(G).

Furthermore we have an exact sequence of pointed sets

(4.2) 1 > C(G) • HUX, G) • HUX, Rιu*G) > 1

and the stalk (R1u^G)x at xeX can be computed by the formula

(4.3) (Rιu*G)x ^ HJt(Λ5, G)

where u: Xet -> XNis is the morphism of sites and Rl is the henselίzatίon of

R at x. If G is commutative, then all maps are homomorphίsms of groups.

Remark 1. (4.2) is an immediate consequence of (a non-abelian ana-

logue of) the Cartan-Leray spectral sequence for u : Xet —> Xms, (4.1) and

the fact that the cohomological dimension of Xms < 1.

Remark 2. By (4.3), H°ms(X, Rιu*G) can be computed by the following

way. Let X° be the set of all closed points of X. For xeX°, let

a,:HXRΪ,G) > W(L%y G)

βs:HKL,G) >H\Ll,G)

be the natural restrictions where Lh

x is the field of fractions of Rh

x. Then

we have

(4.4) #°Nis(X, Ku*G) = {αeH\L, G)\βx(a) eIm(αJ, for each xeX°}.

In the above, we can replace LI by Lυ(x) where Lυω is the completion of

Ln

x with respect to x, because Greenberg approximation theorem [G] tells
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us the injectivity H\Lh

x, G) - ^ H\LHx), G).

§ 5. Proof of theorem

First, we shall prove the formula (2.1). (2.2) is obtained in the similar

way. In the following, notations will be as in § 1 and § 2. All cohomology

groups are etale ones except Nisnevich ones.

By (1.1), we have a long exact sequence;

> H\X, Π Xκlx Gm,Xκ) JU H\X, Gm,x) — • HKX, T)

— > H\X, Π X κ l x G m Λ ) JU H\X, Gm,x) — • •

where it is easy to see the followings:

H\X, Gm,x) = (Pg,

H\X, Π Xκlx Gm,Xκ) = H\XK, Gm,Xκ) = Θ*Sκ,

H\X, GM,X) = Pic(Z) = Cs(Gm,x),

H\X, ϊ\XκlxGm,Xκ) = H\XK, GmtXκ) = Pic(X*) = Cs(l\Xκ/xGm,Xκ).

For Hι(X, T), by (4.1) and (4.2), we have an exact sequence

(5.3) 0 • CS(T) • Hι(X, T) • H°ms(X, R!utT) > 0

where u : Xβt —>• Xnis is the morphism of sites.

From (1.3) and (5.1)-(5.3), we have

(5.4) Es(K/k) = [ H % l s ( X , R'u^T])
(01: N(9%κ)[Coker(Pic(Xκ) - % Pic(Z))]

For simplicity, we set

C: = Coker(Pic(Zx) - ^ > Pic(Z))

For C, in terms of idele, it is easy to see that

(5.5) C~Wk*J8NKl

where Js: = ]]veskζ X Π»«β^? a n ( * N means the norm map of ideles in

the obvious sense. On the other hand, the Artin reciprocity tells us a

canonical isomorphism

(5.6) k$lk*NK$ ~ Gsl(K'lk).

Since the norm map of an unramified local extension is surjective, we

have
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(5.7) Keφ*lk*NKx • k*jk* JSNK*) ~ Js/Js Π k*

where Sr denotes the set of all finite places of k which ramify in Kjk,

Jr: = Uveskϊ X UVSSΛSVΪ and Δ: - {xe £ x \xeNvK*, ve SUS r } .

From (5.5)-(5.7), we have

(5.8) [C] = i ^ I

where we put D: = Jr/Jrf]Δ Y\vesusrNvKw

Finally, let us analyze Γ by the Remark 2 in § 4. We identify the

closed points of X and the places of k outside S. Let

av:HWv,T)—+H\kυ,T)

βυ:IP(k,T) >H\kυ,T)

be the natural restrictions for υ & S where Θ^ is the henselization of Θs

at iλ Here, from (1.1), we have Hι(Θh

v, T) ~ ΘTINΘh

w* and H\kv,T)~

h*jNKl because Pic(^) = 0 and Hubert 90 respectively, where 0% is the

henselization of ΘSκ at w. Hence, by the density of Θ\ in Φv and the

openness of NΘ% in Φ$9 we have

(5.9) I m W - 0*INΘ* .

Since (Φ* :NΘ£) = e(K'Jkv): = the ramification index of K'JK by local

class field theory, from (4.4) and (5.9), we have

(5.10) Γ = Ker(H'(*,T)-ίU Π H\kvyT)χ fl H\kv, T)/(Im aυ))
QSΌS eS\S

where the m is the natural restriction.

So, we are led to look at the following commutative exact diagram.

0 >\\H\KT)X Π
ves vesr\s

Π k*/N.K* X
es
Π Π

ves υesr\s

II ϊl
W(k, T) = H'ίA, T)

^ 1 ^ ? 1 ) > Π H\kυ,T)χ l\ H\kv,T)llmav
V$Srί)S veSr\S

II II
Π

veSr\S

k*lΦ*NvK*
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where the maps in the bottom are componentwise and each isomorphism

follows from (1.1) and Hubert 90, or (5.9). Here, Ker (in) = Γ by (5.10),

Ker(Z) = Ulk(T) by the definition, and k*INK* ~ G(K'JK) by local class

field theory. To apply snake lemma to the above diagram, let us see

(5.11) Ker(Coker(Z) > Coker(τn))

v v§S υ$S\jSr veSr\S

NVK* = D((δ.8))

and so we have

(5 12) Γ =
ID]

Together with (5.4), (5.8) and (5.12), we get (2.1).

Next, let us turn to the proof of (2.2). As in the above case, by the

long exact sequence associated to (1.2), we have

E^KuKJk) = —

where

C : = CokerίPicCX,) X Pic(Z2)

In terms of idele, C" ~ k'H^JgNiK^N^K^, however, by class field theory,

the subgroup kKN-iKfANlK'£A of UΛ

Λ corresponds to the maximal abelian

subextension of Kx Π iζ. over k, which is k itself by our assumption. Hence

σ = {i}.

To analyze Γ\ note that

which follows from (1.2). Hubert 90 and local class field theory. The

rest of argument is quit same as in the case of Γ. So we left the details

to the reader. The reason that the term I appears in (2.2) may be clear

by (5.11).

Concerning the corollaries, corollaries 1, 2 are immediate consequences

of theorem. (2.7) and (2.8) i.e., the vanishing of Ulk(T) and Ulk(T), follow

from the Tchebotareff density theorem and [H], Proposition 3.3.
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§ 6. Examples

For some examples of ESo3(K/k) for the number field case, we refer

to [02], §5.

EXAMPLE 1. (Gauss' genus formula for the function field case) Suppose

that k — Fq(T), the rational function field over a finite field with q

elements, and if is a quadratic extension of k and suppose that S = {oo},

where oo denotes the place of k corresponding to the pole of Γ. For

simplicity, we assume that the characteristic of k is different from 2.

According to E. Artin [E.A], let us say that K is real when oo is

decomposed into two distinct places in if, and K is imaginary, otherwise.

By S-unit theorem or [E.A], § 14,

fF x X Z if is real,

and so

(2 K is real and N0%κ = (F x) 2 or K is imaginary.

Therefore (2.7) yields

(2tκ~2 K is real and NΦ%K = (F x) 2.
Es(Klk) ,

if is real and NΘ^K = F x or K is imaginary.

where tκ is the number of places of k Φ oo which ramify in K/k. This

is the exact analogue of the number field case; [02], §5, Example 2. See

also [E.A] §11.

EXAMPLE 2. (Cyclotomic function fields) We refer to [G-R] for some

properties about cyclotomic function fields, which we shall use below.

Suppose that k = Fq(T) and K = k(Λf), the /-th cyclotomic function

field, where / is an irreducible polynomial of degree d in R: = FP[T].

Suppose S = {oo}. It is known that K/k is a cyclic extension whose

Galois group is isomorphic to (i?/(/))x, which is the cyclic group of order

qd-\ Let K+ be the fixed field of F x = Rx C (i?/(/))x. For the ramifi-

cations and units, the following analogies of cyclotomic number fields are

known.

(1) Every place except (/) and oo is unramified in Kjk. (f) is totally

ramified in Kjk. oo splits totally in K+/k and each of these places of K+
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is totally ramified in K/K+.

(2) ΘSK = ΘΪK+.

Since Θ%κ+ ~ F* X Z d / ( ί- 1 ) by (1) and S-unit theorem, we have, by (2),

//nx . Λ7 /nx \ (/nx (/nx }q~λ>\ (a "i\d/(g-i) + i

and

(0g : Nκ/k0$κ) = (F* : ( i W ^ ) ' - 1 ) = q - 1.

Therefore, by (1) again, (2.7) yields

Es(K/k) =

These are exact analogues of the cyclotomic number field case [02], § 5,

Examples 4, 5. Moreover the formula tells us that in the case of K/K+,

hT)S can be regarded as the " — part" of hKjS.

EXAMPLE 3. Let px and p2 be distinct prime numbers and let nx and

n2 be integers such that pψ and pψ > 3. Suppose that k — Q, Kx = Q(ζp?i)

and K2 = Q(ζpna) where ζp ? 1 and ζp«2 denote primitive p^-th and p^-th roots

of 1, and suppose S = SL = {oo}. It is easy to see that M^ = C, Mv = Qv

for y e S ; and -leΔ'. So, 7 = {1}. Furthermore, 0% = {±1} and NXΘ^

= iV2^a = {1}. Therefore, by (2.8), we have

E8sκu KM = l.

In other word, hKl hκ% = hτ, where hKl, hK2 and hτ, are the class numbers

of Ku K2 and ϊ 7 ' respectively.
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