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Abstract. This paper, which deals with the winding modeling of ac multi-phase machines with a regular
distribution of the stator slots, details an original matrix modeling of the stator winding. First, the prop-
erties of the balanced multi-phase windings (with integral-slot and fractional-slot patterns) are analysed.
The winding function approach, one of the most common way to model the winding distribution effects
on the stator rotating field, is then introduced. For multi-phase machines, it will be shown that the pole
number generated by the winding distribution depends on a new parameter: the circularity index. The dis-
crete nature of the winding, imposed by the stator slots, leads to the development of a discrete modeling
of the winding obtained from sampling the winding function: two matrices, the winding function matrix
and the distribution function matrix, are introduced to characterize the multi-phase winding. This matrix
approach is thus a concise way to calculate the winding factors and to estimate the set of self and mutual
stator inductances for smooth air gap multi-phase machines. A particularly original method of obtaining
an analytical expression for the leakage mutual inductance is described. The results are validated with two
experimental 5-phase PM machines by using experimental measurements and numerical simulations.

1 Introduction

Windings have been widely studied for three-phase ma-
chines: in the past, the main objective was to obtain si-
nusoidal magnetomotive forces [1,2]. This property im-
plies good characteristics for machines supplied directly
by three-phase grid voltages. With the advent of advanced
current controls, the necessity of this winding constraint
for the designer can be re-examined.

Studies on concentrated fractional windings [3–6] have
been carried out especially on Permanent Magnet syn-
chronous machines. For the manufacturers, these windings
are attractive when compared with distributed windings
because they allow shorter end-windings (with reduced
losses [7,8] and easier winding processes [6]). However,
they are also known for inducing parasitic effects [9,10]
particularly in the case of three-phase PM machines, be-
cause of the harmonics of the magnetomotive forces and
electromotive forces. Consequently, this kind of windings
is seldom used with three-phase machines that must pro-
vide high quality torque at low speeds: the reason is that
high-performance vector controls require sinusoidal elec-
tromotive forces.

a e-mail: franck scuiller@yahoo.fr

In the case of multi-phase machines with more than
three phases [11–13], the constraints on the windings are
not the same since multiple spatial and time harmon-
ics can be tolerated when implementing vector controls
that ensure high quality of torque [14–19]. Moreover, the
harmonics yield an increase in the performances of the
drive [20,21] and a greater degree of fault tolerance in
comparison with three-phase drives [22,23]. Multi-phase
machines are thus attractive since a higher torque density
and fault tolerance can be expected with a simpler design
and with low torque pulsations [19,24].

Nevertheless, the acceptance of more than one har-
monic does not signify the acceptance of all the harmon-
ics, especially for obtaining a torque with low torque rip-
ples [23,25,26]. It is thus necessary to manage the levels
of time and spatial harmonics. By using a Voltage Source
Inverter controlled with a Pulse Width Modulation, it is
nowadays possible to impose precise time harmonics on
currents. By ensuring adequate design of the Permanent
Magnet rotor and of the stator windings, it is possible to
impose precise spatial harmonics.

The paper proposes a modeling of the windings using
an approach which allows a rapid harmonic characteriza-
tion of a large class of multi-phase windings so called bal-
anced windings. Only rotating machines with a smooth air

Article published by EDP Sciences

https://doi.org/10.1051/epjap/2010058 Published online by Cambridge University Press

http://www.epjap.org
http://dx.doi.org/10.1051/epjap/2010058
http://www.edpsciences.org
https://doi.org/10.1051/epjap/2010058


The European Physical Journal Applied Physics

gap (no saliency effects) and with regular distribution of
the slots along the stator periphery are considered. This
modeling is used in the paper for the calculus of the induc-
tances. Thanks to a matrix description that can be easily
numerically implemented for a high number of phases, the
modeling, considering the number of slots, takes into ac-
count the intrinsic discrete nature of a winding: this fact is
important when harmonics must be taken into account as
is the case for the determination of the inductances of the
multiphase machines. Despite a first harmonic approach
generally being sufficient to estimate the inductance of a
three-phase machine, it is not at all the case for machines
with more than three phases [27,28].

Previous studies have already been dedicated to in-
ductance calculus of multiphase machines with diametral
concentrated windings: harmonics can then be easily taken
into account [20,29] in order to estimate synchronous in-
ductances and windings factors. The same kind of ap-
proach can be applied with fractional-slot windings but
the approach becomes too laborious if the designer wants
to examine different pole/slot combinations in an opti-
mization process. References concerning the winding mod-
eling mainly relate to three-phase machines. The most
common method is called Star of slots and is reviewed
in [3,30]. This method is particularly well-adapted for the
study of the fraction-slot configurations, despite not be-
ing originally designed for software implementation. Even
though [3] provides elements to calculate the winding fac-
tors from the winding distribution in the slots (as in [6]),
no relations are established to estimate the stator induc-
tance values.

The present paper starts by reviewing the different
kinds of winding distributions: the properties of integral-
slot and fractional-slot balanced windings are described:
the notion of circularity index, necessary for correct char-
acterization of windings for machine with more than three
phases, is introduced. The classical winding theory is then
introduced as one of the most common way of model-
ing the winding distribution effects on the stator rotating
field. The original matrix modeling is then described from
the sampling of the winding function. Finally, it is shown
that the matrix approach is a concise way of calculating
the winding factors and estimating the set of self and mu-
tual stator inductances of the multi-phase machine (tak-
ing into account space harmonics). Throughout the paper,
two examples of existing five-phase machines, one being a
prototype and the other being an industrial machine for
an automotive application, will be considered in order to
show the differences existing between their windings.

2 Balanced multi-phase windings

2.1 Rules for obtaining a balanced multi-phase winding

A balanced multi-phase winding is firstly characterised by
the fact that, given the winding of phase number k, it
is possible to deduce the winding of the following phase
numbered k+1 by applying an angular spatial shift χ. This
condition is necessary but not sufficient in order to define

Fig. 1. (Color online) Representation of a balanced multi-
phase winding distribution (πelec = π

p
, p the pole pair number,

p = 2 in the figure).

a balanced winding for a N -phase rotating machine. It is
also necessary to fullfill a property linked to the cyclicity
of the machine: the angular shift between the last phase
(numbered N − 1) and the first phase (numbered 0) must
also be equal to χ. These two conditions imply that the
angular spatial shift χ must verify:

Nχ = 2π
q

r
(q, r) ∈ Z

2. (1)

Relation (1) implies that the angular spatial shift χ be-
tween two consecutive phases is generally 2π/N modu-
lated by a fractional number where q denotes the numer-
ator and r denotes the denominator.

This notion of balance is illustrated by Figure 1. In this
figure, each arrow symbolizes the position of a phase axis.
The position of a phase axis depends on the arrangement
of the coils that form the phase winding. The multi-phase
winding is balanced if the phase axes are regularly dis-
tributed along the stator periphery as illustrated by Fig-
ure 1. From a practical point of view, the synthesis of a
balanced multi-phase winding would be a simple task if
the coils of the phase could be located anywhere around
the stator periphery. Unfortunately, for physical reasons,
the conductors of the coils must be placed inside the sta-
tor slots, which implies constraints with respect to the
placement of the coils.

In this paper, the considered machines have slots that
are regularly shifted around the circumference of the sta-
tor. In this case, in order to ensure a balanced winding for
a N -phase machine with Ns slots, Ns must be a multiple
of N [4]. This condition actually results from the necessity
of obtaining regularly shifted phases. As a consequence, a
new relation must be verified by χ:

χ =
2π
Ns

ic ic ∈ Z. (2)

In relation (2), ic is the number of slots that corresponds
to the spatial shift χ between two successive phases: ic is
called the circularity index. The circularity index ic can
be positive or negative depending on the direction of the
rotating field generated by the winding. The value of ic is
then calculated from mathematical constraints concerning
the rotating field properties: these constraints ensure that
the winding generates a satisfactory rotating field espe-
cially for machines with more than three phases. These
constraints will be explored later in the paper.
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Fig. 2. (Color online) Example of a regular integral-slot bal-
anced winding: case of a 5-phase machine with 4 poles and 20
slots (spp = 1), the winding pattern is the same for each pole
and each phase.

Let us consider spp, the number of slots per pole
and per phase, commonly used for the characterization
of windings:

spp =
Ns

2pN
. (3)

The two previous relations (1) and (2) imply the following
property for the slot per phase and per pole number spp

of a balanced winding:

spp =
ric
2pq

. (4)

It appears that spp is generally a fractional number. In
the following paragraphs, two cases are distinguished de-
pending on whether spp is an integer or not.

2.2 Integral-slot balanced windings

According to [1], an integral-slot stator is one with an in-
tegral number of slots per pole, such that the pole-pitch is
an integral number of slot-pitches, which means that spp is
an integer. The windings of integral-slot stators are natu-
rally regular: the coils fall naturally into groups, with each
group usually associated with one or two poles. Integral
slot windings are widely used in asynchronous machines.

If the group is associated with one pole, the winding
pattern is the same for each pole and each phase. Knowl-
edge of the conductors distribution pattern above a pole
allows the determination of the whole phase winding: these
windings are said to be regular [31]. Figure 2 depicts the
example of such a winding for a 5-phase machine with 20
slots and 4 poles: for each phase, the forward and back-
ward conductors are represented. Each slot contains the
conductors of a single phase. The winding is thus a single
layer one. The winding is also fully-pitched in so far as the
coil span is equal to the pole pitch.

If the group is associated with two poles, the winding
is still balanced but irregular in so far as the winding pat-
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Fig. 3. (Color online) Example of an irregular integral-slot
balanced winding with holes: case of a 5-phase machine with 4
poles and 20 slots (spp = 1).
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Fig. 4. (Color online) Example of an irregular balanced frac-
tional winding for 5-phase machine with 6 poles and 20 slots
(spp = 2/3).

tern is not the same for each pole and each phase. In that
case, the winding contains “holes” [31]. Figure 3 summa-
rizes the 5-phase 20-slot 4-pole configuration with such a
winding. Since a slot contains conductors of two different
phases, the winding is a double layer one. The described
winding is not regular. If it had been regular, the second
slot above the second pole (the 7th slot from the left of
the figure) would have contained backward conductors of
the first phase since the second slot above the first pole
(the second slot from the left of the figure) contains for-
ward conductors of the first phase. Nevertheless, as the
spp number is still an integer, the spatial winding period
is equal to two pole pitches.

2.3 Fractional-slot balanced windings

When spp is not an integer, the winding is necessarily ir-
regular and is called a “fractional-slot balanced winding”.
Figure 4 gives the example of a fractional-slot winding for
a 5-phase machine with 20 slots and 6 poles. In this case,
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spp is equal to 2/3 and the winding is a double-layered one:
each slot contains conductors of two different phases. As
can be observed in Figure 4, there is no winding pattern
above a pole or above a pole pair that could be reproduced
to totally describe the winding. For the winding depicted
in Figure 4, the distribution of the conductors inside all
the stator slots must be observed in order to determine the
winding pattern. Fractional-slot winding are often used in
synchronous machines in order to reduce the reluctance
torques [32].

2.4 Reduced slot and pole pair numbers

The previous sections illustrate the pattern notion for bal-
anced multi-phase windings. This pattern actually corre-
sponds to the spatial period of the phase winding: the
spatial period can be quantified by the minimal num-
ber of slots to scan in order to totally characterize the
distribution of the winding inside the slots. For a layout
such that spp is an integer (integral-slot configurations),
the spatial period simply corresponds to two pole pitches
(in Figs. 2 and 3, it is clear that the winding distribu-
tion is identically repeated above each pole pair). For the
fractional-slot windings, the minimal number of slots to
scan corresponds to an integer number of poles. This min-
imal number of slots is denoted N ′

s and is expressed as
follows:

N ′
s =

Ns

gcd (Ns, p)
. (5)

In this relation, gcd(Ns, p) is the greatest common divisor
of Ns and p. Relation (5) appears in [1] to define the spa-
tial winding period: it is valid for every kind of balanced
winding (spp integer or not). N ′

s is called the reduced slot
number. Similarly, the reduced pole pair number can be
defined as:

p′ =
p

gcd (Ns, p)
. (6)

2.5 Purpose of the circularity index

The multi-phase windings demonstrate a circularity prop-
erty that comes from the regular distribution of the stator
slots. This property has already been taken into account
using relation (2) which defines the circularity index ic.
The purpose of the circularity index is to attribute the
p′N phase axes to the N phases so that the rotating field
generates p pole pairs. The sign of the circularity index
determines the direction of the rotating field (clockwise or
counter-clockwise). For the examples of windings in Fig-
ures 2 and 3, the phases are clockwise ordered and the
circularity index is equal to 2. Concerning the fractional
winding in Figure 4, the circularity index is equal to 8.
For a 3-phase machine, the circularity index is not really
important in so far as the phases can only be clockwise or
counter-clockwise. In other words, the stator rotating field
generated by the alternative supply of the three phases al-
ways have the same pole number (2p): it is just the direc-
tion of rotation of the rotating field (clockwise or counter-
clockwise) that can be different. It is not as simple for

0 30 60 90 120 150 180 210 240 270 300 330 360
−Bmax

0

Bmax

Mechanical Ange (deg)

F
lu

x 
D

en
si

ty
 (

T
)

 

 

i
c
 = 2, 4−pole rotating field

i
c
 = 4, 12−pole rotating field

Fig. 5. (Color online) Comparison of the air gap flux density
obtained with ic = 2 and ic = 4 for a 5-phase machine (winding
of Fig. 2 where (p,Ns) = (2, 20)).

multi-phase machines. For example, for a five-phase PM
machine where the pole number is imposed by the rotor
magnet layout, the stator rotating field can have a number
of main alternations three times higher than the rotor pole
number if the phases are not correctly ordered. This fact
is illustrated by Figure 5 which compares, for the fully-
pitched winding described in Figure 2, the field generated
when the phase ordering corresponds to ic = 2 with the
field generated when the phase ordering corresponds to
ic = 4 in case of perfect sinusoidal current.

The purpose of the circularity index is then to correctly
order the phases when the phase number is higher than
three. We will see in the next paragraphs how this notion
is used in order to obtain a matrix characterization of a
winding.

3 Common modeling using the winding
function

Used in [20], the winding function is a tool to model the
influence of the winding on the stator rotating field. This
function is extremely useful in order to separate, in the
rotating field, the spatial contributions that are linked to
the inherent characteristics of the winding machine, and
the time contributions, that are linked to the supply of the
machine. Consequently, the winding function allows us to
study the adaptation of distribution of the coils inside the
slots with this kind of supply.

3.1 Definition of the winding function

The definition of the winding function is based on the
notion of stator magnetomotive force waves. These waves
correspond to the stator rotating field that is measured
in ampere-turns (AT). These waves are represented at an
instant t and for a position θs on the stator periphery.
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Fig. 6. (Color online) Winding function for the winding dis-
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Fig. 7. (Color online) Winding function for the fractional
winding distribution described in Figure 4.

The time variations result from the phase currents in(t)
whereas the spatial variations come from the distribution
of the phase conductors inside the slots. This distribution
for phase n is modeled by the winding function Nn(θs).
With these notations, the magnetomotive force wave can
be expressed as:

F (θs, t) =
N−1∑
n=0

Nn (θs) in(t). (7)

In practical terms, the winding function at position θs is
the sum of the conductors of phase n that are inside the
area [0, θs], calculated by positively counting the forward
conductors and negatively counting the backward conduc-
tors. It corresponds to the magnetomotive force of a phase
supplied by a constant current of one ampere. The unity
of the winding function is the conductor-turn. Figures 6
and 7 give the winding function wave for the 5-phase wind-
ing described in Figures 2 and 4 respectively. The curves
are normalized using their maximum. It can be observed
that the winding function presents a linear variation of the
conductor-turns along the slot opening. This information
is obtained from the assumption that the slot conductors
are uniformly spread along the slot opening. Consequently
the winding function derivative is null everywhere except
in the slot opening areas. The derivation of the winding
function thus allows us to locate the phase conductors.

3.2 Winding function derivative

The derivative of the winding function defines the conduc-
tor density function Dn(θs) for a given phase n:

Dn (θs) =
1
Rs

dNn

dθs
. (8)

In relation (8), Rs is the air gap stator radius. The con-
ductor density function indicates the number of phase con-
ductors per meter for a point on the stator periphery, with
the point being marked by the angle θs. This function is
notably used in [33]. It is not however defined as the wind-
ing function derivative.

3.3 Winding function properties

Figures 6 and 7 demonstrate two fundamental properties
of the winding function:

– the zero average value;
– the circularity property between the different phases.

These two properties are also verified by its derivative
function Dn(θs).

Around the stator, the number of forward conductors
is equal to the number of backward conductors. Conse-
quently the average value of the winding function is null:∫ 2π

0

N (θs) dθs = 0. (9)

Of course, the winding function period cannot exceed 2π
(i.e. the total circumference of the stator). Relation (5)
allows us to obtain a more precise value: the winding func-
tion period is equal to 2π/gcd(Ns, p) slot pitches. For ex-
ample, concerning the integral-slot winding where spp is
an integer, the period is 2π/p slot pitches (which actually
correspond to two pole pitches) as shown by Figure 6.

By assumption, the winding is balanced, which means
that the phases are equivalent and regularly shifted by an
angular shift χ according to relation (2). The circularity
index ic is then introduced to deduce the winding of phase
n from the winding function of the first phase.

Nn (θs) = N0

(
θs − nic

2π
Ns

)
. (10)

Properties (9) and (10) are also true for the conductor
density function Dn(θs).

3.4 Circularity index estimation

By introducing the spatial Fourier series expansion of the
winding function, the circularity index can be estimated:

N0 (θs) =
+∞∑
h=0

(̂N)h cos (hθs + ψh). (11)

31102-p5

https://doi.org/10.1051/epjap/2010058 Published online by Cambridge University Press

https://doi.org/10.1051/epjap/2010058


The European Physical Journal Applied Physics

Even though the winding function N0(θs) is designed to
generate p pole pairs, it can be approximated by its spatial
harmonic p (by chosing the spatial frame such as ψp = 0):

N0 (θs) ≈ (̂N)p cos (pθs). (12)

Relation (12) can be inserted into relation (10):

Nn (θs) ≈ (̂N)p cos
(
pθs − pnic

2π
Ns

)
. (13)

As illustrated by Figure 5, the circularity index correctly
orders the phases. This implies that winding functions
Nn(θs) and Nn−1(θs) are spatially consecutive:⎧⎪⎨⎪⎩

Nn (θs) ≈ (̂N)p cos
(
pθs − pnic

2π
Ns

)
Nn−1 (θs) ≈ (̂N)p cos

(
pθs − p(n− 1)ic 2π

Ns

) ⇒

⎧⎪⎪⎨⎪⎪⎩
pic

2π
Ns

=
2π
N

+ kc2π (kc ∈ Z, clockwise)

pic
2π
Ns

= −2π
N

+ kcc2π (kcc ∈ Z, counter-clockwise) .

(14)
The circularity index is deduced from relation (14). The
implicit expressions give:{

ic ∈ {2spp (1 +NZ)} ∩ Z (clockwise)

ic ∈ {2spp (−1 +NZ)} ∩ Z (counter-clockwise).
(15)

Relation (15) can be used to calculate the circularity index
of the two windings described in this paper:

– for the integral-slot balanced winding of Figure 2 where
(N, p,Ns) = (5, 2, 20) and spp = 1, relation (15) yields
ic = 2 for the clockwise order (kc = 0 convenient
in (14));

– for the fractional-slot balanced winding of Figure 4
where (N, p,Ns) = (5, 3, 20) and spp = 2/3, rela-
tion (15) yields ic = 8 for the clockwise order (kc = 1
convenient in (14)).

4 Matrix modeling of the multi-phase
windings

By definition, the winding function results from the stator
magnetomotive force. Consequently this function is conti-
nous. However the discrete nature of the winding, imposed
by the slots, yields a discrete modeling of the winding
function. This section describes a matrix modeling of the
machine winding that is based on the introduction of two
matrices: the winding function matrix and the winding
distribution matrix.

4.1 Winding function matrix

The winding function matrix consists of N column vectors
of Ns components: component k of vector n corresponds

to the value of the winding function at the right of slot k.
The vectors are composed of the samples of the winding
function at the slot level. This approach is close to that
adopted in the discrete modeling of the field described
in [34,35]: in these papers, the matrix is composed of co-
efficients that result from the sampling of the air gap flux
density under each tooth.

Mathematically two vectorial spaces are necessary to
describe this winding function matrix:

– the first vectorial space EN has a dimension equal to
the phase number N and is associated with a canonic
orthonormal basis

BN =
{−−→
n0

N . . .
−−→
nn

N . . .
−−−−→
nN−1

N

}
;

– the second vectorial space EN has a dimension equal
to the slot number Ns and is associated with a canonic
orthonormal basis

BNs =
{−−−→
n0

Ns . . .
−−−→
nn

Ns . . .
−−−−−→
nNs−1

Ns

}
.

The winding function matrix is denoted W . The associ-
ated linear application is denoted W :

W = mat
(W ,BN,BNs

)
= (wm,n)(m,n)∈[0...N−1]×[0...Ns−1] .

(16)
The column vector of W is the sampling winding function
for each phase and is denoted as follows:

W =
(−−−→
w0

Ns . . .
−−−→
wn

Ns . . .
−−−−−→
wN−1

Ns

)
. (17)

As the winding function matrix is built by sampling the
continuous winding function, this matrix has the same
properties:

– the “zero mean average property”:

Ns−1∑
m=0

wm,n = 0; (18)

– the “circularity property”:

wm,n = wm−nic,0. (19)

Knowledge of the winding vector for the phase n
−−−→
wn

Ns

(i.e. knowledge of the samples of the winding function for
the phase n) allows us to rebuild the winding function:

Nn (θs) ≈ ncd

Ns−1∑
m=0

wm,nS2π/Ns

(
θs −m

2π
Ns

)
. (20)

In relation (20), ncd is the number of conductors inside
a slot (under the assumption that all the slots have the
same number of conductors) and S2π/Ns

is a periodic step
function defined as follows:

Sτ (θ) =

{
1 if θ ∈ [k2π, k2π + τ ] , k ∈ Z

0 otherwise.
(21)
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In relation (20), the ≈ operator denotes the loss of in-
formation due to the discrete integration of the samples
of Nn(θs): rigorously, along the slot opening, the winding
function variation is linear (as can be shown in Figs. 6
and 7). Rebuilding Nn(θs) removes this characteristic.
The quantity of information lost when using this sampling
method becomes more and more significant the larger the
slot opening.

For example, the winding function matrix correspond-
ing to the fractional winding described in Figure 7 is:

W =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 −1/2 1/2 1/2 0

0 −1/2 −1/2 1/2 0

1/2 −1/2 −1/2 0 0

1/2 1/2 −1/2 0 0

1/2 1/2 0 0 −1/2

−1/2 1/2 0 0 −1/2

−1/2 0 0 1/2 −1/2

−1/2 0 0 1/2 1/2

0 0 −1/2 1/2 1/2

0 0 −1/2 −1/2 1/2

0 1/2 −1/2 −1/2 0

0 1/2 1/2 −1/2 0

−1/2 1/2 1/2 0 0

−1/2 −1/2 1/2 0 0

−1/2 −1/2 0 0 1/2

1/2 −1/2 0 0 1/2

1/2 0 0 −1/2 1/2

1/2 0 0 −1/2 −1/2

0 0 1/2 −1/2 −1/2

0 0 1/2 1/2 −1/2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (22)

The properties relative to the zero mean average and the
circularity (ic = 8) are clearly illustrated. This example
also highlights the fact that the sampling is carried out at
the right of the slots1, which means that the slope consec-
utive to the sum of the conductors along the slot opening
is not taken into account.

4.2 Distribution function matrix

By adding for each phase the number of conductors
around the stator circumference, the winding function is
not really a design tool. In other words, knowledge of
the winding function does not allow the direct identifica-
tion of the described winding. In the context of the two-
dimensional model of the machine, the identification of

1 This is an arbitrary decision. It is possible to sample at the
left of the slots.

the winding consists of attributing a phase to each slot
conductor. For this purpose, a new tool is introduced: the
distribution function matrix.

Each slot contains a number of conductors that can
conduce the current in the positive direction (forward con-
ductors) or in the negative direction (backward conduc-
tor). Each slot can contain a different number of conduc-
tors. The distribution function D distributes the phase
conductors in the slots. D is then a linear application from
the vectorial space EN to the vectorial space EN . This lin-
ear application is represented by the matrix D:

D = mat
(D,BN,BNs

)
= (dm,n)(m,n)∈[0...N−1]×[0...Ns−1] . (23)

The column vectors ofD are the phase distribution vectors
and are denoted as follows:

D =
(−−→
d0

Ns . . .
−−−→
dn

Ns . . .
−−−−−→
dN−1

Ns

)
. (24)

By definition, the conductor proportion dm,n of the slot
m that is attributed to the phase n is signed:

– if dm,n is positive, it is a proportion of the forward
conductors;

– if dm,n is negative, it is a proportion of the backward
conductors.

As the number of forward conductors is equal to the num-

ber of backward conductors, the sum of the vector
−−−→
dn

Ns

is null:
Ns−1∑
g=0

dg,n = 0. (25)

Furthermore the absolute value of the proportion of slot
conductors attributed to the phase can not exceed one:

∀(m,n) ∈ [0...Ns − 1] × [0...N − 1] −1 ≤ dm,n ≤ 1.
(26)

Moreover, if all the conductors available in the slot m
are used, the sum of the absolute values of the conductor
proportions for each phase is equal to 1:

∀m ∈ [0...Ns − 1]
∑N−1

n=0 |dm,n| = 1. (27)

It is important to underline that this representation does
not take into account the relative position of the conduc-
tors inside the slots (this already the case when building
of the winding function). For example, for a slot that con-
tains conductors of two different phases, the two standard
conductor arrangements depicted by Figure 8 result in the
same coefficients in matrix D. This simplification is neces-
sary in the context of the analytical calculation of the flux
density for a slotted machine [36]. Some examples of dis-
tribution function matrices for a 2-pole 3-phase machine
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Fig. 8. Inability of the model to take into account the relative
position of the conductors inside the slots.

with 6 slots are given:

D =

⎛⎜⎜⎜⎜⎜⎝
1 0 0
−1 0 0
0 1 0
0 −1 0
0 0 1
0 0 −1

⎞⎟⎟⎟⎟⎟⎠
︸ ︷︷ ︸

Short coils

, D =

⎛⎜⎜⎜⎜⎜⎝
1 0 0
0 0 −1
0 1 0
−1 0 0
0 0 1
0 −1 0

⎞⎟⎟⎟⎟⎟⎠
︸ ︷︷ ︸

Long coils

,

D =

⎛⎜⎜⎜⎜⎜⎝
0 −0.5 0.5

0.5 0 −0.5
0.5 0 −0.5
−0.5 0.5 0
−0.5 0.5 0

0 −0.5 0.5

⎞⎟⎟⎟⎟⎟⎠ .

︸ ︷︷ ︸
Two-layer winding

It can be noticed that these three distribution function
matrices verify relations (25), (26) and (27).

Finally, the distribution function matrix can be consid-
ered as a natural reading of the phase winding: this matrix
can be directly deduced from a simple representation like
the ones in Figures 2–4. Nevertheless, it must be remem-
bered that the distribution function does not specify the
way to connect the conductors in order to make the coils.
This knowledge is thus not sufficient to fully characterize
the winding, despite being nonetheless necessary.

4.3 Mathematical link between winding
and distribution function matrices

As the discrete winding function sums the slot conductors
for each phase and the conductor distribution function
locates the conductors for a given phase, a relation of dis-
crete derivation allows us to determine D from B. In other

words, the components of the vector
−−−→
dn

Ns can be deduced
from the ones of the vector

−−−→
wn

Ns :

∀m ∈ [1...N − 1]dm,n = wm,n − wm−1,n. (28)

If the example of Figures 4 and 7 is considered, the matrix
D is directly obtained by using relation (28) on the matrix

W of relation (22):

D =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 −1/2 0 0 1/2

0 0 −1 0 0

1/2 0 0 −1/2 0

0 1 0 0 0

0 0 1/2 0 −1/2

−1 0 0 0 0

0 −1/2 0 1/2 0

0 0 0 0 1

1/2 0 −1/2 0 0

0 0 0 −1 0

0 1/2 0 0 −1/2

0 0 1 0 0

−1/2 0 0 1/2 0

0 −1 0 0 0

0 0 −1/2 0 1/2

1 0 0 0 0

0 1/2 0 −1/2 0

0 0 0 0 −1

−1/2 0 1/2 0 0

0 0 0 1 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (29)

The concordance between this matrix D and the repre-
sentation adopted in Figure 4 is well illustrated: for the
first slot, one half of the slot conductors is backward for
the second phase and the other half is forward for the fifth
phase.

A discrete integration relation allows us to deduce the
winding function matrix from the distribution function
matrix. As required by relation (18), the integration con-
stant must be chosen to cancel the sum of the components
of the winding function vectors. The following relation can
be derived:

∀(m,n) ∈ [0...Ns − 1] × [0...N − 1]

wm,n =
m∑

g=0

dg,n − 1
Ns

Ns−1∑
k=0

k∑
h=0

dh,n. (30)

This discrete derivative relation going to the distribution
function matrix D from the winding function matrix W

is similar to the derivative relation (8) that defines the
function of conductor density Dn(θs). It is clear that this
function Dn(θs) can be built with the components of the

phase distribution vector
−−−→
dn

Ns . Under the assumption
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that each slot contains the same number of conductors
ncd, the following relation can be written (where σs is the
slot-opening in meters):

Dn (θs) =
ncd

Rsσs

Ns−1∑
m=0

dm,nSσs

(
θs − π

Ns
−m

2π
Ns

)
. (31)

In opposition to relation (20), which approximates the
winding function Nn(θs), relation (31) gives the exact
function of the conductor density Dn(θs). Actually the
function of conductor density is a linear combination of
step signals with a step equal to the slot opening σs. The
matrix D identifies for each phase the coefficients of the
linear combination. By indicating for each slot the pro-
portion of conductors that is attributed to a phase, the
function of the conductor density is more significative for
the designer than the winding function.

5 Use of the winding matrix modeling
to directly characterize the winding factors
and the mutual inductances

5.1 Link between the phase distribution vector
components and the usual winding factors

The proposed approach is similar to the EMF phasor ap-
proach [3,6] and is based on the introduction of the flux
per slot. This flux per slot corresponds to the flux density
on the stator periphery integrated along the slot open-
ing for each conductor inside the slot. For the first slot
(numbered 0), this flux per slot can be defined as follows:

φs,0(θ) =
∫ 2π

γ=0

A(θ, γ)Sτs

(
γ − π

Ns

)
Rsdγ. (32)

From relation (32), θ is the rotor position and A(θ, γ) is
the potential vector in the stator periphery (i.e. at the
radius Rs) for the rotor position θ estimated at the angle
γ in the stator frame. If the flux density source is the rotor,
the flux per slot is necessarily 2π/p-periodic and can be
expanded using Fourier series:

φs,0(θ) =
+∞∑

h=−∞
(̂φs)he

jhpθ. (33)

The flux per slot for the slot numbered m is obtained by
shifting the flux per slot of the first slot. Its expression
can thus be deduced from (32) and its Fourier expansion
from (33):

φs,m(θ) = φs,0

(
θ −m

2π
Ns

)
=

+∞∑
h=−∞

(̂φs)he
−j 2π

Ns
hmejhpθ. (34)

If the effects of the end-turns are neglected, the flux per
phase φn(θ) can be expressed by summing the flux per
slots rated by the winding distribution coefficients:

φn(θ) =
Ns−1∑
m=0

dm,nφs,m(θ). (35)

By combining relations (35) and (34), the Fourier expan-
sion of the flux per phase is given by:

φn(θ) =
+∞∑

h=−∞
(̂φs)h

(
Ns−1∑
m=0

dm,ne
−j 2π

Ns
mph

)
ejhpθ. (36)

In relation (36), the term inside the brackets shows how
the phase distribution coefficients act on the spectrum of
the flux per phase. Actually this term corresponds to the
coil disposition factor Kd,h:

Kd,h =

∣∣∣∣∣
Ns−1∑
m=0

dm,ne
−j 2π

Ns
mph

∣∣∣∣∣ . (37)

By definition, the winding factor is the ratio of flux linked
by an actual winding to flux that would have been linked
by a fully-pitched concentrated winding with the same
number of turns. It is well-known that this configuration
leads to the highest coil disposition factor. As shown in
Appendix A, the winding factor of any winding can be
deduced from the coil disposition factor expression (37):

Kh =
N

Ns
Kd,h =

N

Ns

∣∣∣∣∣
Ns−1∑
m=0

dm,ne
−j 2π

Ns
mph

∣∣∣∣∣ . (38)

The method of obtaining the winding factor is compatible
with the more common method that consists in calculating
the winding factor by using the distribution factor and the
pitch factor as in [37].

The final expression (38) is a very concise mean of cal-
culating the winding factors and subsequently predicting
the influence of the winding on the electromotive force
spectrum. For the example of the fractional winding de-
picted in Figure 4 where (Ns, p,N) = (20, 3, 5), the third
harmonic winding factor can be easily estimated via rela-
tion (38) used for the winding distribution given in (29):

K3 =
5
20

∣∣∣∣∣
19∑

m=0

dm,0e
j π

10 2×3

∣∣∣∣∣ ≈ 0.794. (39)

5.2 Estimation of the air gap mutual inductance
values from the winding function matrix

For a slotted machine, the supply of a phase generates two
kinds of bidimensionnal flux paths:

– the flux paths that cross the air gap whose effects are
modeled by the air gap mutual inductances;

– the flux paths that do not cross the air gap whose
effects are modeled by the leakage mutual inductances.
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The winding function theory enables the estimation of the
air gap mutual inductance values with the assumption of
radial path for the air gap flux density. It is then possible
to directly deduce the air gap flux density from the wind-
ing function. If the phase numbered 0 is supplied with a
constant current I0, the air gap flux density given by:

B(γ) ≈ μ0

g + gm
N0(γ)I0. (40)

The flux per phase variation dφn can be expressed as the
product of the phase winding function with the flux den-
sity linked by a conductor:

dφn = Nn(γ)B(γ)LmRsdγ. (41)

If relation (40) is used, expression (41) becomes:

φn =
μ0

g + gm
LmRsI0

∫ 2π

γ=0

N0(γ)Nn(γ)dγ. (42)

If expression (20), which rebuilds the winding function
from its sample is introduced, the flux per phase is:

φn = I0
μ0

g + gm
LmRsn

2
cd

2π
Ns︸ ︷︷ ︸

=Cma

Ns−1∑
m=0

wm,0wm,n. (43)

The air gap mutual inductance ma
n that represents the

air gap flux density collected by the phase n when the
phase 0 is supplied is then very simply estimated. It is
proportional to the dot product of the phase n winding
function vector with the phase 0 winding function vector:

ma
n = Cma

−−−→
w0

Ns ·
−−−→
wn

Ns . (44)

The air gap self-inductance of a phase is ma
0 . The coeffi-

cient Cma is mainly relative to the geometrical character-
istics of the machine.

The relation (44) allows us to directly obtain the stator
matrix air gap inductance Ma

ss with the winding function

matrix W :

Ma
ss = CmaWTW. (45)

Relation (45) can also be obtained by considering the mag-
netic energy stored in the air gap as in [34].

5.3 Estimation of the leakage mutual inductance
values from the distribution function matrix

As stated previously, the leakage inductances result from
the flux density that does not cross the air gap. The leak-
age self inductance ml

0 corresponds to the outside air gap
flux density linked by the phase that is supplied. The leak-
age mutual inductance ml

n corresponds to the outside air
gap flux density linked by the phase numbered n−1 when
the phase numbered 0 is supplied. The common analyti-
cal methods do not allow the calculation of the flux den-
sity around the slots. Consequently additional assump-
tions concerning these flux paths are necessary.

Fig. 9. (Color online) Assumptions for the flux paths inside
the iron to estimate the leakage inductance of a slot.

In [38], several analytical methods to estimate the leak-
age flux for various slot geometries are described. These
methods are based on the following assumptions:

– the iron permeability is infinite;
– the flux paths inside the slots are considered perpen-

dicular to the slot sides and are closed up in the iron
core.

In this reference, only the case where the slot contains
conductors of a single phase is presented. It is possible to
extend this approach to the case of multi-layer windings.
For this paper, we limit the description to the case de-
picted on the right part of Figure 8 that corresponds to
the conductor disposition of the machine M5-B. For the
case described on the left part, a similar method to the
one described subsequently can be used.

Figure 9 illustrates the hypothesis concerning the flux
path inside the slots. For this example, the slot numbered
m contains two conductors areas: the first belongs to the
phase 0 and the second belongs to the phase numbered
m. The dm,0ncd conductors of phase 0 are considered to
be supplied with a continuous current of magnitude I0:
these supplied conductors generate the flux density. The
resulting flux path cross the slot and are closed up in the
iron core. Each slot conductor, regardless of its belonging
phase, cuts a flux φl,s. This flux can be calculated by using
the Ampere theorem for every contour path then by inte-
grating the resulting flux densities on the conductor area.
For the considered slot geometry, if phase 0 is supplied,
the flux density collected by a conductor is:

φl,s = μ0dm,0ncdI0

(
ps

3 (Rs + bs + ps) δs
+

bs
Rsσs

)
. (46)

In order to estimate the total flux linked by the conductors
of phase n located in the slot numbered m, the flux φl,s

31102-p10

https://doi.org/10.1051/epjap/2010058 Published online by Cambridge University Press

https://doi.org/10.1051/epjap/2010058


F. Scuiller et al.: General modeling of the windings for multi-phase ac machines

must be multiplied by the conductor number dm,nncd:

Φf,s
n = dm,nncdφ

l,s

= μ0dm,ndm,0n
2
cdI0

(
ps

3 (Rs + bs + ps) δs
+

bs
Rsσs

)
.

(47)

The leakage mutual inductance ml
n is then obtained by

summing the leakage fluxes Φl,s
n of each slot and by divid-

ing by the constant current I0:

ml
n =

μ0n
2
cd

(
ps

3 (Rs + bs + ps) δs
+

bs
Rsσs

)
︸ ︷︷ ︸

=K
ml

Ns−1∑
m=0

dm,ndm,0.

(48)

In relation (48), Kml is a quantity homogeneous to an in-
ductance and only depends on the slot geometry. In other
words, the value of Kml results from the integration of
the flux density inside the slot. If the slot geometry is
then changed, only Kml has to be changed. The second
part of relation (48) only depends on the winding distribu-
tion. As for equation (44), which gives the mutual air gap
inductance, the mutual leakage inductance can be viewed
as a dot product:

ml
n = Kml

−−−→
dn

Ns ·
−−→
d0

Ns . (49)

Relation (49) shows that the mutual leakage inductance
mainly relates to the dot product of the winding distri-
bution vectors. Common results can be found with rela-
tion (49). For the example of a single layer winding, as the
slots contain conductors of a single phase, the winding dis-
tribution vectors are orthogonal to each other. According
to relation (49), the mutual leakage inductances are null,
which is a well-known result (for conventional machines
where the slots are not too closed each other).

As for relation (45) related to the air gap mutual in-
ductance matrix, it is possible to introduce the leakage
inductance matrix from relation (49):

M l
ss = KmlDTD. (50)

The stator inductance matrix is then obtained by sum-
ming relations (45) and (50):

Mss = CmaWTW +KmlDTD. (51)

5.4 Validation

In order to validate the analytical expressions of the in-
ductances, two 5-phase real machines are used. The main
parameters of these machines are given in Tables 1 and 2.
The first machine, called “M5-A”, has a classical single
layer fully pole-pitched winding (spp = 1, see Figs. 2

Fig. 10. (Color online) Flux path for M5-A machine (spp = 1)
where a single phase is supplied.

Table 1. Main characteristics of the machine M5-A (spp = 1).

M5-A
Power 1.5 kW
Torque ≈10 N m
Speed 1500 rpm

Phase number N 5
Slot number Ns 20
Pole number 2p 4

Rotor Type Internal
Effective length Lm 80 mm

Stator yoke thickness ecs 15 mm
Stator radius Rs 55 mm

Mechanical air gap gm 1.5 mm
Magnet layer thickness ga 3.4 mm
Remanent flux density Br 1.07 T

Magnet arc to pole pitch ratio 100%
Rotor yoke thickness ecr 30 mm

Slot width δs (τs, tooth pitch) 0.33 τs

Slot width opening σs 0.5 δs

Slot-closing thickness bs 1 mm
Slot depth ps 15 mm

Conductor number ncd 25
Conductor section scd 1 mm2

and 6) whereas the second one, called “M5-B”, has a two
layer fractional slot winding (spp = 2/3, see Figs. 4 and 7).
In order to assess the pertinence of the hypothesis relative
to the flux path inside the slot, Figures 10 (machine M5-
A) and 11 (machine M5-B) present the flux path using
the 2D numerical software Difimedi where a single phase
is supplied.

First, for the two machines, the flux paths in the
air gap are globally radial. Consequently, the hypothesis
taken to write relation (40) and then to obtain final rela-
tion (44) (for air gap mutual inductance ma

n) is correct.
Figure 10 depicts the flux paths for M5-A machine: it can
be seen that, for the slot containing the supplied conduc-
tors, the flux paths exclusively in the iron do not penetrate
other slots, thus do not reach conductors of another phase.
Consequently, for this machine, the common leakage flux
is insignificant. On the contrary, for the M5-B machine
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Table 2. Main characteristics of the machine M5-B (spp =
2/3).

M5-B
Power 0.3 kW
Torque ≈0.9 N m
Speed 3500 rpm

Phase number N 5
Slot number Ns 20
Pole number 2p 6

Rotor type External
Effective length Lm 35 mm

Stator yoke thickness ecs 6 mm
Stator radius Rs 55 mm

Mechanical air gap gm 1 mm
Magnet layer thickness ga 4 mm
Remanent flux density Br 0.35 T

Magnet arc to pole pitch ratio 97%
Rotor yoke thickness ecr 3 mm

Slot width δs 0.75 τs

Slot width opening σs 0.33 δs

Slot-closing thickness bs 1.5 mm
Slot depth ps 14 mm

Conductor number ncd 40
Conductor section scd 0.5 mm2

Fig. 11. (Color online) Flux path for M5-B machine (spp = 1)
where a single phase is supplied.

with a two layer winding, Figure 11 shows the existence
of mutual flux paths that do not cross the air gap: if a
slot containing supplied conductors is considered, the flux
lines reach the conductors of the other phase located in
the same slot without crossing the air gap. Consequently,
for the M5-B machine, the leakage mutual inductance is
significant.

Tables 3 and 4 give the results obtained for the set of
inductances. In order to point out the advantages of the
analytical method described in this paper (relation (51),
mn = ma

n + ml
n), the tables start by giving the results

obtained with the classical first harmonic approach. This
common method is recalled in Appendix B, which con-

Table 3. Comparison of the inductance values obtained for
M5-A machine.

Method m0 (mH) m1 (mH) m2 (mH)
Analytical (B.1) 1.02 0.32 −0.82
Analytical (B.2) 1.28 0.32 −0.82
Analytical (51) 1.28 0.20 −0.61

Numerical 1.37 0.20 −0.60
Measurement 1.31 0.20 −0.52

Table 4. Comparison of the inductance values obtained for
M5-B machine.

Method m0 (mH) m1 (mH) m2 (mH)
Analytical (B.1) 0.62 0.19 −0.50
Analytical (B.2) 0.75 0.19 −0.50
Analytical (51) 0.75 0 −0.23

Numerical 0.89 0.01 −0.26
Measurement 1.13 0.03 −0.17

cludes by giving two relations to value the inductances:
relation (B.1) is dedicated to the air gap inductances ma

n
whereas relation (B.2) integrates leakage effects and esti-
mates the inductances mn. The two tables also give the
values mn obtained with the numerical software and the
measured values. Appendix C indicates the method cho-
sen to measure the set of inductances.

The new analytical method differs from the first har-
monic approach for the two following reasons:

– all the magnetomotive force harmonics are taken into
account;

– the possible leakage mutualizations are modeled.

With reference to the numerical calculations, Tables 3
and 4 clearly show the precision improvement obtained
with the new analytical method. The case of the M5-B ma-
chine is particularly demonstrative because its fractional-
slot winding implies a great deal of spatial harmonics
and a leakage mutualization between phases (as shown
by Fig. 11). Table 4 clearly shows that first harmonic ap-
proach is not adapted to estimate the inductances: the new
relation (51) allows us to obtain more accurated results.

However the values obtained by measurements temper
this conclusion since they are not so closed to the numeri-
cal ones. As a consequence, at this level it must be pointed
out that the main interest of the described approach in the
paper is to give practical algorithms for numerical imple-
mentation.

To better understand the necessity of the proposed ap-
proach for machines with more than three phases, it is
necessary to examine not only mutual inductances but
also the synchronous inductances. If for a wye-coupled
three-phase machine only one synchronous inductance
characterizes the machine, three synchronous inductances
denoted LM1, LM2 and LH are found for a five-phase ma-
chine [25]. If LM1 is associated with the first harmonic,
LM2 and LH depend on other harmonics. As LM2 and
LH directly impact the choice of the PWM frequency of
the VSI that supplies the machine, it is necessary to get
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Table 5. Comparison of the synchronous inductance values
obtained for the M5-A machine.

Method LH (mH) LM1 (mH) LM2 (mH)
Ana. (B.1) 0 2.55 0
Ana. (B.2) 0.26 2.81 0.26
Ana. (51) 0.46 2.39 0.57
Numerical 0.56 2.47 0.67

Measurement 0.67 2.27 0.67

Table 6. Comparison of the synchronous inductance values
obtained for the M5-B machine.

Method LH (mH) LM1 (mH) LM2 (mH)
Ana. (B.1) 0 1.55 0
Ana. (B.2) 0.13 1.68 0.13
Ana. (51) 0.29 1.12 0.61
Numerical 0.39 1.32 0.70

Measurement 0.84 1.43 0.97

correct values in order to design a machine adapted to the
possibilities of the VSI supply.

Tables 5 and 6 present thus the synchronous induc-
tances obtained from Tables 3 and 4. For both machines
the errors on synchronous inductances LM2 and LH , which
are associated with harmonics greater than the first har-
monic, are clearly important if the classical first harmonic
approach is used. On the contrary, the new relation (51)
greatly improves the estimation: it is particularly obvi-
ous for the fractional-slot winding of M5-B machine (see
Tab. 6). At this level it appears clearly that it was nec-
essary to consider an approach, which is easy to imple-
ment for numerical calculations (using matrix approach)
but also taking into account easily the spatial harmonics.

6 Conclusion

The matrix modeling of multi-phase winding described in
this paper is adapted for rotating machines with a regular
distribution of slots around the stator circumference. On
the one hand, the simple method deducing the winding
factor from one of the columns of the distribution matrix
is valid for every kind of air gap. On the other hand, the
analytical estimations of the self and mutual inductances
require assumptions that restrict the use to machines with
smooth air gap such as asynchronous machines or syn-
chronous PM machines. It must also be remembered that
the manner in which the flux density is valued is based on
2D hypothesis: so this method must be carefully used for
machines with short axial length.

The major interest of the method presented in this
paper is the possibility for the designer to predict the in-
fluence of the winding on crucial parameters (stator induc-
tances) without considering dimensional parameters such
as the stator radius, the stator or rotor yoke thickness...
Concretely, from the knowledge of the phase, pole and slot
numbers, the matrix modeling of the winding allows us to
systematically and clearly predict the trend of the winding

design on the set of inductance values. If the proposed ap-
proach is used for a wye-coupled three-phase machine, the
interest is not great in this case because the machine can
be considered as an equivalent two-phase machine char-
acterized by a single synchronous inductance. For multi-
phase machines (we have chosen five phases in this paper),
the approach allows us to quantify the ratio between the
several synchronous inductances that characterize the ma-
chine. These ratio will have a direct impact on the choice
of the carrier frequency of the PWM voltage source in-
verter that supplies the machine [16].

From a practical point of view, the matrix modeling
is a really well-adapted support when performing algo-
rithms to select winding distributions for given numbers
of phases, poles and slots. Optimisation procedures can
be developed regarding the winding factors, the induc-
tance values and manufacturing constraints concerning
end-windings notably [16,17,19]. Furthermore, the matrix
winding modeling can also be used to study multi-star
multi-phase windings [18]. From a theoretical point of
view, the winding matrix modeling is a tool which can
extend the multi-machine theory [23,39] and thus to de-
velop systematic design rules dedicated to multi-phase PM
machines [40].

Appendix A: Calculation of the total winding
factor

In this appendix, we aim to estimate the maximum value
of the coil disposition factor Kd,h. It is well-known that
this maximum value is obtained with a fully-pitched con-
centrated winding with spp = 1 (as in Fig. 2 for example).
First, we consider the case where the winding is a single
coil with forward in slot numbered f and backward in slot
numbered b. The coil disposition factor is then:

Kd,h =
∣∣∣∣2je−j 2π

Ns
ph f+b

2 sin
(
π

Ns
(b− f)ph

)∣∣∣∣ . (A.1)

More generally, if the winding is made up of nc coils char-
acterized by their center position νc and their pitch τc, the
total coil disposition factor becomes:

Kd,h =

∣∣∣∣∣
nc−1∑
c=0

2je−j 2π
Ns

νcph sin
(
π

Ns
τcph

)∣∣∣∣∣ . (A.2)

For the classical case of the fully-pitched winding, the coil
characteristics νc and τc can be expressed as follows:{

νc = Ns

2p + cNs

p

τc = Ns

2p .
(A.3)

As the total number of coils is equal to the pole pair num-
ber, the winding distribution factor can be expressed as
follows:

Kd,h =

∣∣∣∣∣
p−1∑
c=0

2j(−1)h sin
(π

2
h
)∣∣∣∣∣ . (A.4)
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The traditional following conclusion can be drawn:{
h = 2k =⇒ Kd,h = 0

h = 2k + 1 =⇒ Kd,h = 2p = Ns

N .
(A.5)

By definition, for any winding, the total winding factor is
the ratio between the coil disposition factor of the consid-
ered winding and the coil disposition factor of the equiv-
alent fully-pitched configuration.

Appendix B: First harmonic approach
to estimate the set of inductances

This classical method considers that the magnetomotive
force is sinusoidal. In this case, the mutual air gap in-
ductance ma

n can be deduced from the self air gap induc-
tance ma

0 :

ma
n = ma

0 cos
(

2π
N
n

)
. (B.1)

A leakage inductance is commonly added to the self air
gap inductance but only for the self inductance:{

m0 = ma
0 +ml

0

mn = ma
0 cos

(
2π
N n
) ∀n ∈ [1...N − 1].

(B.2)

The self air gap inductance can be estimated via rela-
tion (44):

ma
0 =

μ0

g + gm
LmRsn

2
cd

2π
Ns

Ns−1∑
m=0

w2
m,0. (B.3)

The leakage inductance ml
0 can be estimated from rela-

tion (48):

ml
0 = μ0n

2
cd

(
ps

3 (Rs + bs + ps) δs
+

bs
Rsσs

)Ns−1∑
m=0

d2
m,0.

(B.4)
The approach described in this paper differs from the clas-
sical one for two reasons. On the one hand, concerning in-
side air gap flux density couplings between phases, all the
magnetomotive force harmonics are taken into account.
On the other hand, concerning outside air gap flux den-
sity couplings between phases, a modeling is introduced.

Appendix C: Self-inductance and mutual
inductance measurements

For both machines, an impedancemeter (WaybeKerr type)
and a 15 W 100 Hz-frequency generator are used to mea-
sure the winding self-inductance and the set of mutual
inductances. Each phase is supplied to estimate the self-
inductances and the mutual inductances. In order to eval-
uate uncertainty in measurement, the operation is re-
peated for numerous positions of the rotor (10 positions

Table 7. Inductance results measurements obtained for the
M5-A machine.

Inductance m0 m1 m2

Measurement (mH) 1.31 0.20 −0.52
Uncertainty 5% 29% 17%

Table 8. Inductance results measurements obtained for the
M5-B machine.

Inductance m0 m1 m2

Measurement (mH) 1.13 0.03 −0.17
Uncertainty 10% 9% 4%

precisely). Tables 7 and 8 give the results obtained for
M5-A and M5-B machines including uncertainty in the
measurement. For each inductance, the measurement un-
certainty is considered to be the standard deviation of the
whole measurements.

For the M5-A machine, the rather important measure-
ment uncertainty regarding the two mutual inductances
comes from a stronger than expected saliency effect.
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Technologies de Lille, France, 2000
40. F. Scuiller, Ph.D. thesis, École Doctorale de l’École
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