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Summary

Normal mixed models with different levels of heterogeneity in the residual variance are fitted to pig
litter size data. Exploratory analysis and model assessment is based on examination of various
posterior predictive distributions. Comparisons based on Bayes factors and related criteria favour
models with a genetically structured residual variance heterogeneity. There is, moreover, strong
evidence of a negative correlation between the additive genetic values affecting litter size and those
affecting residual variance. The models are also compared according to the purposes for which they
might be used, such as prediction of ‘future’ data, inference about response to selection and ranking
candidates for selection. A brief discussion is given of some implications for selection of the

genetically structured residual variance model.

1. Introduction

The normal mixed linear model commonly used in
quantitative genetics postulates that the data and
other random components are multivariate normally
distributed, and that location parameters and data
are linearly related. This basic structure is also a
major building block when modelling takes place at
the level of unobserved quantities, such as log frailties
in log normal frailty models for the analysis of sur-
vival times (Korsgaard et al., 1998) and liabilities in
threshold models for the study of ordered categorical
responses (Sorensen et al., 1995). Typically, variance
homogeneity is assumed but extensions that con-
sidered rather simple systematically structured de-
partures from variance homogeneity were introduced
in the 1990s (Foulley et al., 1992; Gianola et al., 1992 ;
San Cristobal et al., 1993; Foulley & Quaas, 1995). In
particular, Foulley & Quaas (1995) propose models of
heterogeneity for both residual and other components
of variance. Recently, a significant extension of the
model was suggested by San Cristobal-Gaudy et al.
(1998), who introduced additive genetic effects influ-
encing the log residual variances of the observations,
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thereby producing a genetically structured variance
heterogeneity.

The model described by San Cristobal-Gaudy et al.
(1998) is interesting from an evolutionary as well as
from an animal breeding perspective. A model pos-
tulating that environmental sensitivity is partly under
genetic control is relevant in studies of canalization
(Waddington, 1957; Rendel, 1977), genetic assimi-
lation (Waddington, 1953), reaction norms (Falconer
& Mackay, 1996) and genotype by environment in-
teraction. It can also provide an explanation for the
increased levels of phenotypic variation often ob-
served in experimental divergent lines selected for
both higher and lower expressions of a trait (e.g.
Clayton & Robertson, 1957). From an animal breed-
ing point of view, there are at least two issues. First, if
phenotypic variation is partly under genetic control,
predictions of selection response based on the classi-
cal model may be incorrect, and one might wish to
know under what conditions the possible error is im-
portant. Second, homogeneity of a final product often
contributes to economic efficiency. It is therefore rel-
evant to understand whether selection for a trait in a
particular direction is likely to result in increased or
decreased levels of phenotypic variation.
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From an inferential point of view, the San Cristobal-
Gaudy et al. (1998) model introduces considerable
additional complexity. San Cristobal-Gaudy et al.
(1998) use an EM algorithm for computing maximum
likelihood estimates but several approximations are
used in order to overcome computational difficulties.
Furthermore, the distributions of maximum likelihood
estimates and test statistics are hard to determine.
Also, model checking based on residuals is compli-
cated by the fact that usual standardized residuals are
far from being independent standard normal.

In this paper, we present results of a case study in
which normal mixed models with heterogeneous re-
sidual variances are fitted to pig litter size data orig-
inating from a selection experiment discussed in
Sorensen et al. (2000). The paper has two main ob-
jectives. The first is to investigate the presence of
additive genetic effects influencing the log residual
variance and their possible correlation with the gen-
etic effects influencing the expected litter sizes. Our
second objective is to demonstrate that Bayesian
methods provide an attractive alternative to tra-
ditional frequentist methods for complex models like
the San Cristobal-Gaudy et al. (1998) model. Because
conclusions concerning a genetically structured vari-
ance heterogeneity can be highly sensitive to the
choice of model, we stress the importance of a
thorough model assessment. In particular, we advo-
cate the use of posterior predictive model assessment.
We fit four models with different levels of complexity
in the residual variance structure, with the simplest
being the standard repeatability homogeneous vari-
ance additive genetic model. Fitting the simpler
models first allows initial explorative analyses in
which features of the data can be examined using
various plots. The fitting of several models further
enables the use of global measures of fit (Bayes factors
and two related criteria) for assessing the possible
superiority of the complicated models. We also com-
pare the models in terms of performance for selection
and prediction.

The paper is organized as follows. Section 2 pro-
vides a short description of the data, presents the four
models under consideration and introduces statistics
used for posterior predictive model assessment. In
Section 3, we show the results of the analyses of the
litter size data. Section 4 contains a discussion and
conclusions.

The fitting of the highly parameterized Bayesian
models using a Markov chain Monte Carlo (MCMC)
algorithm (Robert & Casella, 1999; Sorensen &
Gianola, 2002) requires some refinements in the
MCMC algorithm in order to achieve efficient mixing.
Details are given in the Appendix, which also includes
a brief review of posterior predictive model assess-
ment and of the three criteria of model comparison
used in this study.
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2. Methods
(1) Data

The data originate from a large scale selection exper-
iment for total number of piglets born per litter (re-
ferred to as litter size hereinafter) carried out in the
beginning of the 1990s and described in Sorensen et al.
(2000). Briefly, selection of high intensity in a base
population with 8988 litter size records was practiced
only once, based on predicted additive genetic values
obtained from a repeatability additive genetic model
that included herd, season, type of insemination and
parity as classification variables. Sows with up to nine
parities from 82 registered breeding herds from the
Danish pig breeding programme contributed records
on litter size that were used to compute the additive
genetic values. The selection experiment comprised
one selected and one control line. Females in the
selected and control lines produced two parities only.
Animals from these lines were reared con-
temporaneously in a common research farm and were
randomly allocated to pens. The complete data file
consists of 10060 litter size records from 4149 sows
and the selected and the control lines include 1072
litter size records. The pedigree file includes 6437
individuals.

(1) Models fitted

Four models of the form

diag(o?,.i=1,...,n), M=1,....4 (1)
with increasing levels of complexity at the level of the
log residual variance are fitted to the data vector y of
length n. In Eqn 1, b is a vector containing the effects
of four categorical covariates: parity (nine levels),
season (four levels), herd (82 levels) and type of in-
semination (natural or artificial), p is a vector of per-
manent environmental effects with 4149 elements, a is
a vector of additive genetic values with 6437 elements,
and o}, is the residual variance for the ith obser-
vation under the Mth model. The matrices X, W and
Z. are known incidence matrices.

Model 1 is the standard repeatability additive gen-
etic model with homogeneous variance Oﬁlzexp(bN)
for some parameter 4 in R. Model 2 allows different
residual variances for different levels of the categori-
cal covariates so that 0%, is of the form

o}, = exp(X}b), @)

where X/ is the ith row in an incidence matrix X and b
is a parameter vector that includes effects of parity
and type of insemination. In the case of Model 3,
the residual variance is assumed to be partly under
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genetic control. Thus,
033 =07, exp(Z3) 3)

where z/ is the ith row of Z and i is a column vector
with the 6437 additive genetic values affecting residual
variation in litter size. Model 4 allows for an extra
permanent environmental effect p so that

034 =073 exp(W;p) “4)

where w/ is the ith row of W.

(a) Prior distributions

The following prior distributions were assigned to the
location parameters:

b~ N(0,1;10°), a|o% ~ N(0,A0d?), plo; ~ N, 1,07).
(5)

In Eqn 5, I; and I, are identity matrices, and A is the
known additive genetic relationship matrix of dimen-
sion 6437 x 6437. The scalars o}, and o}, are the addi-
tive genetic variances for litter size and the permanent
environmental variance, respectively. For these,
scaled inverted vSy; ? prior distributions were chosen
with v=4 and S=0-45. This results in a priori means
of o2 and o}, equal to 0-90 (the sensitivity of the pos-
terior results to the choice of prior for o2 and oy, is
studied in Section 3ii).

In case of Model 1 and Model 2 the parameters 5
and b are a priori N(0, 10°) and N(0, I;10%), respect-
ively. For Model 3 the vectors a and a are assumed to
have the following multivariate normal distribution:

(g) G~N<<8>,G®A) ©)

where the 2 x 2 matrix G is

o? 0,0;
h [paa(r p(ﬁ ] )
aPa a

In Eqn 7, the scalar ¢% is the additive genetic variance
for a and p is the coefficient of genetic correlation in
the joint distribution of a and 4. For 0% the same
scaled inverted y? prior distribution is chosen as for
02, and p is a priori uniformly distributed in (—1, 1).
In the case of Model 4,

plo ~ N(0,1,03), (8)

where o is the component of variance caused by
permanent environmental effects affecting residual
variation in litter size. The scaled inverted y* prior
distribution is also chosen for o%.

The parameters b, b (or b), o2, oy, p, 05 and o} are
assumed to be a priori independent, and given these
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parameters, also p, p and (a',a") are a priori inde-
pendent.

(b) Mean—variance relationships

Models 3 and 4 allow for genetic dependence between
the mean and the variance of the sampling distri-
bution. Define the random variable

u' =a' —E@|a)’,
independent of a, where E(d|a)" =(o;p/0,)a". Then
uloZ, p ~ N0, 0%(1 —pHA),

and (a', (0;0/0,)a’ +u') is distributed as (a',a"). If
p=1, we can write

0?,3 = Oiz exp ((U&/Ua)li-a)

so that a deterministic relation between the mean and
the sampling variation is obtained, given the model
parameters. If p=0,

Ol%3 = O~122 CXp (Z;‘u)’

which corresponds to a genetically structured vari-
ance homogeneity that is unrelated to the mean.

Notice finally that, if the components of (o;p/
0,)a+u are small, then

exp(Z((0ap/0,)a+W) ~ | +(0ap/0,)Zja +Zu

so that the mean—variance relationship is approxi-
mately linear.

(iii) Posterior predictive assessment of the models for
the litter size data

The adequacy of a given statistical model may be
assessed by comparing the observed value of some
statistic with its sampling distribution under the
model. This basic idea underlies posterior predictive
model assessment (reviewed in Appendix i), in which a
statistic possibly depending on unknown parameters
is compared with its posterior predictive distribution.
Below, we use standardized residuals to construct
certain discrepancy statistics targeted to measure a
specific putative structure in the data that the current
model fails to address. In our analysis, we also con-
sider various histograms and quantile plots based on
posterior predictive realizations of the standardized
residuals to check (for example) the normality as-
sumption of our models. Posterior predictive assess-
ment using the MCMC output is trivial and allows a
graphical investigation of properties of the data which
can be very revealing. It can also provide guidance
regarding extensions of the model that are worth
pursuing before embarking on the time consuming
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programming work needed to implement an extension
of the model.

After fitting Model 1, possible variance heterogen-
eity associated with the four covariates parity, season,
herd and insemination is studied using discrepancy
statistics

]},l(ya 01) -

Z(J’z

o Lyj=I
j=sea, ins, par, her; /=1,...,n;, (9)

where j is an index for the four covariates, /is an index
for the n; levels of the jth covariate and L;=/if the ith
record belongs to the /th level of the jth covariate. The
vector 6; contains the parameters of Model 1, m;; is
the number of records with level / for the jth covariate,
w; is the ith element in Xb+Wp+Za, and (y;—u;)*/
0%, is the squared standardized residual associated
with record i. Under Model 1, the terms under the
summation sign are independent, single degree of free-
dom chi-square random variables; therefore the ex-
pected value of Eqn 9 is zero, so large or small values
of T;, indicate a possible variance heterogeneity as-
so<:1ated with the jth covariate.

In order to study a possible association between
residual variation and additive genetic values, the
following discrepancy statistics are constructed. For
a partitioning —oco=1; <ty < -+ <t _; <t =00 with
corresponding intervals I;=[t;, t;,41[ we consider stat-
istics
T(y.02) = — Z (y’ ”) ~1, j=1,2....k

/ zacl;
(10)

where mp, is the number of observations with z/a € J;
and 6, is the vector of parameters associated w1th
Model 2. The statistic 7; is thus the average of
squared standardized residuals whose corresponding
genetic value falls into the jth interval minus one. A
possible association between residual variation and
additive genetic variation affecting litter size can be
studied by comparing the joint posterior distributions
of (T(y, 05), T(Yrep> 05)), j=1,..., k. In Section 3i, we
summarize the joint posterior predictive distributions
using boxplots for posterior predictive realizations of
TAy, 05) — T(Yrep> 02) plotted against interval number
for each of k=10 intervals, where #,=—16+
0-4(k—2), k=2,...,9. The length of the intervals
were chosen to accommodate a similar number of
observations in each (approximately 1000).

In Section 3i, the plot based on the discrepancy
statistics 7; defined in Eqn 10 gives another form of
insight concerning the relationship between residual
variation and additive genetic values than that de-
rived by the estimate of the correlation coefficient
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alone. However, in order to reveal a putative feature
using a discrepancy statistic, the feature under study
must induce a sufficient degree of structure in the
data. For example, it is not obvious that posterior
predictive model assessment is helpful for detection of
variance heterogeneity due to the environmental ef-
fects p, because the small number of records per sow
implies that a possible pattern of variance heterogen-
eity is hard to separate from noise.

3. Results

The results reported in this section for each model are
computed using MCMC samples obtained from run-
ning 1000000 iterations of the MCMC algorithm
described in the appendix. In Section 3ii, we report
confidence intervals for the Monte Carlo estimates of
various posterior means in order to give an idea of the
accuracy of the Monte Carlo computations.

(1) Model building using posterior predictive
model assessment

After fitting Model 1, we perform an exploratory
analysis using the discrepancy statistics 7}, to disclose
possible variance heterogeneities associated with the
categorical explanatory variables. The posterior
predictive distribution of (Tins1(¥, 61) — Tins2(y, 61),
Tins,l(yrep, 91)_]—}115,2(Yr()p, 91)) is d1splayed USing the
left scatter plot in Fig. 1. The plot indicates that a
higher variance is associated with artificial insem-
ination (/=1) than with natural insemination (/=2)
because all points fall below the identity line. The
right-hand plot in Fig. 1 shows pairs of boxplots
based on posterior predictive samples of T, ,(y, 1) —
Tpari(Yreps 01), [=1,...,9. The plot suggests that re-
sidual variances are lower for parity one than for
parities greater than one. Similar plots (not shown)
do not indicate a pattern of variance heterogeneity
associated with season and herd.

Based on the exploratory analysis for Model 1, we
obtain Model 2 by letting the log residual variances
depend on the insemination covariate and a parity
covariate with six levels obtained by grouping all re-
cords for parity greater than or equal to six (there are
rather few records with parity greater than six and our
MCMC algorithm works best if the covariates for the
residual variance do not have too different numbers of
records for each level). As the next step in the model
building process, we explore under Model 2 the
possibility of a genetic association between residual
variation and additive genetic variation for litter size.
This involves a considerable extension of the model
and a posterior predictive model assessment based
on the discrepancy statistics 7; is helpful to decide
whether such an effort is worth pursuing. A result of
this explorative analysis is presented in Fig. 2, 1
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Fig. 1. (Left) Plot of simulated posterior predictive realizations of (Tins1 (¥, 61) — Tins2 (¥ 01)s Tins1 (Yreps 01) — Tins 2
(¥rep» 01)) (solid line is the identity). (Right) Boxplots for posterior predictive realizations of Tpar (¥, 61) — Tpar.i(Yreps 01),
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Fig. 2. (Left) Boxplots for posterior predictive realizations of Ti(y, 05) — T; (¥..p, 02) (see Section 2iii) plotted against
interval number j=1,..., 10. (Right) Estimated marginal posterior distribution for p under Model 4 (see Section 3ii).

which the boxplots for posterior predictive realiz-
ations of Ti(y, 05) — T(y,ep, 05) show a negative as-
sociation with additive genetic values for the trait,
indicating that sows of high genetic merit are likely to
show less environmental variability.

Figure 2 (left) motivates extending Model 2 to
account for an association between additive genetic
values and residual variation. Figure 2 (left) also
highlights the fact that, with the exception of the first
three intervals, the genetic association between re-
sidual variation and additive genetic variation is fairly
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linear throughout the whole range of additive genetic
values.

Finally, Fig. 3 shows quantile plots for posterior
realizations of the standardized residuals (y;—u;)/0; .4,
i=1,...,n, under Model 4, in which each of the
sets of residuals are computed using approximately
independent posterior realizations of the model
parameters. Figure 3 shows that the marginal distri-
bution of each of the posterior realizations of the
residuals are fairly close to the standard normal
distribution.


https://doi.org/10.1017/S0016672303006426

D. Sorensen and R. Waagepetersen

212

e | 4 o*
21
2 4
0+ 01
24 Y
4. : bz
—4 ) 0 2 4 4 i) 0 2 4
° 4 | °
2,
24
0 0|
-2 -2
b : : : : -4 4 : : : :
4 2 0 2 4 4 2 0 2 4

Fig. 3. Quantiles of four posterior realizations of (y;—u;)/0:4, i=1,..., n against quantiles of the standard normal

distribution. The solid line is the identity.

(i1) Posterior distributions

Table 1 shows Monte Carlo estimates of posterior
means and 95% posterior intervals for chosen par-
ameters based on Models 1, 2, 3 and 4. For Model 1,
b~0 is the log residual variance and, for Models 2, 3 and
4, b, is the log residual variance for a record with par-
ity one and natural insemination. The differences
8;=b,5—b,,, j=ins, par, are the effects on the log re-
sidual variance of moving from level one to two for
insemination and parity, respectively. The pattern of
variance heterogeneity between artificial insemination
and natural insemination and parity two and parity
one records as measured by ;,, and 5par is similar
across all four models. The posterior intervals for
these differences are bounded away from zero so there
is strong evidence for variance heterogeneity associ-
ated with insemination and parity. The posterior
mean of heritability based on Model 1 is 0-16. The
posterior means of heritability based on Model 2 are
0-17, 0-20, 0-13 and 0-15 for levels one one, one two,
two one and two two of parity and insemination,
respectively.

The Monte Carlo estimates of the posterior mean
of the additive genetic variance o? are of similar
magnitude in the case of Models 1 and 2 and are a
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little larger for Models 3 and 4. Estimates of the per-
manent environmental variance o}, are similar for
Models 1, 3 and 4.

Estimated marginal posterior distributions o2, o3,
0%, and o} based on Model 4 are given in Fig. 4. The
dark lines superimposed in each of the four figures is
the density of the prior scaled inverted distribution
with parameters v=4 and S=0-45 and a prior mode
equal to 0-30. The estimated marginal distribution
under Model 4 for the correlation coefficient p is
shown in the right plot in Fig. 2. The posterior inter-
vals in Table 1 and the estimated marginal distri-
butions for 0% and p which are bounded away from
zero provide strong evidence for the presence of ad-
ditive genetic values which affect the residual variance
and are negatively correlated with the additive genetic
values affecting litter size. The posterior distribution
of o% under Model 4 also provides evidence for the
existence of permanent environmental effects influ-
encing residual variation.

The estimates of the posterior characteristics are
subject to Monte Carlo error. Estimates of the Monte
Carlo error yield the following confidence intervals
for the estimated posterior means under Model 2
(1-35; 1-39) (02) (0-70; 0-73) (0}), (1-87; 1-87) (by),
(—0-16; —0-15) (Oins) and (0-33; 0-34) (Opar). For
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Table 1. Monte Carlo estimates of posterior means (first row for each model) and 95 % posterior intervals
(second row for each model) of chosen parameters of Models 1, 2, 3 and 4. See Sections 2 and 3ii for explanation

of symbols
Model o-?z 0127 b~0 5ins 5par Ofi 0127 P
1 1-40 0-60 2-:00 - - - -
1-02; 1-81  0:29; 090  1-96;2:04 - - - - -
2 1-37 0-71 1-87 —0-15 0-34 - - -
0-97;1-81  0-39;1-06 1-80;195 —0-22; —0-08 0-25;0-42 - - -
3 1-58 0-60 1-78 —0-16 0-34 0-11 - —0-57
1-13;2:00  0-31; 096  1-65;1-:90 —0-24; —0:09 0-25;043 0-08;0:15 — —0-72; —0-41
4 1-62 0-60 1-77 —0-17 0-35 0-09 0-06 —0-62
1-20;2:05  0-30; 092  1-65;1-:89  —0-25; —0-:09 0-26;044 0-06;0-13 0-05;0-09 —0-80; —0-43
15 20 20, |
1-0 1547 1-5.
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Fig. 4. (Left) Monte Carlo estimates of o2 and

0-04 0-06 0-08 0-10 0-12 0-14 0-02 0-03 0-04 0-05 0-06 0-07

o;, (top) and 0% and o} (bottom). The thick lines represent the prior scaled

inverted y2 densities with parameters v=4 and S=0-45. (Right) As left but with alternative choice of prior (v=4 and

5=0-10).

Model 4, we obtain (1-55; 1-68) (02) (0-56; 0-64) (a2,
(1-77; 1-78) (by), (—0-17; —0-16) (Sins), (O 34; 0-35)
(6par), (0-09; 0-10) (6%, (0-06; 0-07) (03) and (—0-64;
—0-61) (p). The conclusions above regarding the
posterior means are not changed by consideration of
the Monte Carlo error.

In order to study the influence of the prior distri-
bution on the inferences, a model identical to Model 4
was fitted, except that the scale parameter S of the
scaled inverted y? prior distributions was set equal to
0-1 instead of 0-45. This results in a prior mode equal
to 0-:067. The posterior means and 95% posterior in-
tervals for o2, 05, 0% 0f and p with S=0-1 are 1-64
(1-67; 1-90), 0-54 (0-17; 0-91), 0-07 (0-04; 0-11), 0-03
(0-:02; 0-06), and —0-60 (—0-78; —0-41). Except for
o only relatively small changes compared to Table 1
are observed ; see also the right plot in Fig. 4.

(a) Further model assessment

One may argue that the strong evidence of a negative
correlation between genetic values for litter size and
residual variance is an artefact caused by failure of the
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assumption of normality for litter size, which cannot
exceed some minimum and maximum values. One
could therefore anticipate a right truncated distri-
bution of litter sizes and consequently a small vari-
ance for high producing sows. Moreover, it is not
unlikely that sows producing extremely low litter sizes
have been temporarily exposed to conditions, such as
disease, that determined low productivity at a given
parity. Once the condition is removed, the sow reverts
to some normal level. This mechanism, not accounted
for by any of the four models, would generate large
variation among low producing individuals.

Figure 5 shows histograms of litter sizes for high
producing sows (left) and for low producing sows
(right). The left histogram is moderately skewed but
is, however, based on the raw records with no cor-
rection for the effects of explanatory variables and
genetic values. More incisively, we can consider the
distribution of residuals for records with high values
of additive genetic values for litter size. Figure 6
shows histograms based on posterior realizations of
the standardized residuals (y;—u;)/0;4 for which the
associated posterior realizations of additive genetic
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Fig. 5. Histograms of litter sizes for sows with more than one litter, and that produced at least one litter of size greater
than or equal to 18 (left), or at least one litter of size one or two (right).
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Fig. 6. Histograms based on posterior realizations of standardized residuals (y;—u;)/0;, with associated genetic value z/a

among the 200 largest.

values z/a were among the 200 largest (this produces
samples of residuals with an average size of around
500). A truncation effect is not apparent in these his-
tograms.

Among low producing sows, there is a relatively
high frequency of litter sizes of 1 or 2, causing asym-
metry (Fig. 5, right). In order to study the influence of
these low records on the inferences, Model 4 was fitted
to a reduced data set that did not include the 64 litter
size records equal to 1 or 2. The posterior means and
95 % posterior intervals for o2, 0% and p based on the
reduced data set are 1-41 (1-02; 1-86), 0-08 (0-05;
0-10), and —0-49 (—0-71; —0-26). Naturally, the
posterior means of the variances are smaller when
inferences are based on the truncated data set. How-
ever the decline is fairly small. Also the posterior dis-
tribution of the correlation coefficient is only mildly
affected by exclusion of the low records.

The possibility of an artifact was investigated fur-
ther by simulating data based on Model 2 with par-
ameters given by the posterior means in the second
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row in Table 1 and on Model 3 with ¢2=0-11, p equal
to —0-75, 0 or 0-75, and the other parameter values as
for Model 2. After discretizing the data to the nearest
integer, data points larger than 21 were set equal to
21, and those smaller than 1 were set equal to 1. Plots
similar to the left plot in Fig. 2 but obtained for
the simulated datasets are shown in Fig. 7. The left-
most plot shows, correctly, the lack of association
between the residuals defined by Eqn 10 and additive
genetic values, in data simulated using Model 2. So
also does the rightmost plot, based on data generated
with Model 3, p=0. The second and third plots,
based on Model 3 with p=—0-75 and p=0-75, re-
spectively, show the expected negative and positive
associations.

These results provide evidence against the conjec-
ture that the inferred correlation is an artefact. The
model’s postulate of the presence of additive genetic
values affecting residual variation, correlated with
additive genetic values influencing litter size, must be
allowed to stand until further investigation.


https://doi.org/10.1017/S0016672303006426

Genetically structured residual variance model

.
1 1 E
& v g 0 B 5 . 0 (] ]
L L]
e e - - w - T ;
L e # . . . - i
i L LI -
H LI S E
.

12345678910 123456728910

215
i
i
| i
' . i
cesaemm="E E L iy
;..':'T'.--"Ii i ¥ ow e W g
1 1
123456 78 910 12345678 910

Fig. 7. Boxplots for posterior predictive realizations of T(y, 8,) (see Section 2iii) plotted against interval number
j=1,..., 10. From left to right: data simulated under Model 2; Model 3, p=—0-75; Model 3, p=0-75; Model 3, p=0-0.

(i) Model comparison based on Bayes factors,
posterior Bayes factors and deviance information
criterion

In this section, we compare the models using Bayes
factors, posterior Bayes factors and the deviance cri-
terion (DIC). These global criteria trade off model fit
with model complexity and are reviewed in Appendix
ii. The first and second rows in Table 2 show logar-
ithms of the Bayes factors and of the posterior Bayes
factors relative to Model 1. The third row shows
differences of DICs from the DIC of Model 1. The
following conclusions can be drawn: (i) The three
criteria provide the same ranking of the models; (ii)
Model 4 is by far the most favoured in all cases. For
any reasonable set of prior probabilities assigned to
the four models, the posterior probability for Model 4
is practically equal to one (even assigning a prior
probability to Model 4 equal to 1073 yields a pos-
terior probability equal to 0-999); (iii)) the biggest
difference is observed between Model 2 and Model 3,
and this is consistent for the three criteria. Thus,
the presence of additive genetic values affecting re-
sidual variation is given high credibility by all three
methods.

As mentioned in Appendix iib, the Monte Carlo
estimator of the Bayes factor is known to be numeri-
cally unstable (Newton & Raftery, 1994). This is dis-
closed in Fig. 8 (left), which shows Monte Carlo
estimates of the likelihood prior mean under Model 4
computed from samples that increase in size in steps
of one, from 1 to 10 000 (the samples were obtained by
subsampling each hundredth state of the MCMC out-
put). Notice that, despite the downward jumps of the
estimates, the ranking of the models quickly stabilizes
to a consistent pattern. Also, the estimate of the
logarithm of the likelihood posterior mean (Fig. 8,
right) is influenced by occasional very large values in
the posterior sample of the likelihood.

(iv) Model comparison based on the models’
predictive ability

So far, the models have been used to understand a
specific aspect of nature, namely, factors affecting the
residual variance. The fact that Model 4 is assigned
high credibility using posterior predictive model
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Table 2. Natural logarithms of Bayes factors (first
row), posterior Bayes factors (second row) and DIC.
All figures are expressed as differences from Model 1

Model 2 Model 3 Model 4
In B, 130 307 407
In B, 149 478 561
DIC,;,—DIC, —154 —395 —450

checking, or investigating the relevant posterior dis-
tributions, or via comparisons based on Bayes factors
and related quantities, does not necessarily imply that
it works much better than the simple models for pre-
diction of ‘future data’, or unobservables such as
additive genetic values.

(a) Prediction of * future data’

The ability of the models to predict ‘future data’ is
studied as follows. The 589 records from the second
generation in the selection and control line are ex-
cluded from the full data set and 95 % posterior pre-
dictive intervals for these observations are computed
using the remaining (10060 — 589) records. The pro-
portion of excluded records falling into their predic-
tive intervals are 0-95, 0-931, 0-941 and 0-941 for
Models 1, 2, 3 and 4, respectively. Thus the models
rank similarly in terms of the coverage properties of
their predictive intervals.

(b) Prediction of additive genetic values

In quantitative genetic experiments, one may use
models for prediction of additive genetic values either
to infer response to selection or to select parents of the
next generation. Define response to selection as the
difference in average additive genetic value of in-
dividuals in the selected line and of unselected indi-
viduals and consider inferring selection response by
means of the four models. Because response to selec-
tion is an unobserved random variable, it is not
possible to define a discrepancy statistic that acts as a
benchmark for testing the models. However, we carry
out an informal test, by defining ‘observed selection
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Fig. 8. Estimates of the logarithms of the likelihood prior mean (left) and the likelihood posterior mean (right) plotted

against increasing sample size.

response’ as the difference between the raw averages
of the records in the selected and in the control line.
This ‘observed selection response’ is equal to 0-40
piglets per litter. The means of the posterior distri-
bution of response to selection and the 95 % posterior
intervals for Models 1, 2, 3 and 4 are 0-47 (0-26; 0-69),
0-43 (0-22; 0:65), 0-37 (0-17; 0-58) and 0-37 (0-15;
0-57), respectively. The models provide a similar pic-
ture of the response to selection, and the observed
selection response falls comfortably within the 95 %
posterior intervals for all the models.

One way of studying the consequences of using the
different models on selection decisions is to look at the
number of individuals that are selected in common by
the four models. Table 3 shows the number of in-
dividuals that overlap when the top 50 animals are
selected on the basis of the posterior mean E(aly, M,)
of the additive genetic values computed with each of
the four models. An interesting pattern emerges from
the figures in the table. The largest degree of overlap is
observed in comparisons involving the two models
that do not include 4 (Models 1 and 2) and the two
models that include a (Models 3 and 4). All the other
comparisons where one of the models includes a and
the other does not, show smaller amounts of overlap.
Thus, inclusion of a genetic term as a factor influ-
encing variance heterogeneity seems to have a bearing
on selection decisions.

One might also wish to quantify the consequences
of using the ‘wrong’ mode on selection response. As-
sume that Model 4 is the ‘correct” model among those
studied, and that selection of parents on the basis of
E(aly, M;) takes place with Models 1, 2 or 3. For
model M; i=1, 2, 3, the selection response is
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Table 3. Number of individuals that are selected in
common by each pair of models

Model
comparison 1vs2 1vs3 1lvsd 2vs3 2vs4 3vsd
Overlap 43 35 34 38 38 47

estimated by the average of the E(ajly, M,), where j is
among the indices of the 50 animals selected using
mode M,;. The overlap of 34, 38 and 47 individuals
among the highest scoring 50 (Table 3) translates into
a decrease in selection response relative to the selec-
tion response obtained with Model 4 of 5% if Model
1 is used, of 4% if Model 2 used, and of 0% if Model
3 is used.

(V) Model checking using ‘ conventional’ residuals

Our model assessment is based on the posterior pre-
dictive realizations of standardized residuals and de-
rived discrepancy statistics. A conceptually simpler
approach is to consider one single set of standardized
residuals obtained by replacing &; and o?,, by point
estimates. However, in the complex models con-
sidered with a huge number of random effects, such
residuals are far from being standard normal and are
essentially useless for model assessment. Figure 9
(left) shows a quantile plot of standardized residuals
obtained by replacing ; and 6%, with their posterior
means under Model 4. The standardized residuals are
far from being standard normal and an overfitting
effect is apparent because the empirical variance of
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Fig. 9. (Left) Quantiles of standardized residuals obtained using point estimates of u; and 0¥, against quantiles of the

standard normal distribution. (Right) The statistics 7; plotted against interval number j=1,...,

the standardized residuals is only 0-82. The right-hand
plot in Fig. 9 shows a plot of statistics T; similar to the
T; in Section 2iii but with the unknown quantities
repldced by posterior expectations, i.e.

1 0/ E(lul|y’ MZ))2
My danter, SXPE(l0g aLy., My)
10,

T,=

>

j=1,...,

where the intervals /; are those used for the discrep-
ancy statistics T} and my here denotes the number of
observations w1th z’E(a|y) € I;. No pattern of geneti-
cally structured variance heterogenelty is visible. Ap-
parently, the subtle structures in the data are hidden
by the process of posterior averaging.

4. Discussion

In this work, four models with increasingly complex
residual variance structures are fitted to pig litter size
data in order to investigate sources of variance het-
erogeneity and in particular the possible presence of
additive genetic effects influencing the log residual
variance. The models are compared using global cri-
teria that trade off model fit with model complexity.
The three such criteria used in this study generate the
same ranking of the models and all give very strong
evidence for a genetically structured variance hetero-
geneity. All criteria favour in particular Model 4,
which also includes variance heterogeneity owing to
permanent environmental effects. In agreement with
this, the posterior distributions for 0%, 0% are bounded
away from zero under Model 4. The posterior
distribution of p under Model 4 provides further
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evidence of a strong negative correlation between the
additive genetic values influencing litter size and the
additive genetic values affecting residual variation.
The models are also compared according to the
purposes for which they might be used. It is shown
that models that rank very differently according to the
global measures of fit are hardly distinguishable in
terms of their ability to predict ‘future data’ or to
infer response to selection. Yet a different result
emerges when the models are used for selecting par-
ents for breeding for larger litter size. Therefore, de-
pending on the context, a simple model might be
adequate even though it fails to address features of
the data accounted for by the more complex models.
This thought was put forward by Rubin (1984); we
agree.

In the remaining part of the discussion, we provide
introductory remarks about implications for selection
of the above findings and alternative modelling ap-
proaches.

(1) Implications for selection

Models with genetically structured variance hetero-
geneity might contribute to an understanding of the
process affecting mean—variability relations in natural
and domestic populations. Previous work was based
on a simple model (Lerner, 1954; Lewontin, 1964;
Zhivotovsky & Feldman, 1992), assuming that en-
vironmental sensitivity decreases with the number
of heterozygous loci. An extension postulates that
pleiotropic effects at a finite number of loci act addi-
tively on the mean and variance (Gavrilets & Hast-
ings, 1994; Hill, 2002). San Cristobal-Gaudy et al.
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(1998) consider instead an infinitesimal model with
correlation between the additive genetic values af-
fecting the mean and those affecting the log residual
variance and predict response to selection for canal-
ization. Here, drawing from their work, we give a brief
overview of changes of mean and variance caused by
selection on an index designed to increase the mean of
the trait and to reduce its variance.
Consider a simplified version

vla,a~ N(a, exp(b+a)) and (a,@)|0%, 0% p
2 ~
~ N((O, 0). [ %a ’”"“;’“D (11)

po.0; O
of the genetically structured heterogeneous variance
model. The phenotypic variance (variance of the
marginal distribution of y) is o= 0% +exp(b+0%/2).
Consider selecting on the index

1(y)=y+kS?, (12)

where ¥ is the average of the n records of an individ-
ual, S2=> (y—7)*/(n—1), the sample variance of the
records of the individual, and % is a relative weight in
units of inverse phenotypic standard deviations, as-
sumed known. One might be interested in increasing
the phenotype and decreasing its variance, in which
case k would be negative. This index is arrived at
empirically and no claims are made about its opti-
mality properties. Under the model defined by Eqn 11,
selection by truncation does not lead to math-
ematically tractable expressions. Instead, following
Gavrilets & Hastings (1994), it will be assumed that
directional selection can be described by the linear
fitness function

w(y)=1+sI(y), (13)

where s is a small quantity that defines the strength
and direction of selection. Eqn 13 holds for weak
selection, because s can be made arbitrarily small so
that w(y) is positive with probability essentially equal
to one. The expectation of Eqn 13 over the distri-
bution of y is

E[w(y)]szl—i—s{kexp(b—i-%é)} (14)

The fitness of genotype (a, d) is defined as

w(a, a)=E[(1 +sI(y)|a, a)]
=1+s{a+kexp[b+al}. (15)

Eqn 15 depends on the mean and variance of the
conditional distribution of y given genotype (a, 4),
because Eqn 12 has a term that depends on the vari-
ance of the phenotypic records of the individual. If
selection operates on Eqn 12, the mean value of a, or
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response to selection, is
w(a, a - -
R,= // a!p(a, a)dada
w

= % // a{l +s[la+kexp(b+a)l}p(a, a)dada

== o>+ 2 kpo,oaexp(b+ 0%/2)
W W

= 2120+ Lkpo,o.(1 —h?)a?, (16)
w w

where h?=02/0®. The first term is the direct contri-
bution from change in additive genetic value a. It can
be positive or negative, depending on the direction of
selection, which defines the sign of s. The second term
is due to the correlation between a and 4, and its sign
depends on that of skp. With small ¢%/2, the influence
of these terms depends on the relative sizes of po,0,;
and ¢2. For the litter size data and using the posterior
means in Table 1 from Model 3, po,0;= —0-23 and
02=1-55, so the effect of the second term is fairly
small. Similarly, the mean of @ with selection based on
Eqn 12 is

R,= / / aw(‘; D (. d)dadi

= ipoao,pL ikog(l —h*)o*. (17)
W W

The mean value of the residual variance before
selection is given by exp(b+0%2). In the selected
group, the expected value of the residual variance is

/ / exp(b+@) 2D p(a. d)dada.

w

This integral can be obtained in closed form but a
simpler expression results from a first order Taylor
series expansion about R, This yields

E[exp(b+a)]= exp(b+ R;),

where the expectation is taken with respect to the
distribution of (a, d) in the selected group. The change
in the mean residual variance is then, approximately,

exp(b)[exp(0;/2) — exp(Ry)]. (18)

To gain a rough idea of the magnitude of the change
in the mean residual variance, we computed the av-
erage @ among the 50 females with highest a. This
yields R;= —0-30, which, again using the posterior
mean of 0% from Model 3 in Table 1, results in a
relative decline of

exp(0-05) — exp(—0-30)

=0-2
exp(0-05) 0-29,

which is of the same order of magnitude as the de-
cline of the additive genetic variance owing to the
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Bulmer effect (Bulmer, 1980) among selected parents,
assuming the infinitesimal model with homogeneous
variance. Hill (2002) studied the effect of truncation
selection on phenotype on changes of mean and
phenotypic variance. Hill (2002) worked with a finite
number of loci and therefore the effect of selection is
due to changes in gene frequencies. The expressions
for changes in mean and variance also include two
terms as in Eqns 16 and 17, one arising from the effect
of genes affecting the mean and the other from the
effect of genes affecting the variance. Hill (2002)
wonders whether terms such as 0% and po,0,; are of
sufficient magnitude to matter in prediction equa-
tions. Here, we provide evidence of their relevance.
It is important to study further the dynamics of the
genetically structured heterogeneous variance model
under selection and to obtain a better understanding
of the different factors intervening in the changes of
genetic parameters.

(i1) Extensions and alternative models

It has been suggested to us to extend Models 2, 3 and
4 for the residual variances by adding independent
terms e; to the log residual variances log o7 5, whereby
a different variance for each record is obtained. If, for
example, S?*=07,,exp(e;) is taken to be o? vy, 2, a
scaled y, 2, and we assume

yilws S? ~ N(u;, S?)

then, integrating over the distribution S}|o? 4, v, by
the mixture property of the #, distribution (see, for
example, Sorensen & Gianola, 2002, pages 28, 595),
we obtain

yilu;, OiM ~ 1, (Y, 0?,/\/1)-

So the inclusion of ¢; in the log residual variance es-
sentially corresponds to choosing a more heavytailed
sampling distribution. In the light of Fig. 3, this does
not seem to be relevant for the litter size data.

Only normal sampling models are considered in
this work. Perez-Enciso et al. (1993), using approxi-
mate methods, compared the quality of fit of Poisson
and normal models, and did not obtain clear differ-
ences. Owing to underdispersion, our data are in fact
in conflict with a Poisson sampling distribution.
However, a biologically interesting alternative is to
assume that the ith sow has a ‘potential’ n; for pro-
ducing litters of a certain size and that the litter size y;;
for the jth parity is Binomial(n;, p;). The variable n;
could be assigned a Poisson prior distribution and
log [p;i/(1 —p;)] could be modelled via a mixed linear
structure. Given the p;;, the y; would then be mar-
ginally Poisson but the correlation caused by the com-
mon »; would lead to a smaller within sow variation
among the y; than if the y; had been independent.
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Inference about the binomial parameter »n; has been
discussed for example in Draper & Guttman (1971)
and Raftery (1988).

Appendix
(1) Posterior predictive model assessment

Given data y, a basic idea for assessing the fit of a
model M with sampling density p(-|0,,, M) depending
on a known parameter 6, is to compare the observed
value of some univariate discrepancy statistic
T1(y, 05, with its sampling distribution under
p(l160a, M). If the observed value is atypical in the
sense of being located in the extreme tails of its
sampling distribution, we tend to reject the model.
Equivalently, we might consider whether zero is an
atypical value in the distribution of the difference
1(y, Or) — T(Ysep> Orr) where y,,, is replicate data
generated from the model p(-|0;, M). When 0, is
unknown, a common plug-in approach is to replace
6, by an estimate 0,, and then proceed as if 8,, was
known and equal to 6,,.

A Bayesian inference concerning 6,, is based on the
posterior density

P(Ory, M) o< p(0r | M)p(y|Ors, M),

where p(60,M) is the prior. Each 6,, generated from
the posterior density is a candidate for the unknown
value of the parameter so, instead of considering just
one fixed value 6, in the model assessment, we should
consider a range of 6, values generated from the
posterior density. This is the idea of posterior predic-
tive model assessment (Rubin, 1984; Gelman et al.,
1996), in which one considers the joint posterior pre-
dictive distribution of T(y, 0,,) and T(y,.,, 01s). That
is 6,/ 1s generated from the posterior of 6,, and, given
01, Yrep 1s generated from p(|0,,, M). As above, one
might for example check whether zero is an extreme
value in the posterior predictive distribution of
1(y, Or1) — T(Yreps Orr). The marginal distribution of
Yrep 1S given by the so-called posterior predictive
density

pCly. M)= / P0l0r. M)p(Buly. M)
:EOM‘y,M[p('|9M5 M)]a (19)

i.e. the posterior expectation of p(-|0,, M). Realiz-
ations of y,,, differ form the observed data y by
the inherent sampling variation of the distribution
[Yrepl@rs, M] and the posterior uncertainty of the
parameters 6, under model M, but differences may
also occur because of failure of M to fit data y.

In practice, we obtain MCMC draws 65{}),
k=1,..., K, from the posterior distribution of 6,, and
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subsequently generate replicate data y'%) given 6().
The posterior predictive distribution of 7y, 6,,)—
T(Y,ep» 011) can then be studied using a boxplot of the
differences T(y, 6%)— T(y's), 0%). A less compact
alternative is to consider a scatterplot of the pairs
(T(y, 6%9), T(y), 651). The observed value of the
discrepancy statistic is then atypical compared with its
posterior predictive distribution if the points in the

scatterplot are far from the identity line.

(i1) Global measures of fit

At the end of an exploratory exercise, several models
might be available. Often, the best fitting model has a
relatively large number of parameters and it is rel-
evant to study whether the complexity of the model is
supported by the available data. As a global measure
of fit of a model, one might consider the prior mean of
the likelihood, the posterior mean of the likelihood
evaluated at the observed data or the posterior mean
of the log likelihood. Criteria for model comparison
based on these quantities are, respectively, the Bayes
factor, the posterior Bayes factor (Aitkin, 1991) and
the deviance information criterion (DIC) (Spiegel-
halter et al., 2002).

(a) Bayes factors

The marginal or prior predictive density of the data
given model M; is given by

P(y[M) = / (Y16, M)p(6,|M,)d6, = E[p(y|6:, M))].
20)

This density can be interpreted as the probability of
obtaining the observed data under model M;, before
the data became available or as the prior mean of the
likelihood. The Bayes factor for two models is the
ratio between the prior means of the likelihood under
each of the models

_py|M;) _ Pr(M;y)/Pr(M;ly)
"op(yIM)  Pr(M,)/Pr(M))
__posterior odds ratio

= 21
prior odds ratio @

and provides a measure of whether the data have in-
creased the odds on M, relative to M;. Useful reviews
can be found in O’Hagan (1994) and Kass & Raftery
(1995). In contrast to the two methods described be-
low, Bayes factors have the advantage of building on
a set of logical foundations that provide coherence.
However, results of model comparison using the
Bayes factor may be very influenced by the prior dis-
tribution. If the prior distribution accurately rep-
resents the information about 6 available to the
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scientist prior to the experiment then, for a Bayesian,
this influence should not be a matter of concern.
However, the Bayes factor can give misleading in-
ferences when vague proper prior distributions are
used. In particular, an improper prior distribution for
[6M] leads to impropriety of Eqn 20 and to pathol-
ogies of B;;in Eqn 21. Partly because of these reasons,
several other criteria of model comparison have been
suggested in the literature and two of these, outlined
below, are used in this work.

With the advent of MCMC, many methods for
computing Bayes factors have been proposed in the
literature. A recent comparative review is in Han &
Carlin (2001). Here, we use the Monte Carlo consist-
ent estimator proposed in Newton & Raftery (1994),
which is easy to compute but not very stable numeri-
cally (the stability of the estimates is studied in Section
3iii). Obtaining more stable Monte Carlo estimates is
in general not straightforward.

(b) Posterior Bayes factors

The posterior Bayes factor (Aitkin, 1991) for com-
parison of two models M; and M, is given by

p_ S p(10: Mp(Oily, M)dO; _ p(yly. My)
" [p(y|6;, Mpp(O,ly, Mpdo;  p(yly, M)’

i.e. the ratio of posterior predictive densities (19)
under model M; and M, respectively, evaluated at y.
Aitkin (1991) studies the frequentist properties of (22)
and shows that for the case of nested models, it re-
duces to a general class of penalised likelihood ratio
tests which includes, among others, Akaike’s infor-
mation criterion (Akaike, 1973). Aitkin (1991) pro-
poses to use and interpret B% in the same way as the
Bayes factor B;. Computation of Eqn 22 from the
MCMC output is immediate by simply averaging a
posterior sample of the likelihood.

(22)

(¢) Deviance information criterion

Instead of using the posterior expectation of the like-
lihood as for the posterior Bayes factor, the DIC
(Spiegelhalter et al., 2002) uses the posterior expec-
tation of the log likelihood as a measure of model fit.
For a particular model M, the DIC is defined as

DIC=2D—D(8,),

where

D=2 / log p(y |63 (Buly. M)
— Epy, DO (23)

is the posterior expectation of the so-called deviance
D(6y)= —21og p(y|6,ar). The second term in the right
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hand side of (23) is the deviance evaluated at the
posterior mean of the parameter vector 0,,. The DIC
is obtained by adding D which measures model fit and
D—D(0,,) which according to Spiegelhalter et al.
(2002) is a measure of model complexity. Models with
a smaller DIC should be favoured because this in-
dicates a better fit and a lower degree of model com-
plexity. In common with B, DIC is very easily
calculated using the MCMC output.

(i) MCMC algorithm

For a standard normal mixed model with homo-
geneous error variance and conjugate priors, a com-
mon choice of MCMC algorithm is a Gibbs sampler.
In the extended model with heterogeneous variances
we cannot use Gibbs updates for b, 4 and p. Instead,
we use so-called Langevin—Hastings updates (Rossky
et al., 1978; Besag, 1994; Roberts & Tweedie, 1997,
Christensen et al., 2001) combined with a repara-
meterization for a and p. Briefly, for a target density
o and a state s, the Langevin—Hastings proposal dis-
tribution is N(s + 2 V(s), i), where V(s) = d/dslog 7(s)
is the gradient of the log-target density and / is a user
specified proposal variance. Especially for high di-
mensional target distributions, the use of the gradient
in the proposal distribution can lead to much better
convergence properties than, for example, when the
simple random walk Metropolis proposal distribution
N(s, hl) is used. For ease of programming, we also use
Langevin—Hastings (and a reparameterization) for a
and p. The reparameterization used for (a’,a")is (a',
a')=LsTDY*(y", 77) where (y', y") has a standard
multivariate normal distribution, Lgs is the lower-
triangular Cholesky factor of G, and T and D
correspond to the factorization A=TDT' of A
(Henderson, 1976). For p and p, we use p=0,0 and
p=0,5, where also (07,8") is a standard normal
vector. With Langevin—Hastings updates, it is easier
to obtain a well-mixing MCMC algorithm for the
posterior distribution of (y, 7 ") and (07, ") than for
the original variables (a',a"), p and p. Posterior
samples of (a”,a"), p and p are simply obtained by
transforming the posterior samples of (y', ) and
07, 67).

The algorithm used for posterior sampling is a fixed
scan hybrid Monte Carlo algorithm (also known as
Metropolis-within-Gibbs) where b, b, (y7,77),
(07,87, (2, 0%, and (02, 0% p) are updated in turn
using Gibbs for b, Langevin-Hastings for b, (7, 77)
and (87, 87), random walk updates (on the log scale)
for the variance parameters, and a random walk up-
date for p.

The Langevin—Hastings updates are straightfor-
ward to program but one disadvantage is that suitable
values of the proposal variances must be chosen from
pilot runs of the algorithm. It is further our experience
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that a Langevin—Hastings update is not suitable for a
multivariate full conditional distribution with very
different marginal variances.

We thank H. Stern, S. L. Lauritzen and M. San Cristobal
for useful discussions on posterior predictive model check-
ing, on approaches to modelling litter size data and on
genetic properties of the genetically structured residual
variance model.
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