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ABSTRACT

The present paper considers the present value, Z(t), of a series of cashflows up to
some time t. More specifically, the cashflows and the interest rate process will often
be stochastic and not necessarily independent of one another or through time. We
discuss under what circumstances Z(t) will converge almost surely to some finite
value as t—><x>. This problem has previously been considered by DUFRESNE (1990)
who provided a sufficient condition for almost sure convergence of Z(t) (the Root
Test) and then proceeded to consider some specific examples of such processes.
Here, we develop Dufresne's work and show that the sufficient condition for
convergence can be proved to hold for quite a general class of model which
includes the growing number of Office Models with stochastic cashflows.
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1. INTRODUCTION

Suppose d(t) is the constant force of interest during the period [t— 1, t), so that an
investment of 1 at time t— 1 will accumulate to exp d(t) at time t. The present value
at time 0 of 1 due at time t is then

V(t) = exp - X 6(s)\=
. 5 = 1

where vs = exp (-6(s)) is the discount factor for year s.
The present value of a series of cashflows C(l) at time 1, C(2) at time 2, ..., C(t)

at time t is therefore

Z(t) = 2 , V(s)C(s) = 2 , vx...vsC{s)
S = 1 1 = 1
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Such a process has been considered by DUFRESNE (1990) and AEBI et al. (1994)
from the financial point of view and by VERVAAT (1979) and BRANDT (1986) from
the mathematical point of view. All of these works consider the special case where
{(5(?)}f=1 and {C(0}T= I a r e independent and identically distributed and indepen-
dent of one another. DUFRESNE (1990) considers the convergence of Z(t) as t tends
to infinity and its limiting distribution when the distributions of d(t) and C(t) are
known. AEBI et al. (1994) show how Bootstrap methodology can be used to
estimate the limiting distribution when a limited number of past observations of
d(t) and C(i) are available.

DUFRESNE (1990) also considers more general models and provides sufficient
conditions for almost sure convergence of Z(t). In this paper we consider a number
of specific examples for the process Z{t) and it is demonstrated that Dufresne's
conditions hold for quite a wide class of models.

In this paper we will restrict ourselves to discrete time models. However, the
results described here also hold for the continuous time models for d(t) described
by PARKER (1993, 1994d) and NORBERG and M0LLER (1994).

DE SCHEPPER, TUENEN and GOOVAERTS (1994) consider the present value of
annuities and of a perpetuity payable continuously. Using Laplace transforms they
show that the perpetuity has an inverse Gamma distribution, matching the results of
DUFRESNE (1990).

2. CONDITIONS FOR CONVERGENCE OF Z(t)

The principal result provided by DUFRESNE (1990) giving a sufficient condition for
the almost sure convergence of Z(t) is the Root Test:

Theorem 1 (Root Test, for example, see DUFRESNE, 1990)

lim sup Wit) C(f)V" < 1 almost surely

then Z(/) converges almost surely to some finite limit as t tends to infinity.
Now, trivially, this is equivalent to the condition

If ' 1
lim sup — I log I C(?) I + 2 J l°g vs\ < 0 almost surely

>->* t { s=l I

If ' 1
<=> lim s u p - Uog I C(t) I - ^ dis)\ < 0 almost surely

'->» f [ ,v=l J
We therefore have the following
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Corollary 2
^ t

If the force of interest process {d{t)}*-.\ 's ergodic with — 2^,d(s)—>d = E[d(.)]
t J = I

almost surely, and if

lim sup — log I C(t) | = p € [ - oo, +00)
'->» t

where p - d<0 then Z(t) converges almost surely to some finite limit as t tends to
infinity.
[The condition that p<d means that the cashflow process, C(t), must grow more
slowly than the accumulation process l/V(t). Consider the trivial case of a
perpetuity where C(t) = exp pt and V(t) = exp - dt are both deterministic. Then
Z(t) converges if and only if p < d.]

Corollary 2 extends Dufresne's subsequent development by allowing the process
C(t):
— to depend on the force of interest process;
— to be non-ergodic and, in particular, to include inflationary growth and growth

in the underlying number of policies.
[A rigorous definition of ergodicity is given by KARLIN and TAYLOR (1975). If a
process X(t) is known to be ergodic then the following results hold:

1 £
lim - 2J
«^=° n t=\

1 " - 1 "
lim - X [X(t)-Xn]

2 = a2 where Xn = - £ X(t)
"->'*- n t = ) n t = \

and i f „ „ ( ) (
0 otherwise

1 "
lim - X / o 6 [ X « ] =F{b)-F{a)

where \x and a are the unconditional mean and variance of X(t) and F{x) is the
unconditional cumulative distribution function of X(t).]

3. THE INTEREST RATE PROCESS

Before we concentrate on the cashflow process, it is worth discussing briefly some
interest rate processes.

The ergodic condition for the force of interest process is not particularly onerous,
and encompasses most of the widely used stochastic investment models.
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— Independent and identically distributed returns: for example, WATERS (1978),
DUFRESNE (1990), PAPACHRISTOU and WATERS (1991), PARKER (1993, 1994d)
and AEBI et al. (1994) give but a few examples.

— Simple autoregressive models for the rate of return, such as the AR(\) time
series model, and the Ornstein-Uhlenbeck process: for example, DHAENE (1989,
1992), PARKER (1993, 1994a,b,c,d) and NORBERG and M0LLER (1994).

— Models with several asset classes: for example, WILKIE (1986, 1987, 1992,
1994, 1995).

— Models for the term structure of interest rates: for example, BOYLE (1978,
1980), BRENNAN and SCHWARZ (1979), ALBRECHT (1985), Cox, INGERSOLL and
Ross (1985), BEECKMAN and SHIU (1988), HEATH, JARROW and MORTON (1990,
1992), SERCU (1991) and LONGSTAFF and SCHWARZ (1992).

— Autoregressive Conditionally Heteroscedastic (ARCH) models: for example,
see WILKIE (1995, Appendix D).

Some non-ergodic models may still admit convergence but it is worth discussing
some special cases which may be considered to be inappropriate.

First, DUFRESNE (1990, Proposition 3.2.1) shows that Z(i) will converge if [vs\ is
stationary and ergodic and Pr(vs = 0)>0. This second condition is equivalent to
Pr(d(s) = <x>)>0 which does not seem appropriate.

Second, some authors (for example, DHAENE, 1989, 1992; DUFRESNE, 1990, and
PARKER, 1993) consider non-stationary models for the force of interest process. One
of two things may happen.
— The process may have positive drift, so that 6(t) tends to infinity almost surely

(again unrealistic).
— The process may have no drift but unbounded variance. Examples of this are

random walk models of the form 6 (t + 1) = d (?) + e (t + 1) where the £ are
independent and identically distributed zero mean random variables, and, more
generally, ARIMA(p, d, q) models (d^ 1). With such processes it is often easy
to show (for example, see DUFRESNE, 1990, Proposition 4.4.4) that

lim sup | Z(t) I = °°.

Figures 1 and 2 demonstrate the problem. For many years d(t) may remain
positive (Figure 1). The process Z(t) (Figure 2) may then give one the
impression that it is converging and that it is safe to use Z(50) or Z(100), say,
as an approximation to Z(°°). After a while, though, d (t) takes a long excursion
below zero and Z(t) shoots off upwards.

4. THE CASHFLOW PROCESS

Corollary 2 provided us with a condition for the behaviour of C(t) as / tends to
infinity. We now consider this in more detail and provide the following lemma
which will allow us to satisfy the conditions in Corollary 2.
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FIGURE I. Sample path of a random walk interest rate process, d(t).
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FIGURH 2. Z(t) appears to converge initially but eventually diverges.
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Lemma 3

Suppose that there exists a deterministic sequence a (?) converging to zero as t tends
to infinity such that

X Pr [-log I C(r) I > p + a(f)
;=i [t

Then

lim sup - log I C(?) I — P almost surely.

Proof

Let E, - { r 1 log\C(t)\>p + a(t)}. Then

X Pr(Et) < °°
/ = l

=> Pr(lim sup£() = 0 by the first Borel-Cantelli Lemma
f->sc

(for example, see WILLIAMS, 1991, Section 2.7)

1 , ,
=> lim sup — log \C(t)\< p almost surely.

Lemma 3 provides quite a weak condition on the cashflow process: cashflows
need not be independent; and the tails of the cashflow distributions can be quite fat.
In particular if we suppose that fi{t) = E I C(t) I then we are able to prove the
following theorem which provides us with a relatively easy method for proving the
convergence of t ~ ' log I C{t) \.

Theorem 4

Let Po = inf {p : lim sup e~P'pi(t) < °°). Then

lim sup — log I C{t) I ^ p0 almost surely.

Proof See Appendix A.

This result covers many cases, some discussed previously by other authors:
— C(t) independent and identically distributed (DUFRESNE, 1990; AEBI, et al.,

1994);
— C(t) an ergodic stochastic process and hence with fx{t) constant, giving po = O

(DUFRESNE, 1990);
— closed funds (for which fi(t) tends to zero in finite time) (PAPACHRISTOU and

WATERS, 1991; PARKER, 1993, 1994a,b,c,d; FREES, 1990);
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— deterministic processes with exponentially bounded growth (for example, an
office model with an assumed new business growth rate).

Theorem 4 gives a stronger condition for convergence than Lemma 3. For
example, suppose C(t) has a Log-Pareto distribution with drift: that is,

constant
Pr [log C(t) - at > x] = for x>x0 and d >0 .

x6

Then E \ C{t) I = °° for all t so that {C(?)} does not satisfy the conditions for
Theorem 4. Nevertheless, {C(t)} does satisfy the conditions for Lemma 3, implying
that lim sup,_>x t~ ' log | C(?) I is still less than infinity. Theorem 4 does, however,
provide us with a condition for convergence which is often easier to verify, as will
be demonstrated in the next section.

5. A STOCHASTIC OFFICE MODEL

We now develop the last of these examples to include office models in which
cashflows are stochastic. The office's portfolio is assumed to consist only of
policies which do not participate in the profits of the company. The model
described includes stochastic mortality, stochastic growth of new business volumes,
stochastic inflation in the size of individual policies and conditionally independent
and identically distributed policy sizes at a given time of inception.

The generality of the model, here, means that the notation may appear to be quite
heavy going, but the reader should concentrate on:
— the total premium income at time /, P(t);
— the total benefit outgo at time t, B(t), which consists of benefits payable on

death during the year (f- 1, t], and on survival to duration t for t = 1,2, ...
Suppose that A = {X(t)}%_x, k(t) - (A,(0, A2(0), is the process with

determines the volume of new business (A i (?)) and the individual policy size index
(A2(0)-

Let (x),j represent the life corresponding to policy j taken out at time t. All
policyholders are aged x at entry. Then, using standard notation, we have
spx = probability that an individual now aged x survives to age x + s

= 0 for all s > a) - x for some limiting age m < °°
and v _ | I qx — the probability that an individual now aged x dies between ages

x + s— 1 and x + s
= 0 for all s > co - x

First we consider the total premium income at time t. This is
•*• N(t-s)

Pit) - I I KsPA,-,U)I?-,.,(J)
•v = 0 j = 1

•x N(t-s)

where />,(/) = £ £ K?A,_s(j)I?_StS{j)
•» = ' ; = i

= premium income in respect of policies issued at or before
time 0
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t - \ N(t- s)

,s = 0 y = l

= premium income in respect of policies issued after time 0
N(s) = number of new policies taken out at time s
N{s)\l\(s) ~ Po(A,(s)), Cs>0) and, given A, N(\), N(2), ... are indepen-

dent
Aff = premium at duration s per unit of benefit
A,(j) = number of units of benefit for policy j taken out at time t
F,(x) = Pr(A,(j)<x)

with A,(l), A,(2), ... independent and identically distributed and
independent of the N(t)
and A,{j) and As(k) are independent whenever t^s

,s / ••. _ f 1 if (x),_s : is still alive at time t
1t-s,s\J) — \ „ , ."J

[ 0 otherwise
By leaving ATf, A"/ and Afv

D (defined below) as essentially arbitrary functions of
duration, we maintain a high degree of flexibility. In particular, this covers a wide
variety of policy types including annuities and assurances.

Given these assumptions we can then say that P2(t) \ A has the Compound
Poisson distribution

P2(t)\A ~ CPo(AP(t), F,p)
t-1

where AP(t) = £ A, ( / - s)spx

.5 = 0

X ^ s p l s s
AP{t) ,s = o

If we assume that the history of the office is known up to and including time 0
then P | (?) is subject to much less uncertainty because the numbers and sizes of the
existing policies are known. In any event P{(t) is equal to zero for all t >
cv—x.

Turning now to the benefits process, B(t), we can proceed in a similar, but
slightly more complex, way:

=c N(t-s)

.5=1 j=\

= Nit - s)

where fi,(f) = S X

t-\ N(t-s)

.5=1 ; = !
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K^ = amount payable on survival to duration s per unit bene-
fit

K'y = amount payable on death during the year (s - 1, s] per unit
benefit

,D ,--. _ f 1 if (x),_ s , dies during the year (t- 1, t]
L 0 otherwise

and note that

' i f , w ' - . ^ i s a l i v e a t l~1

0 otherwise
As with the premium income we can then see that B2(t) I A has the Compound

Poisson distribution
B2(t)\A ~ CPo(AB(t), Ff)

i - I

where A B (t) = ^ X, (t - s) s _ , px
V = I

? ( ) X i ( ) L P x t
A B ( t ) v = i

We can also say that B, (?) = 0 for all t > <D - x.

Now suppose that mx{t) = E[A,(j)]. Then for t > co-x

E{B(t))

E[E(B(t)\A)]

qxF,_,{xlK?)\

Xi(t-S)m](t-s)(spxK?+s_i I qxKs
D)= E

. v = 1

where *, (.v) = ,/P,VA:/ + v_ , | ^/sff

To make further progress we need to make further assumptions about the claim
size distributions and in the model for new business growth.

Suppose then we assume that Ft(x) = F{xlX2{i))'- that is, A,(j)IX2{t) and
As(k)IX2(s) are identically distributed when s^t and where X2(i) represents the
benefit inflation index. Then m\{t) = X2{i)mK.

(O ~ X

=> MO = X mik[(s)E[Xl(t-s)X2(t-s)]

Suppose also that

A,(f) = XiZxplPit + OtWiit)]

X2(t) = X2 exp [p2t + o2W2(t)]
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where Wx(t) and W2(t) are independent standard Brownian motions. In particular,
they have the properties for / = 1, 2:
— Wi(0) = 0;
— if tt<t2 then Wt(t2)- tV,(f,) ~ N(0, f 2 - r , ) ;
— if tx<t2 =£ t3<t4 then Wj(t2)- W,(f,) and Wt{t4)- Wt{h) are independent.

For t<0 Wx(t) and W2(t) are known.
Then

£ [A ,(0*2(0] = E[A,(0]£[A2(0]

= A, A2exp p, + p2 + — o\ + - a\ \t
l{ 2 2

= Aj A2 exp [pt]

1 2 1 2

where p = pt + p2 + - o{ + —o2

2 2
We therefore have

cu - x

A,A2 X
. v = 1

w - x

= A,A2exp(p0 £

= ,M exp

01- X

where fi = A|A2 2^ mxkx(s) exp (-ps).
. v = 1

Hence, by Theorem 4 we deduce that

limsup— log 1.6(0 I ^ p almost surely.

We can prove similarly that

limsup —log \P(t)\ ^ p.

Hence, if p - d < 0 then, by Corollary 2

Z(0 = S X
.! = 1 .V = 1 .V = I

converges almost surely to some finite limit as t tends to infinity.
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6. DISCUSSION

It is possible without great difficulty to relax many of the assumptions made in
Section 5.
— Here we assumed that all new entrants will be of the same age in an effort to

contain the already complex notation. Relaxing this to include a spread of ages
will result in a sum of conditionally independent Compound Poisson processes
(given A) which is itself a Compound Poisson process.

— Similarly we could allow for more than one policy type, multiple state models
(for example, permanent health insurance) and more than one risk group.

— Other forms of distribution for N(t) I A)(?) would provide similar results. The
Poisson assumption was made here for the convenience of its additive
properties.

— Inclusion of expenses and reserves. (However, if we discount cashflows at the
same rate of interest as that earned on the reserves, then the limiting value of
Z(t) will be unchanged.)

It should, therefore, follow that converge can be shown to occur for a wide range
of office models, beyond the already general case described here.

Suppose that N(t) = 0 for ?<0. Then, in the context of Section 5, Mm, ^Z(t)
represents the present value of profit on future new business. The present paper has
shown that, subject to certain conditions, this quantity is well defined and exists
almost surely. It is a quantity which is of genuine practical interest since it allows
actuaries to assess the underlying value of a company.

It is unlikely that the limiting distribution or the moments of Z(t) will be known
under the majority of circumstances. (However, where the cashflows in different
years are independent, the methods of PARKER, 1993, 1994a,b,c can be used to find
the distribution of Z(t) for t <°°. This then provides, for large t, an approximation to
the limiting distribution of Z(t).) It will often, therefore, be necessary to carry out a
Monte-Carlo study, simulating sample paths of Z{t). The results described in this
paper indicate that Z(t) will converge to its limit at least as fast as the deterministic
annuity function dj\ with force of interest d-p tends to its limiting value. This
gives us a useful guide as to when the difference between Z(t) and its limit falls
within the maximum tolerable level of error.

Some idea of the limiting distribution of Z(f) can be obtained by applying the
results of PAPACHRISTOU and WATERS (1991) and FREES (1990) for large portfolios.
The analogue here is that the distribution of Af1 Z(t) tends to that of
Af' E[Z(t) I d(s), A|(.v), A2(.s), = 1,2, ..., t] as kx tends to infinity, and similarly
the distribution of the limit of Z(t) where this exists almost surely.
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APPENDIX A

We make use of the following Corollary to Lemma 3.

Corollary A.I

If there exists a deterministic sequence a(t) converging to zero as t tends to

infinity such that ^ exp [ - pt - ta(t)] E\c(t)\< °° then

/ = i

lim sup t ~ ' log I C(t) I < p almost surely.

Proof

As in Lemma 3 let
E, = \- log I C(r) I > p + a(t)

u
= [\C(t)\>

Now E | C(i) I > cPr\ \ C(t) \ > c] for any c > 0 (for example, see WILLIAMS,

1991, Section 6.4). Hence

E\C(t)\> exp[pt + ta(t)]Pr(E,)

?,) < 2^ e x P t ~Pf ~ta^ EICWI< °°-

This is the condition in Lemma 3.

Proof of Theorem 4

Take any P2>Po and set a(?) = 0 in Corollary A.I. Choose any p, such that
p o < P i < p 2 and let jfc = sup {exp (- p\t)fi{t): ( 2 l | . Since P | > p 0 , k must be
finite. Then

GC OC

X exp[-p2t-ta(t)]E\C(t)\ = X exp[-p,fj£ I C(f) I exp [ -(p2-p,)?|

Hence lim supf ~ ' log I C(t) I ^ p2 almost surely.

This is true for all p 2 > Po so the result follows.
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