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The Distribution of Totatives

Jam Germain

Abstract. The integers coprime to n are called the totatives of n. D. H. Lehmer and Paul Erdős were

interested in understanding when the number of totatives between in/k and (i + 1)n/k are 1/kth of the

total number of totatives up to n. They provided criteria in various cases. Here we give an “if and only

if” criterion which allows us to recover most of the previous results in this literature and to go beyond,

as well to reformulate the problem in terms of combinatorial group theory. Our criterion is that the

above holds if and only if for every odd character χ (mod κ) (where κ := k/ gcd(k, n/
∏

p|n p)) there

exists a prime p = pχ dividing n for which χ(p) = 1.

1 Introduction

The integers coprime to n are called the totatives of n. D. H. Lehmer [4] was interested
in understanding when

(1)n,k φ(n; l/k) = (l/k)φ(n) for all integers l in the range 0 ≤ l ≤ k − 1,

where

φ(n; t) :=
∑

m≤tn
(m,n)=1

1.

If (1) holds then φ(n)/k = φ(n; 1/k) ∈ Z so k divides φ(n). Considerable effort
has gone into determining when this is a sufficient condition as well as necessary (see
[1–5]).

Here we shall obtain necessary and sufficient conditions for (1) to hold in terms

of (a subset of) the prime factors of n.

Theorem 1.1 Let g = gcd(k, n/
∏

p|n p). Then (1) holds if and only if for every char-

acter χ (mod k/g) with χ(−1) = −1 there exists a prime p = pχ dividing n for which

χ(p) = 1.

We simplify our workings in section 2 by showing that it suffices to consider pairs
n, k with n squarefree and (n, k) = 1. In section 3 we introduce characters and deduce

our result from the fact that L(1, χ) 6= 0 for all odd characters χ (mod k); in other
words, this result depends on the fact that the product of these is non-zero, that is,
that h1(k) 6= 0, where h1(k) is the “first factor” of class number h(k) of the cyclotomic
field Q(ζk); defined as the ratio h1(k) := h(k)/h2(k) where h2(k) is the class number

of Q(ζk + ζ−1
k ), the maximal real subfield of Q(ζk).
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Carmichael’s λ-function, λ(n) is defined as the maximal order of an element in
(Z/nZ)∗. Thus λ(n) = lcm[λ(pa) : pa|n], where λ(pa) = φ(pa) if p is odd or

pa
= 2 or 4, and λ(2a) = 2a−2 for a ≥ 3. Theorem 1.1 allows us to improve the

condition “k divides φ(n)”.

Corollary 1.2 If (1)n,k holds where (k, 2n) = 1 then k divides λ(n).

If n is prime then Theorem 1.1 requires χ(n) = 1 for all odd χ (mod k); that is
n ≡ 1 (mod k). We have proved the well-known result [4]:

Corollary 1.3 If n = p is prime then (1)p,k holds if and only if p ≡ 1 (mod k).

Erdős [1] considered the case of n = pq where p, q are distinct odd primes;

Hall and Shiu [3] proved Erdős’s conjecture that if (1)pq,k holds then either p ≡ 1
(mod k), or q ≡ 1 (mod k), or pq ≡ −1 (mod k). In fact it is possible to give an
exact criterion :

Corollary 1.4 Let p and q be distinct odd primes. Then (1)pq,k holds if and only if

p ≡ 1 (mod k), or q ≡ 1 (mod k), or p2 ≡ 1 (mod k) and q ≡ −p (mod k).

This is proved in section 4.

Define (n, k) to be a “primitive solution” if (1)n,k holds, (n, k) = 1, n is a squarefree

and if (1)N,K holds where N|n and k|K, then n = N and k = K. We will see in
section 2 that all solutions are easily derived from the primitive ones. Thus Corollary
1.4 may be rephrased as follows:

Corollary 1.4 ′ If (pq, k) is a primitive solution, then p2 ≡ 1 (mod k) and q ≡ −p

(mod k).

In section 5 we look at the problem where (n, k) is a primitive solution and n has

at least three prime factors. This is rather more complicated. We prove the following
result:

Corollary 1.5 If (pqr, k) is a primitive solution with k odd, then either pqr ≡ 1

(mod k) with p2 ≡ q2 ≡ r2 ≡ 1 (mod k) and (p − 1, q − 1, r − 1, k) = 1; or

we can write k = lm with (l, m) = 1 where p ≡ qr ≡ −1 (mod l) and r ≡ −q

(mod l), and p ≡ 1 (mod m), q2 ≡ r2 ≡ −1 (mod m) and r ≡ ±q (mod m).

In the solutions so far the orders of p, q and r mod k have all been 1, 2 or 4.
As n is allowed more prime divisors these orders may increase, as well as the set of
possibilities, making this all very complicated. We give an example with odd orders
in section 6, and formulate a combinatorial group theory version of our problem.
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2 Some Elementary Observations

We start by noting that

φ(n, t) =

∑

m≤tn

∑

d|m
d|n

µ(d) =

∑

d|n

µ(d)
∑

m≤tn
d|m

1

=

∑

d|n

µ(d)
[ tn

d

]

,

whereas tφ(n) =
∑

d|n µ(d)tn/d. Therefore,

(2.1) φ(n, t) − tφ(n) = −
∑

d|n

µ(d)
{ tn

d

}

where {u} = u − [u]. Thus (1)n,k is equivalent to

(2.2)n,k,l

∑

d|n

µ(d)
{ ln

kd

}

= 0

for all integers l. We shall use the formula (2.2) to simplify the question, so we can
work only with pairs n, k that are coprime, with n squarefree. Then (2.2) becomes,

for 1 ≤ l ≤ k − 1,

(2.3)n,k,l

∑

d|n

µ(d)Ψ
( ln

kd

)

= 0.

where

Ψ(z) =

{

0 if z is an integer,

z − 1/2 otherwise.

Proposition 2.1

(a) If g = (k, n/
∏

p|n p) then (1)n,k holds if and only if (1)n/g,k/g holds.

(b) If prime p does not divide k then (1)p2n,k holds if and only if (1)pn,k holds.

(c) If (1)n,k holds then (1)mn,k holds

(d) If (1)n,k holds then (1)n,h holds for any integer h dividing k.

(e) If p divides n and k, but p2 does not divide n, and (1)n,k holds then (1)n/p,k holds.

As a consequence of Proposition 2.1 (a), (b), (e) we may determine all pairs n, k for
which (1)n,k holds, simply by examining pairs with gcd(n, k) = 1 and n squarefree.
By Proposition 2.1 (c), (d) if (n, k) is a primitive solution then (1)N,K holds whenever
n|N and K|k.
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Proof (a) If p|n then p|(n/g) so {d|n : µ(d) 6= 0} = {d|(n/g) : µ(d) 6= 0}.
Therefore

∑

d|n

µ(d)
{ ln

kd

}

=

∑

d|(n/g)

µ(d)
{ l(n/g)

(k/g)d

}

so (2.2)n,k,l holds for all l if and only if (2.2)n/g,k/g,l holds for all l.

(b) Now {d|pn : µ(d) 6= 0} = {d|p2n : µ(d) 6= 0}, so that

∑

d|p2n

µ(d)
{ l

k

(p2n)

d

}

=

∑

d|pn

µ(d)
{ pl

k

(pn)

d

}

=

∑

d|pn

µ(d)
{ i

k

pn

d

}

where i ≡ pl (mod k), since (p, k) = 1. Thus (2.2)p2n,k,l holds for all l if and only if
(2.2)pn,k,i holds for all i.

(c) Let M =
∏

p|m,p 6 |n p so that

{d|mn : µ(d) 6= 0} = {Dg : D|n and g|M with µ(D) 6= 0 and µ(g) 6= 0}.

Thus
∑

d|nm

µ(d)
{ lnm

kd

}

=

∑

g|M

µ(g)
(

∑

D|n

µ(D)
{ l(m/g)

k

n

D

})

.

Now, by hypothesis (2.2)n,k,l(m/g) holds for each g|M (which divides m), so the right

side is 0, so (2.2)nm,k,l holds.

(d) By hypothesis (2.2)n,k,l holds for l = i(k/h) for each i. But this is simply
(2.2)n,h,i and so (1)n,h holds.

(e) Write n = pm where p 6 | m so

{d|n : µ(d) 6= 0} = {d|m : µ(d) 6= 0} ∪ {pd : d|m and µ(d) 6= 0}.

Therefore, by (2.2)n,k,l,

(2.4) 0 =

∑

d|m

µ(d)
{ l

k

(pm)

d

}

+
∑

d|m

µ(dp)
{ l

k

pm

pd

}

=

∑

d|m

µ(d)
{ l

k/p

m

d

}

−
∑

d|m

µ(d)
{ l

k

m

d

}

.

Now for a given j, 0 ≤ j ≤ k/p − 1 consider the set of values l = j + ik/p, 0 ≤ i ≤
p − 1.
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Then
{ l

k

m

d

}

=

{ j

k

m

d
+ i

m

pd

}

.

Since p 6 | m, so p 6 | m/d, so this set of values is

1

p

{ pm j

kd

}

+
h

p
for 0 ≤ h ≤ p − 1.

Therefore taking these values in (2.3) and summing,

p
∑

d|m

µ(d)
{ j

k/p

m

d

}

=

p−1
∑

i=0

∑

d|m

µ(d)
{ ( j + ik/p)

k

m

d

}

=

∑

d|m

µ(d)

( p−1
∑

h=0

1

p

{ pm j

kd

}

+
h

p

)

=

∑

d|m

µ(d)
{ j

k/p

m

d

}

,

and thus this equals 0. That is (2.2)n/p,k/p, j holds for each j, and thus (2.2)n/p,k, j,

holds for each j by (2.4).

3 The Main Idea

Let χ be a character (mod k) with χ(−1) = −1. Assume that (n, k) = 1, and n is
squarefree. Then

(3.1)

k
∑

j=1
( j,k)=1

χ( j)

(

∑

d|n

µ(d)Ψ
( jn

kd

)

)

=

∑

d|n

µ(d)χ(n/d)

k
∑

j=1
( j,k)=1

χ( jn/d)Ψ
( jn

dk

)

=

∑

d|n

µ(d)χ(n/d)

k
∑

i=1
(i,k)=1

χ(i)Ψ
( i

k

)

taking i ≡ jn/d (mod k), and thus i runs over a reduced residue system (mod k).

By [6, Proposition 4.1, Theorem 4.2] and the functional equation (see [6, p. 35]),
it is known that if χ is an odd primitive character (mod q) then

1

q

q
∑

i=1

χ(i)i =
q

iπτ (χ)
L(1, χ)

where τ (χ) is the Gauss sum associated with χ and L(s, χ) the Dirichlet L-function.
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Now, for principal character χ0 modulo prime p,

1

pq

pq
∑

j=1

(χχ0) ( j) j =
1

pq

( pq
∑

j=1

χ( j) j −

pq
∑

j=1
p| j

χ( j) j

)

=
1

pq

( p−1
∑

m=0

q
∑

i=1

χ(mq + i)(mq + i) −

q
∑

i=1

χ(pi)pi

)

=
1

pq

(

q

p−1
∑

m=0

m

q
∑

i=1

χ(i) + p

q
∑

i=1

χ(i)i − pχ(p)

q
∑

i=1

χ(i)i

)

=
1 − χ(p)

q

q
∑

i=1

χ(i)i.

Therefore if σ is a primitive odd character (mod m), where m divides k, which induces
a character χ (mod k), then

k
∑

i=1
(i,k)=1

χ(i)Ψ
( i

k

)

=

∏

p|k

(1 − σ(p))

m
∑

i=1

σ(i)Ψ
( i

m

)

=
m

iπτ (σ)

∏

p|k

(

1 − σ(p)
)

L(1, σ).

Since n is squarefree we also have

∑

d|n

µ(d)χ(n/d) =

∏

p|n

(χ(p) − 1) = χ(n)
∏

p|n

(

1 − σ(p)
)

as (n, k) = 1. Therefore, by (3.1), if χ is induced by σ (mod m) then

(3.2)

k
∑

j=1

χ( j)

(

∑

d|n

µ(d)Ψ
( jn

kd

)

)

=
mσ(n)

iπτ (σ)

∏

p|kn

(

1 − σ(p)
)

L(1, σ).

We may invert this as follows: if (l, k) = 1 then

(3.3)
∑

d|n

µ(d)Ψ
( ln

kd

)

=
1

φ(k)

∑

m|k

∑

σ (mod m)
σ primitive
σ(−1)=−1

mσ(ln)

iπτ (σ)

∏

p|kn

(

1 − σ(p)
)

L(1, σ).

From (3.2) and (3.3) we then deduce, since σ(ln)L(1, σ) 6= 0, the following:
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Proposition 3.1 If (n, k) = 1 and n is squarefree then

∑

d|n

µ(d)Ψ
( ln

kd

)

= 0 for all l, 1 ≤ l ≤ k with (l, k) = 1

if and only if for each m dividing k and for every odd primitive character σ (mod m),

there exists a prime p dividing kn for which

σ(p) = 1.

Corollary 3.2 If (n, k) = 1 and n is squarefree then

∑

d|n

µ(d)Ψ
( ln

kd

)

= 0 for all integers l,

if and only if for every odd character χ (mod k), there exists a prime p dividing n for

which χ(p) = 1.

Proof Since (2.2)n,k,l is the same as (2.2)n,k/g,l/g where g = gcd(k, l), thus (2.2)n,k,l

holds for all l if and only if (2.2)n,K,L holds for every K dividing k and every integer
L with (L, k) = 1. By Proposition 3.1, this is equivalent to stating that for every m

dividing K, for every odd primitive character σ (mod m) we have prime p dividing

Kn for which σ(p) = 1. Taking K = m we see we must have such a prime p dividing
mn. Thus p divides n; else if p divides m then σ(p) = 0. Therefore (p, k) = 1, so if χ
(mod k) is induced by σ, then χ(p) = σ(p) = 1.

Proof of Theorem 1.1 By Proposition 2.1(a) and (b) it suffices to prove this assum-
ing n is squarefree (since p|n if and only p|(n/g), by definition). Let N = n/(k, n).
Then (1)n,k holds if and only if (1)N,k holds by Proposition 2.1(e) and (c). Note that
(N, k) = 1 and N is squarefree. By Corollary 3.2, we have that (1)N,k holds if and

only if for each odd character χ (mod k) there exists a prime p dividing N for which
χ(p) = 1. Now if prime q divides n but not N then q divides k, so χ(q) = 0. The
result follows.

4 Corollaries

Two Proofs of Corollary 1.4 (i) We may assume p 6≡ 1 (mod k) and q 6≡ 1 (mod k).
After the result of Hall and Shiu [3]we may assume pq ≡ −1 (mod k), so that pq +

1 ≡ 0 (mod k) and so, for 1 ≤ l ≤ k − 1,

{ lpq

k

}

+
{ l

k

}

= 1.

If (1)pq,k holds then (2.2)pq,k,1 gives that

{ p

k

}

+
{ q

k

}

=

{ pq

k

}

+
{ 1

k

}

= 1
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and so p + q ≡ 0 (mod k). On the other hand if p + q ≡ 0 (mod k) then

{ lp

k

}

+
{ lq

k

}

= 1

for 1 ≤ l ≤ k − 1, so (2.2)pq,k,l holds. Thus our criterion is pq ≡ −1 (mod k) and
p + q ≡ 0 (mod k). This implies p2 ≡ p(−q) ≡ 1 (mod k); and if this holds then
p(p + q) = p2 + pq ≡ 1 + (−1) ≡ 0 (mod k) so p + q ≡ 0 (mod k) as (p, k) = 1.

(ii) In Theorem 1.1 we must have g = 1 as n is squarefree, so (1) holds if and only
if for every odd χ (mod k) either χ(p) = 1 or χ(q) = 1. Now, either χ(p) = 1
for all such χ (so p ≡ 1 (mod k)), or similarly q ≡ 1 (mod k), or there exists odd

characters χp,χq with χp(p) 6= 1 (so χp(q) = 1) and χq(q) 6= 1 (so χq(p) = 1).
But χ2

pχq is an odd character and (χ2
pχq)(q) = χq(q) 6= 1, so 1 = (χ2

pχq)(p) =

χ2
p(p), and thus χp(p) = −1. Similarly χq(q) = −1. There is no odd χ such that

χ(p) = χ(q) = 1, else (χχpχq)(−1) = −1 but (χχpχq)(p) = χp(p) 6= 1 and

(χχpχq)(q) = χq(q) 6= 1. Therefore χ(p2) = χ(−pq) = 1 for all odd χ, implying
the result.

Proof of Corollary 1.2 Suppose qe divides k but not qe+1, where e ≥ 1. By hy-

pothesis q > 2. Let χ be a character of maximal order (mod qe) so χ is odd. By
Theorem 1.1, there exists prime p dividing n with χ(p) = 1 so p ≡ 1 (mod qe).
Therefore qe divides λ(n) and the result follows.

5 Classifying When n Has a Fixed Number of Prime Factors

Suppose (n, k) is a primitive solution with k odd and n = p1 · · · pr where p1, . . . , pr

are distinct primes. For each character χ (mod k) define

vχ =
(

χ(p1), χ(p2), . . . , χ(pr)
)

.

Let G = {vχ : χ a character (mod k)} and H = {vχ ∈ G : χ(−1) = −1}; we con-
sider the elements of those sets without multiplicity. For each prime power Q = qe||k,
let χQ be a primitive character mod Q of order φ(Q), so that vχQ

∈ H ⊆ G. Note that
χQ(pi) = 1 if and only if pi ≡ 1 mod Q. Let R =

{

vχQ
: Q = qe||k

}

. We have

R ⊆ H and G = 〈R〉,

where multiplication of vectors is defined componentwise, that is if u = vw then ui =

viwi for each i where ui is the ith component of u. Note that (1, 1, . . . , 1) /∈ R since
(n, k) is primitive. By the conditions in Theorem 1.1, and since (n, k) is primitive, we

have

(i) For all w ∈ H, there exists i, 1 ≤ i ≤ r with wi = 1;
(ii) For all i, 1 ≤ i ≤ r there exists w ∈ H, with wi = 1, but w j 6= 1 when j 6= i.

Thus our problem can be made “abstract” as follows: for each integer r ≥ 2 we
wish to find all groups G of r-dimensional vectors, whose entries are roots of unity,
such that
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• There exists H ⊆ G where either H = G or there exists a subgroup G+ of G of
index 2 with H = G\G+.

• G is generated by a subset R of H, where 1 /∈ R
• Properties (i) and (ii) hold.

6 Examples When n Has a Fixed Number of Prime Factors

r = 2: By (ii) there exists w1, w2 ∈ H of the form w1 = (1, α), w2 = (β, 1) with
α, β 6= 1. Now (β, α2) = w2w2

1 ∈ H, so α2
= 1 by (i), and thus α = −1. Similarly

β = −1. But then R = H = {(1,−1), (−1, 1)}. This is a reworking of the second

proof of Corollary 1.4 ′ given above.

r = 3: By (ii) there exists w1, w2, w3 ∈ H with wi,i = 1 and wi, j 6= 1 for j 6= i. Now
w1w2w3 ∈ H so w1,iw2,iw3,i = 1 for some i, by (i). Re-arranging the ordinates if

necessary we may assume this is true for i = 3, so w1,3 = γ and w2,3 = γ for some
γ 6= 1. But then w2

1w2 = (w2,1, w2
1,2, γ) ∈ H so w2

1,2 = 1 by (i), and thus w1,2 = −1.
Similarly w2,1 = −1, so our three vectors look like w1 = (1,−1, γ), w2 = (−1, 1, γ)
and w3 = (α, β, 1) for some α, β, γ 6= 1. Now (α, β, γ2) = w2

1w3 ∈ H so γ2
= 1

by (i) and thus γ = −1. Also (α2,−β2,−1) = w1w2
3, (−α2, β2,−1) = w2w2

3 ∈ H,
so α2

= β2
= 1 or −1 by (i). Thus w1 = (1,−1,−1), w2 = (−1, 1,−1), and there

are several candidates for w3, namely u1 = (−1,−1, 1), u2 = (i, i, 1), u3 = (i,−i, 1),
where i2

= −1. Now each of w2u3
2u3, w2u1u2 and w2u1u3 fail (i), so no two ui ’s belong

to H. We claim that H = {w1, w2, u1, (1, 1, 1)} or {w1, w2, u2, u2} or {w1, w2, u3, u3},
for if H contains any other elements we may reason as follows. If (1, 1, 1) ∈ H then
u1 = w1w2(1, 1, 1) ∈ H. H cannot contain another vector u = (1, α, β), as may be
seen by considering uw1w2, u2w2, u2w3, uw2w3, and uw1w3 ∈ H in turn; similarly H

cannot contain another vector (α, 1, β). If H contains another vector u = (α, β, 1)
then as above α2

= β2
= 1 so u = −w1, or − w2. Then u(−u)w3 or uw2w3 or

w1uw3 ∈ H contradicts (i). Thus R ⊆ {u1, w1, w2} with |R| ≥ 2, or R = R1 ∪ R2

with R1 ⊆ {w1w2}, R2 ⊆ {u j , u j} for j = 2 or 3 and |R1|, |R2| ≥ 1. This proves

Corollary 1.5.

|G| odd : Let G = H be generated by

R = {u = (1, w, w, w), v = (w, 1, w, w2)} where w = e2iπ/3.

This can be achieved with n = 29 × 79 × 107 × 191, k = 91.

It is not hard to determine whether (n, k) is a primitive solution to (1)n,k: First
check that (n, k) = 1 and that k is squarefree. Next, for each prime q dividing n,
verify that (1)n/q,k is false. Now for each prime p dividing φ(n)/k, verify that (1)n,pk

is false. For example, (29 × 79 × 107 × 191, 91) is thus proved to be primitive.
It remains an open question in combinatorial group theory to determine all of the

possibilities for G, H, R for a given r. Other than a laborious case-by-case analysis we
see no way to achieve a better understanding.
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[1] P. Erdős Some remarks on a paper of McCarthy. Canad. Math. Bull. 1(1958), 71–75.

https://doi.org/10.4153/CMB-2005-019-9 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2005-019-9


220 J. Germain
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