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POLYNOMIALS WITH A PRESCRIBED ZERO 
AND THE BERNSTEIN'S INEQUALITY 

P. F. OLIVIER AND A. O. WATT 

ABSTRACT. Let !Pn \ be the class of all polynomials/? of degree at most n such that 
\p(z)\ < 1 for |z| < 1. In view of the example zn it follows from Bernstein's inequality 
for polynomials that sup^rp |//(zo)| = «at each point zooftheunitcirle.lt was shown 
by A. Giroux and Q. I. Rahman [2] that if 2£ i denotes the subclass of polynomials in 
(Pni which vanish at 1, then 

Cl / I // J ^ C2 
"Up r~ ~ ** 

< sup max//(z) < n 

where c\ and C2 are constants not depending on n. Here we find the exact value of 
suppecp* \p'(z)\ at z = — 1 which has some special significance and also at certain other 
points of the unit circle. 

1. Introduction. Let fPn betheclass of all polynomial s p(z) := YTv^avf of degree 
at most n. We shall abbreviate max|z|=1 \p(z)\ by \\p\\. The subclass of *Pn consisting of 
polynomials/? with \\p\\ < 1 will be denoted by &n,\. Polynomials in fPn>i which vanish 
at 1 will be said to belong to îPn* x. 

According to Bernstein's inequality for polynomials 

(1) sup \p'(z)\ = n 
pz%,\ 

at each point z of the unit circle. Further, the supremum is attained only for p(z) := ellzn, 
7GH. 

In this paper we seek to determine how large \p'(z)\ can be at a prescribed point z of 
the unit circle ifp is restricted to the subclass 0^x of fPn>\. A priori the supremum can be 
different at different points. We obtain the sharp answer for z belonging to a certain set 
En which will be specified below. 

2. Statement of result. For n G N let Tn denote as usual the n-th Chebyshev poly­
nomial of the first kind. For each integer i/, 1 < v < 2n — 1 let pv be the only root of the 
equation 

(2) Tn(p) 1 

nsin(i/ir/2n) ^ 
\~P 

1 — p2cos2(i/7r/2n) 
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628 P. F. OLIVIER AND A. O. WATT 

in (cos(7r/2n), l) if v is even; otherwise let pv — cos(ir/2n). Denote by (pu the unique 
root of the equation 

(3) COS — — Qv COS —-
2 H In 

in (0,27r). The set En alluded to above consists of the points zn,v = elip,/, 1 <v <2n—\. 
It was proved in [1] that if n is odd then for p G (P*x we have 

(4) | / / ( - l ) | <rccos2 

An' 

In (4) equality holds if and only ifp = ellP,l£R where P is defined by 

(5) P(z2) = zn{Tn(p z + z IZ-Z l „,( Z + Z l \ \ IT 
+ z T„[ p z M, P — COS — . K{P-2 J " n 2 ~n\r 2 )V r ~~~ 2n 

Here we are able to find the polynomials in (P*{ which maximize \p'(z)\ at any prescribed 
point z belonging to the set En. 

Let 

>, x ^ + ^_1 . l - p ^ c o s ( ^ / 2 ) z - z - 1 

2 p„ sin((^z//2) 2 

Since T„ is even or odd according as n is even or odd respectively it is easily seen that 
for 1 < v < 2n — 1 the function 

z^zne -i(n/2-\)<p„ (^yfl^X(Pv))Tn{C(z)) ~ {^yfï^JniPv) 
Z + Z 

y/fi - C O S 2 ( ^ / ' 2 ) z-Z~l .1 r COS(ifu/2) Z-Z~ 

npvsm(ipvl2) 2 ns sin((/v/2) 2 
T'n{CXz))\ 

is an even polynomial of degree 2n and so can be written as Pn^(z2) where Pnv is a 
polynomial of degree rc. 

We prove the following 

THEOREM. The polynomial Pnv belongs to tP*ifor 1 < v < 2n — 1 and 

\P'Xe^% (6) sup |pV v ") | = 
/ ^ ; , 

V P T - C O S 2 ( ^ / 2 ) | 1 . 

sin(</v/2) rcv 

The supremum is attained if and only ifp = e11 Pnv where 7 G K 

REMARK 1. From (2) and (3) it follows that 

1 Pvyfî^pï 
Tn(Pu) 

nsin(^/2) Jfi _ Co^^j2) 

and 

^(p.) 
P^I-P?,) 

^ T 3 p 2 ^ n 2sin 2(^/2)(p2-cos 2(( /v/2)) ' 
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POLYNOMIALS WITH PRESCRIBED ZERO 629 

REMARK 2. In order to simplify the presentation we introduce for 1 < v < 2n — 1 
the functions 

(7) UAO) : = UeWl2) = Pu cos(0/2) + i — ^ ™ S W * > sin(e/2) 
pv sin(</?I//2) 

(8) RnA0) := ^ - Tf
n(Pl/)Tn(UA0)) - Tn(pv) V 7 } T'n{UM) 

n \ x / sin(yv/2) J 

(9) InAO) '= . , MJpl - cosH<pv/2)sin(0/2)rn(tnA0J) 

, , 1 -P 2 , s in( (^ - 6>)/2) # / x 

(10) ^ ( 0 ) := Tn{pv)Tn(ZnA0J) + —f^KM s i n ( / 2 ) ^ ( ^ ( g > ) ' 

which are defined on [0,27r). It is clear that 

(11) PnAeW) = e'i{"l2~v^eMl2(Rn,M + ilnj,{0)). 

3. Some properties of Pni/. In Lemmas 1-4 presented below we give certain prop­
erties of Pnt1/ which are relevant in the present context. 

LEMMA 1. The polynomial Pnv belongs to (P*xfor 1 <v<2n—\. 

PROOF. We have already seen that Pnv is a polynomial of degree n. Now using for­
mulas (8), (9), (10) and (11) of Remark 2 we obtain 

\PnAeW)\2 <\PnAeiB)\2 + ulM 

= RlAe) + IlM + "lAQ) 

+ 
1 p g - c o s 2 ( ^ / 2 ) . 2 

n2 fism2(<pu/2) 
sm2(6/2)Tf

n
2(UA0)) 

+[Tn(p,)Tn{uA0))+v^> m^^ 

= 72(^ (0 ) ) + (1 - & w ) ^ t f ( ^ 0 ) ) 

= 1. 

Finally a simple verification gives 

/ V ( D = 0. 

REMARK 3. The proof of Lemma 1 shows in particular that 

\PnAeW)\2 + u£A0)=l. 

In Lemma 2 we describe the points where \PnAz)\ attains its maximum on the unit 
circle. 
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LEMMA 2. Let v be an integer such that 1 < v < 2n — 1. The maximum of\Pnj/(z)\ 
on the unit circle is 1 which is attained at n points Zk '= el°k, \ < k < n where 0 < 
6\ < 02 < • • • < 0n < 2TT. The numbers 9k depend on n and v; if v is odd they are 
characterized by 

( in,v(Qk) = cos&^, 1 < k < VJY - 1 {to be discounted ifv = \) 

Cn,i/(fl(„+l)/2) = COS \\, 9{l/+l)/2 := if, 
ZnAOk) = c°s(fc - 1)^, zg- + l<k<n(tobe discounted ifi/ = 2n-l) 

whereas ifv is even they satisfy 

-r(t ta\\ t 1̂ +1 y/nHpj -cos2(<Pv/2))sin2(<?„/2) - pg(l - pg) . <pv - 9k 
J/il WWfc)) = (~ 1) r- = = Sin , 

V
/ p T - c o s 2 ( ^ / 2 y n 2 s i n 2 ( ^ / / 2 ) s i n 2 ( ( ^ - 0 * ) / 2 j + sin2(0*/2) 

K(UM)) = (-D* ^smC^/2) 
^ 2 - c o s 2 ( ^ / 2 ) ^ 2 s i n 2 ( ^ / 2 ) s i n 2 ( ( ^ - 0 * ) / 2 ) + sin2(0*/2) 

PROOF. Let us write £n>1,(0) in the form £,^(0) = p* cos(0* — 9/2} where 

, 1 < * < n . 

2 (l-p2)2cos2((^/2) 

^ p2 sin2(^/2) 

1 \-plcos(ipu/2) 
and 0* G (-7r/2,7r/2) is such that cos 0* = ^ and sin0* = ^ ^ 1 ( ^ / 2 ) . A s i s 

easily seen, £^(0) decreases from p^ to —p̂  on the interval [40*, 2TT] Ç [0,27r] in case 
0* G [0,7r/2) and decreases from pv to — pv on the interval [0,40* + 27r] Ç [0,2ir] in 
case 0* G ( - 7 T / 2 , 0]. It is also clear that \Pn^(ew)\ = 1 if and only if u;ntl/(0) = 0. 

Let 1/ be odd. We have Tn(pu) = r„(cos(7r/2ft)) = 0. Then, from (10) it follows 
that UnjsiP) is z e r o if a nd o nly if sin((</v — 0)/2)7^(£n?z/(0)) = 0, i.e. if 0 = ^v or 
£n,i/(0/x) = cos(/x7r/n) for some integer p, 1 < p < « — 1. Referring to (7) and recalling 
that (/v satisfies the equation (3) we obtain 

(13) £/u/(¥V) = — cos((/v/2) = cos —. 
Pu 2/i 

In view of these considerations the zeros of 0^(0) get arranged in increasing order if we 
increase the subscript p of 0^ by 1 for p > (z/ + l ) /2 and set 0(l/+i)/2 := </V-

Now let 1/ be even. Since ein9l2ujn^{9) = Q(elB) where g is a polynomial of degree 
n, unfJ/(z) n a s exactly n zeros in the strip 0 < 5R(z) < 27r. We will show that in fact all 
these zeros are real. Suppose first that 0* G [0, TT/2) and examine rn(^n>l/(0)) for 0 be­
longing to the interval [0,27r). For 1 < k < n— 1 let 9k be the value in (0, 2TT) for which 
^(f l*) - cos(kir/n). Then ^ ( ^ ( A * ) ) = (~D* and T'n(UAOk)) = 0. So according 
to (10), (JnA^k) — (—\)kTn(pv)- Studying £n,„(0) we see that rn(£n>J/(0)) increases from 
Tnipv) to rn(p*) on the interval [0,20*] and decreases from Tn(p*) to —1 on [20*, 9\ ]. On 
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the interval [0\, 0n-\] the graph of 7^(^(0) ) has n — 2 branches going up from —1 to 
+1 or going down from +1 to —1. Finally, when 0 varies from 0n-\ to 2i\, Tn{^n,v(Q)) in­
creases or decreases from (—Xf~x to (—\)nTn(pv) according as n is even or odd. Further, 
a simple calculation shows that ^^ (0 ) = 1 and ujn^(27T) — (—l)n. The preceding obser­
vations allow us to conclude that u;njU(0) vanishes at least once in each of the n intervals 
(0, «,),(«!, 0 2 ) , . . . , (fln-l,27T). 

In case 0* G (—TT/2,0] the disposition of the curve rn(£„^(0)) changes, but arguing 
in roughly the same way as above we arrive at the desired conclusion about the zeros of 

If as before we denote the zeros of un^ by 0k, 1 < k < n, then from (10) it follows that 
(14) 

x 1 — o2 , sin (((A, — 0ic)/2) ,, x 

Tn(Pl/)Tn(uA0k)) + —f^rn(Pv) \ . ; Jrn(uA0k)) = o, 1 < * < n. 
Using the expressions for Tn(pv) and T'n{pv) contained in Remark 1 we obtain 

Pl/JI-SIM) sin ^Tn(UA0ù) + 

n ^ - c o s 2 f ) s i n ^ - p 3 ( l - ^ ) s i n ^ / l ^ | ^ ^ % ^ = 0 . 

This, in conjunction with 

n2T2
n(UA0k)) + (1 - Zlflk))T?{ZnM) = n2 

gives us 

TnUnAOk)) 

= ±-
^i 2 (p2 - cos2(^/2)) s in 2 (^ /2) -pl{\- fi) s i n ( ( ^ - 0k)/2) 

^ ( l - e ^ ) ) s i n 2 ( ^ / 2 ) + (n2 (p2 - cos 2 (^ /2)) s in 2 (^ /2) - p2(l - p2)) sin2 ((<p„ - 9k)/l) 

and 

/ip,, 8^ (^ /2 ) 
= ± 

l / ^ d - ?2 i /(^))sin2(^ I //2) + (n\pl - cos2(v,I//2))sin2(^I//2) - p2(l - p?)) s i n 2 (W - 0 t)/2) 

Now let 0* G [0,7r/2). Since 1/ is even and <^ satisfies (13) it follows that 

Tn(UÂ^)) = Tn(cos V~) = cos y = (-If/2, 
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and so ipv is one of the values Qk, 1 < k < n — 1. We observe in addition that 7^ (^ (0 ) ) 
is alternately negative and positive in the intervals (20*, #0, (0i, #2),• •, (0n-i, 27r); fur­
ther rn(^n,i/(0it))^(^n,i/(0ik)) 1S negative or positive according as <̂v > #̂  or ipu < 0k 

respectively. These remarks and the identity 

2 / 1 s-2 //1 \\ • 2 ^Pv . ( 2 / 2 2 V9*/ \ • 2 ^ 2/1 2 \ \ • 2 V̂ z/ ~ "k 

pi\} - w(^) j s i n Y \n v*v ~ T ' T " ^ ~ p"v —2— 
/ 2 2 Vv \ ( 2 • 2 Wv . 2 ¥v ~0k . 2 Ok \ 

= ( ^ - cosz y J (nz sinz y sinz — - — + sin —J 

easily lead us to the result stated in the second part of the Lemma. The above argument 
remains valid in case #* G (—7r/2,0]. 

Lemma 3 gives the values of Pn,v(z) at the points Zk '.= eldk, l <k<n. 

LEMMA 3. Let v he an integer such that l <v <2n—l. Then at the points zk • = el6k, 
l < k < n defined in Lemma 2 we have for odd v 

PnAeWk) = (-\)k
e-

i{n/2-l)^ein9k/2, l<k< V-^- - 1 

PnA*9™'2) = e>™'2J*\ 0(l/+1)/2 := <pv 

PnAeWk) = ( - l / - ^ - ^ / 2 - 1 ) ^ ^ / 2 , ^ - 1 + 1 < k < n 

whereas for even v 

PnAewk) = ( X)kc-i(nl2-x^clnekl2 ~nsin(<f,/2)sin(((^ - 6k)/2) + ism(6k/2) 

In2 sin2((/v/2) s in 2 ( (^ - 0*)/2) + sin2(0,/2)' 

1 < A: < n. 

PROOF. Let v be odd, then by definition pv — cos(ir/2n). Using (11), (8) and (9) we 
have for 1 < k < n, 

PnAeWk) = ^ Z 2 " 1 ^ / 2 ( T n ( U A O k ) ) + / ^ " C ° ; 2 ( ' ; ( 2 ) sin ^'(U^k))). 

Then, by the first part of Lemma 2 we obtain the result for odd v. 
Now let v be even. According to (8), (9), Remark 1 and the second part of Lemma 2 

it follows 

RnA0k) = ( D*+1 / i s in (^ /2)s in( (^- f l f c ) /2 ) 

J~n2 sin2(<^/2) sin2((c^ - 0k)/2) + sin2(0,/2) 

WW = (-D* 
, sin(0*/2) 

n2 sin2((fl//2) sin2(((/^ - 0k)/2) + sin2(0*/2) 

Hence, by (11) we obtain the result. 
In Lemma 4 we calculate \P'nAz)\ at the points of En. 
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LEMMA 4. Let v be an integer such that 1 < v < 2n — 1, ipu and Pni/ defined as in 
Section 2. Then we have 

KM^)\ = 
y/fl-COsK<Pv/2J 1 r 

sin(yv/2) nx , \<v<2n-\. 

PROOF. From (11), (8) and (9) it is easily seen that the derivative of PnA
eW) w i t n 

respect to 6 at 6 — (pu gives 

KM*") = A^ + iB^ l<v<2n-h 

where 

A^ := ^-^TMMUA^)) + V
2 ^ s i n ( ^ / 2 ) œs YTn(UA^)) 

y/pj-COsH^u/2) , , 

2pv n • 

From (7) we derive 

(15) C(^) 

ï^^^))r B (uM. 

pl-cos2(ipv/2) 
2pl/sin(tpv/2) 

Let i/ be odd, then p^ = COS(7T/2AZ). With the help of (3), (13), (15) and the differential 
equation (1 — x2)Tf

rl(x) — xTf
n(x) + n2Tn(x) = 0 we conclude 

An„-0, Hn,v~2e y s i n ( ^ / 2 ) + 1 J ' 

and then 

nA ' 2 { s in (^ /2) 

Now let i/ be even. Using again (3), (13), (15) and the quoted differential equation we 
obtain 

2 V sm(ipl//2) n J 

Thus the Lemma is proved. 
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4. Proof of the theorem. Let « G N and v be an integer such that 1 <i/<2n—\. 
Further let/7 E (P*x. By Lagrange's interpolation formula 

n+\ n 

(16) p(z) = J2p(zk)Lk(z) = Y,P^k)Lk{z\ zk = A 1 < k < n, zk+l = 1 
k=\ k=\ 

with 

Lk{z) = ^ \ ft ^-^ 
Zk — 1 m=\ Zk — Zm 

m^k 

and Zk = eldk, 1 < k < n are the n points at which |Pn,;/(z)| attains its maximum on the 
unit circle. From (16) it follows 

(17) pV V ") = j^pie^L'^), 1 < v < In - 1. 

Since the 6k 1 < £ < « are the zeros of un^(6) we have 

L ,, = s i n (0 /2 )^ / 2 0^(0) 

* 6 sm(9k/2)e^/2 2 sin((0 - 6k)/2)uj^(Ôk) 

and then 

'I/J8 ie" 
i("/2-l)e ri e u„A6) 

L'k(e
W) = - ^ - T T r ^ ^ - T T T - ^ U COS -

2 sin(0 t/2V„ v(0k)e^/2 l 2 2 sin((0 - 0 t)/2) 
(18) , 

. flf oy(g) V .« . e qy(fl) I 
+ Sin 21 sin((0 - 0t)/2) J + ' 2 S1" 2 sin((fl -9k)/2)l 

We first prove that for odd v 

(19) ^ ( ^ ) = eiv*l2Pn^)\L'k(e
iLPv)\, \ < k < n, 

whereas for even v 
(20) L'k{e1^) = ei(l/'2+l)nKÂ^)\Lf

k(e^)l 1 < k < n. 

Observe that 0^(0*) = (-l)*|u4„(0*)| f o r 1 < * < n. Indeed, since 0 ^ ( 0 0 = 0 
and Ldn,v(Q) — 1 > 0 as seen before, then uj'nv(Q\) < 0. The same reasoning shows 
that 0^(02) > 0> ̂ n,iX03) < 0> • • • <^c- So u)'nv(Q) has alternating signs at the values 0j, 
02>---»0n-

If i/ is odd we distinguish three cases. 

CASE (i). 1 <k<Q/ + l ) /2 - 1. According to (10) and (13) we have uJnA^v) = °> 
further ipu ^ 6k. Simple calculations give 

UnAB) _1-Pl T,( . s in((^ - 0)/2) 7 ^ ( 0 ) ) 
sin((0-0*)/2) rc2 " ^ sin(<^/2) sin((0 - 0*)/2)' 
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Q>*M V = e/(,+iW2 Pvy/l-ft 
,sin((0 - 9k)/2)J9=^ 2 s in (^ /2 ) s in ( (^ - 0k)/2)y/pl - c o s 2 ( ^ / 2 ) ' 

Then, from (18) it follows that 

4(e'v") 

= Jir/2J{n/2-\)^-inOk/2 _ ..... ^ V X ^L_LL? 
-e ' ey ' '^ve 4 1 ^ ( ^ ) 1 sin(0*/2)sin((^ - 0*)/2)/p2 - cos 2 (^ /2 ) 

= ei^l2'pZÂ^\Ll
k{eiipv)\ by Lemma 3. 

CASE (ii). k = (y + l ) /2 . We have 0(l/+1)/2 = ipv and — ^ ^ ~ sin((0-¥>„)/2) 

'1-p?, 
nsin(</Pi//2) -72)^(C«J/(^))- Then, it is easily seen that 

Uin((<9 - ^ ) / 2 ) J ^ ^ sm(<pu/2)y/f%-cosH<Pv/2) 

and 

(w)C(¥v) 
Uin((é» - <pv)/2))9^ sin(y>„/2)Jp2-cos ) v / p2_ C 0 S 2 ( ^ /2 ) l - ^ C w ) 

- JP-+1W2 cos(y^/2) fh,y/l-f% 
= ~e - -,2, 2s in 2 (^ /2 ) y/fi-cos2(<pv/2)' 

Using (18) in conjunction with the last two relations we obtain 

4<«*') = «"'" "^ A 3 ^ 
4 | ^ ( ^ ) | ûn{ipvl2)yjpl - cos2((fu/2) 

e-^\L'k(^)\ 

eiun/2PnA*iPv)\Lk(ei<Pv)\ by Lemma 3. 

CASE (iii). (V + l ) /2 + 1 < /c < n. As in case (i) we have un^(}Pv) — 0 and </v ^ ^ . 
Then 

^V(#) V _ei(u-l)n/2_ Pv\ll "fi 
,sin((0 - ek)/2))e=^ 2sin(<pï,/2)sin((0* - ^)/2)y/pl - cos2(<^/2) 

and 

AV1 ~ ^ 
4 | < ^ ) | sin(^/2)sin((0, - ^ ) /2) v /p2 _ C os 2 (^ /2 ) 

^ ,V7r /2P^(^)l4(^ lV , ,)l by Lemma 3. 
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Now let v be even. From (10) and (13) it follows that unjl/(^fu) = ewl^l2Tn{pv), 

VnAVv) = 0 a i l d 

f ^M V = cos((^-^)/2) /2 

Uin((fl - ek)/2))e^i/ 2 s in 2 ( (^ - 0k)/2) nKPv)' 

Then, 
Lf

k(e
iifu) = ^ / 2 + l ) 7 T / _ | x Â : ^ ( n / 2 - l ) ^ ( / ^ - m ^ / 2 

—wsin((^i//2)sin(((/9i/ — 6k)/2) — isin(9k/2) 

4 1 ^ ( ^ ) 1 sin(^/2)sin2((^v - 6k)/2) 

= é{v^x^PnM^)\Vk(e
[^)\ by Lemma 3. 

Finally, applying Lagrange's interpolation formula to Pnv we have 

PnAz) = J2PnAeWk)Lk(z). 
k=\ 

Tn(pu) 

For odd v 

P'nM
f')=Y,Pn,u{eiek)L'k{é^) 

k=\ 

(21) = V e 'w/2 Lk(-e"Py) L'Je'f) by (19) 

= ein/2 t l4(e'V")|, 
k=\ 

whereas for even v 

K,M^) = t e*"/2^^)"\AV**) by (20) 
(22) *=' 1 ^ ( ^ ) 1 

1(^/2+1)7T E 14(̂ )1-
£=1 

Then from (17) it follows that 

bVv")l < i WH W*>)\ 
k=\ 

< 114(^)1 
= 1 0 ^ ) 1 by (21) or (22), 

which is what we wanted to prove. 
It remains to show that equality holds if and only if/? = enPnyl/ where 7 G IKL Suppose 

that 
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i.e. 

Zp(ei0k)L'k(e^)\ =\ Z PnAeih)L'k(é^) 
k=\ 1 *=1 

E P ( ^ ) 4 ( ^ ) = E I4(^")l by (21) or (22). 
k=\ ' £=1 

This holds if and only if 

Then, according to (19) and (20) we obtain 

or 
p(eWk) = ee-K^2+l)irPnA^ \<k<rv, 

further, p{\) = Pn,v(\) = 0- Hence, p = eaPn,l/. This completes the proof of the Theo­
rem. 

REMARK 4. If v — n and n is odd then pv = cos(ir/2n), <\>v — TT and Pnv coincide 
with the polynomial P defined by (5). 
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