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We investigate the three-dimensional (3-D) flow around and through a porous screen for
various porosities at high Reynolds number Re = O(104). Historically, the study of this
problem has been focused on two-dimensional cases and for screens spanning completely
or partially a channel. Since many recent problems have involved a porous object in a 3-D
free flow, we present a 3-D model initially based on Koo & James (J. Fluid Mech., vol. 60,
1973, pp. 513–538) and Steiros & Hultmark (J. Fluid Mech., vol. 853, 2018 pp. 1–11) for
screens of arbitrary shapes. In addition, we include an empirical viscous correction factor
accounting for viscous effects in the vicinity of the screen. We characterize experimentally
the aerodynamic drag coefficient for a porous square screen composed of fibres, immersed
in a laminar air flow with various solidities and different angles of attack. We test various
fibre diameters to explore the effect of the space between the pores on the drag force.
Using PIV and hot wire probe measurements, we visualize the flow around and through
the screen, and in particular measure the proportion of fluid that is deviated around the
screen. The predictions from the model for drag coefficient, flow velocities and streamlines
are in good agreement with our experimental results. In particular, we show that local
viscous effects are important: at the same solidity and with the same air flow, the drag
coefficient and the flow deviations strongly depend on the Reynolds number based on
the fibre diameter. The model, taking into account 3-D effects and the shape of the porous
screen, and including an empirical viscous correction factor that is valid for fibrous screens
may have many applications including the prediction of water collection efficiency for fog
harvesters.
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1. Introduction

The flow around porous structures has been largely investigated throughout the recent
decades and has many engineering applications. It can be applied to parachute problems
for the determination of drag and stability (Sarpkaya & Lindsey 1990; Johari & Desabrais
2005), to vertical axis wind turbines (Ayati et al. 2019) as well as to blockage correction in
wind tunnels (Steiros, Bempedelis & Cicolin 2022). Laws & Livesey (1978) highlighted
the possibility of using screens in flow to control the velocity distribution and change
the flow direction. The understanding and improvement of the water collection of fog
harvesters in arid regions require a quantitative description of the flow in the vicinity of
the net (Regalado & Ritter 2016; Moncuquet et al. 2022). Furthermore, such a quantitative
description may provide a first step in the physical understanding of respiratory flows in
the presence of a face mask, as used to reduce the propagation of an airborne virus such
as SARS-CoV-2 (Mittal, Ni & Seo 2020; Bourrianne et al. 2021). In these cases, the
flow can either pass through the porous net or mask, or is deviated around or through
the leaks. More generally, there may be an interest in reducing the constraints exerted on
high panels or masts exposed to a flow for safety reasons, leading to an increased interest
in large porous structures as mentioned by Giannoulis et al. (2012). In some buildings,
a permeable layer is added at a certain distance from the façade for energy efficiency
reasons or to block a part of the sun rays. Also, windbreak panels are usually used in
industry and power plants to control wind and dust pollution. In these cases an estimation
of the cladding wind load is useful information for architects and engineers (Pomaranzi
et al. 2020). Furthermore, the modelling of the interaction of flow with arrays of fibres
and the prediction of the corresponding drag can be helpful to understand the mechanism
of filter feeding for numerous marine organisms for which arrays of bristles move in water
to capture food particles (see Cheer & Koehl 1987; Hood, Jammalamadaka & Hosoi 2019).

The main physical characteristics of the screen involved in flow resistance is the porosity
and the permeability. For very thin porous screens, the porosity can be represented by the
solidity, which is the ratio between the solid surface area and the total surface area of the
screen. The permeability is defined as the parameter relating the pressure gradient within
a porous media to the local velocity of the flow, depending on the geometry of the pores.
The porosity effects on pressure drop across porous screens and on drag force has largely
been investigated, both theoretically and experimentally, whereas the permeability effect
is much less understood, especially for very thin porous structures. However, some recent
work at low Reynolds numbers has been conducted highlighting its influence: in particular,
Ledda et al. (2018) has shown that the permeability has a strong effect on the wake
characteristics, and Pezzulla et al. (2020) has demonstrated that the drag coefficient of the
screen depends on the permeability. On the other hand, Steiros & Hultmark (2018) have
developed a model to predict the drag coefficient for two-dimensional (2-D) perforated
plates as a function of the solidity only. Although they obtained a good agreement with
experimental data, this approach does not take explicitly into account the Reynolds number
based on the scale of the pores, while it is known that the behaviour of the flow in the
vicinity of the screen depends on the specific geometry of the pores as well as the material
and thickness of the screen (see § 4.1).

Several approaches have been adopted to model the flow. For instance, Carvajal et al.
(2020) used three-dimensional (3-D) numerical simulations to access the aerodynamic
characteristics during fog collection and model the net as a porous medium using Darcy’s
law, whereas de Dios Rivera (2011) used the superposition principle applied to a flow
passing around a solid plate and a flow forced to pass through the net to find an
approximation of the velocity at the screen. The difficulty of the problem lies in the
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Three-dimensional flow around and through a porous screen

multiscale physical phenomena, from the characteristic scale of the flow around the screen
that is of order 0.1 to 1 m to that of the flow through the screen (i.e. the pore size) that is
of order O(10−3) to O(10−6)m; the scale of the Reynolds number thus varies from low
Reynolds numbers at the pore scale (of order O(10−1)) to large ones at the net scale (of
order O(106)). Therefore, the physical mechanisms of the whole system cannot be easily
captured by a numerical simulation resolving all scales as noticed by Shklyar & Arbel
(2008), and the method generally used consists in modelling the porous surface as an
imaginary interface where transfers of mass and momentum occur. The macroscopic jump
laws for the velocities and pressure at the interface are deduced from a microscopic model
at the vicinity of the screen where the fluid is generally governed by the steady Stokes
equations. This can be obtained by periodic homogenization theory as done by Zampogna
& Gallaire (2020) and has been recently used for permeable shells by Ledda et al. (2021).
However, these methods introduce some parameters like the permeability of the porous
surface that are difficult to measure experimentally, although they could be obtained using
pore-scale simulation.

We aim here at predicting the drag coefficient of elevated porous panels of arbitrary
shape placed in a laminar flow, and the corresponding flow through the structure, in
conditions relevant for many applications (e.g. fog harvesting). We focus on porous screens
composed of fibres, but the model can be applied without major changes to other kinds of
porous screens. Experimentally, we consider rectangular meshes of woven fibres, with
fibre diameters between 6.0 μm and 1.9 mm and with typical pore sizes of the order
of 10 μm to 1.0 cm, placed in a uniform laminar flow of velocity varying from 0.5 to
13 m s−1 with three orientation angles. For a given fibre diameter, we vary the porosity
of the screen by changing the fibres arrangements and pore sizes; conversely, we study
screens of the same porosity but different fibre diameters, in order to study the effect of
the screen porosity and the flow around or through the screen, as well as the effect of the
microstructure, i.e. of the local pore Reynolds number associated to the flow through the
individual pores. We measure the drag coefficient and perform velocimetry measurements
of the flow around the screen with particle image velocimetry (PIV) and a hot wire probe.

Our goal is to obtain a model of the flow for porous surfaces based only on the porosity,
the large-scale geometry of the screen and the Reynolds number at the scale of the holes
(instead of the permeability), which are easy to access. From this model, we wish to obtain
values of the drag coefficient as well as the proportion of the flow that is deviated around
the screen. We focus on the model first proposed by Taylor (1944) and used by numerous
authors (O’Neill 2006), which consists in considering the screen as a distribution of
sources. This approach has been adopted by Koo & James (1973) who proposed a 2-D
mathematical model for a screen confined in a channel with two parallel boundaries.
Recently, Steiros & Hultmark (2018) derived the drag coefficient of a porous plate based
partially on Koo & James (1973) and 2-D potential flow. Since their prediction showed
a good agreement with their experimental data, here we propose to extend the model of
Koo & James (1973) to a 3-D free flow, keeping the same main hypothesis but taking
into account the shape of the screen, 3-D effects and the base suction effect considered by
Steiros & Hultmark (2018). We then derive the equations to predict the drag coefficient
following the method proposed by Steiros & Hultmark (2018), and discuss the limits of
this approach. While the pressure jump derived following the method of Taylor (1944) and
Steiros & Hultmark (2018) is based on clear physical assumptions, it fails to reproduce
the viscous effects observed experimentally, i.e. finite pore Reynolds number. We thus
incorporate in the model the empirical law of Brundrett (1993) for the pressure jump. We
compare the prediction of the drag coefficient and of the proportion of deviated fluid for
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various porosities and Reynolds number based on the fibres’ diameter to our experimental
results (both with the theoretical and empirical law of the pressure jump).

Furthermore, very few studies report measurements on the drag coefficient for elevated
panels with different angles of attack (to the best of our knowledge only Prandtl &
Flachsbart 1932; Letchford 2001). We therefore also study the flow for arbitrary angle
of attacks and compare our theoretical prediction with experimental data for two angles of
attack (65◦ and 43◦). Finally, we discuss the asymptotic behaviour of the model at solidities
close to 1.

2. Experiments

We measure experimentally the drag coefficient for a series of porous planar structures
consisting of regularly woven nylon yarns in a square mesh and other types of meshes
like rod screens (parallel fibres), of size L = 10 cm × 10 cm. The characteristics of the
porous screens as well of their solidity are detailed in Appendix C, and we also present
a synthesis in table 1. The solidity s is defined as the ratio between the solid surface area
of the screen to its total area Sp. We also characterize the drag coefficient for a classical
surgical face mask for which the physical characteristics such as the fibre diameter and
the solidity are taken from Monjezi & Jamaati (2021) and Du et al. (2021) (screen P9 in
table 1). The porous structure is held in a planar configuration by a square frame with a
width of 0.5 cm (that is 2.1 % of the surface area of the porous structure), representing a
small portion (7.6 %) of the total cross-section of the laminar flow generated by the wind
tunnel. Following Letchford (2001), the square frame is fixed on a 21.5 cm high mast to
avoid boundary layer effects. The set-up is shown in figure 1.

A force balance (SIXAXES, FX2.6, No 1026, ±5 N, sensitivity of ±0.001 N) is used to
measure the force applied to the whole system. The laminar airflow is generated by an open
jet wind tunnel with a square test section of width 40 cm. We also perform experiments
on inclined porous screens; in that case eight different velocities have been used. For both
cases, the velocities vary from 0.5 to 13 m s−1. We can thus define the (global) Reynolds
number of the problem as

Re = L0v0

ν
, (2.1)

where v0 is the uniform velocity of the flow far upstream of the screen, L0 its typical size
and ν the kinematic viscosity of the fluid (the air for the configurations considered here,
so ν = 15.6 × 10−6 m2 s−1). For a screen of the size of a few tens of centimetres with a
velocity of the order of 1 m s−1, we obtain Re ≈ O(104) � 1. We perform measurements
with screens of different solidities, as well as made of different fibre radii and pore sizes
while keeping the solidity almost constant, which allows us to probe the local effect of
viscosity. The details of the wind tunnel as well as the characteristics of the flow can
be found in the thesis of Du Pontavice (2016). The system is placed at a distance of
approximately 50 cm from the outlet of the wind tunnel in order to obtain a free flow.
Temperature and humidity were taken either from meteorological data of the site or local
instruments placed upstream to reduce some of the uncertainty in the air density value. All
the uncertainty estimates can be found in Appendix C. To compute the drag coefficient at
normal incidence, 12 different velocities have been used as shown in figure 2(a) where we
plotted the force as a function of velocity for several screens. From the force curves, we
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Three-dimensional flow around and through a porous screen

Screen no. Solidity s Red CD R2 Screen no. Solidity s Red CD R2

P1 0.58 93–242 0.872 0.9995

P27 0.115

39 0.205

0.9125
P2 0.41

354 0.625

0.9977

46 0.186
422 0.608 54 0.176
494 0.604 62 0.169
565 0.607 69 0.163
633 0.567 77 0.158
704 0.568 85 0.155
776 0.573 93 0.156
848 0.559 100 0.154
915 0.552

P28 0.114

142 0.148

0.9972

P3 0.87 609–1583 0.957 0.9998 169 0.146
P4 0.61 83–217 0.922 0.9997 197 0.136
P5 0.56 32–83 0.941 0.9995 226 0.139
P6 0.61 58–150 0.935 0.9996 253 0.139
P7 0.45 87–225 0.705 0.9993 282 0.139
P8 0.70 42–108 0.986 0.9992 310 0.136
P9 0.26 2–5 0.976 0.9998 339 0.132
P10 0.11 87–225 0.146 0.9990 366 0.129
P11 0.37 87–225 0.596 0.9990

P29 0.080

6 0.322

0.7498
P12 0.31

87 0.499

0.9972

8 0.287
104 0.489 9 0.267
121 0.463 10 0.263
139 0.465 12 0.245
155 0.459 13 0.240
173 0.460 14 0.235
191 0.469 15 0.219
208 0.450 17 0.205
225 0.436

P30 0.080

142 0.088

0.9945

P13 0.17 87–225 0.210 0.9988 169 0.085
P14 0.24 87–225 0.328 0.9990 197 0.088
P15 0.24 87–225 0.336 0.9994 226 0.092
P16 0.24 87–225 0.343 0.9996 253 0.087
P17 0.15 87-225 0.198 0.9982 282 0.086
P18 0.28 87–225 0.358 0.9983 310 0.080
P19 0.52 83–217 0.803 0.9997 339 0.083
P20 0.42 83–217 0.632 0.9995 366 0.079
P21 0.32 83–217 0.406 0.9986 P31 1.00 — 0.939 0.9994
P22 0.65 16–42 0.956 0.9999
P23 0.82 8–21 0.951 0.9998
P24 0.75 10–25 0.960 0.9999
P25 0.70 12–31 0.985 0.9998

P26 0.405

142 0.623

0.9971

169 0.610
197 0.583
226 0.584
253 0.594
282 0.574
310 0.559
339 0.552
366 0.544

Table 1. Porous screen characteristics. The interval of the Reynolds number Red is calculated with the
fibre diameter d as characteristic size, with a velocity v0 = 5.0 m s−1 for the minimum value, a velocity
v0 = 13.0 m s−1 for the maximum value and a kinematic viscosity ν = 15.6 × 10−6 m2 s−1. For the screens
P2, P12, P26, P27, P28 P29 and P30, we put the detailed values of the drag coefficient at each velocity (and
calculated the corresponding Reynolds number Red). The uncertainties as well as the fibre diameters, material
type and geometry can be found in the Appendix C.

987 A20-5

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

37
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.372


O.C. Marchand, S. Ramananarivo, C. Duprat and C. Josserand

5 mm

11 cm

v0

0.5 m Support

Force

balance

Wind

tunnel

Porous

screen

Porous

screen

10 cm

30 mm 1.3 mm20 mm

Porous screen P4 Porous screen P10 Porous screen P8

Frame

1
0
 c

m

(e)

(b)(a)
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Figure 1. Diagram of the experimental set-up for the drag coefficient measurement, and examples of porous
screens essentially in nylon woven mesh.

can then deduce a drag coefficient CD defined as

CD = FD

1
2
ρv2

0Sp

, (2.2)

where ρ is the fluid (air) density and Sp the surface area of the screen. We note that here
the surface Sp is the total surface area of the screen and not its projected area along the
far-field stream direction v0. Figure 2(b) shows the measured drag coefficient CD as a
function of the velocity v0 for different screens with different solidities s and fibre diameter
d, after subtraction of the contribution of the frame and the mast detailed in Appendix C,
and rescaled by the value at the largest velocity of the wind tunnel CD(v0max). In most
experiments, the drag coefficient does almost not vary with the incoming fluid velocity,
i.e. the drag force is proportional to the square of the fluid velocity v0 upstream from the
screen. This is consistent with the fact that the Reynolds number is always high in our
experiments (32 000 < Re < 83 000). However, we observe that for small fibre radii and
low solidities, the drag coefficient decreases with increasing velocity, suggesting viscous
effects. At higher velocity, the drag coefficient tends toward a constant. For screens that
show almost constant value of the drag coefficient with respect to the velocity, the data
can then be fitted with a quadratic law to obtain the drag coefficient CD. We calculated the
coefficient of determination R2 associated to the fitting in table 1. For these screens, with
almost constant drag coefficient, we always have R2 ≥ 0.998. For screens that show more
important variation of the drag coefficient, we keep the value of the drag of each velocity
between 5.0 and 13.0 m s−1. Those values are reported in table 1. For comparison, we also
calculated the coefficient of determination R2 as if they were fitted by a quadratic law.

Figure 3 shows the characteristic drag coefficient of the square screens as a function
of the solidity s. The drag coefficient increases with increasing solidity, until it reaches a
constant value CD � 1 at high solidities (for s ≤ 0.7). This evolution of the drag coefficient
is qualitatively consistent with previous experiments in particular Prandtl & Flachsbart
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Three-dimensional flow around and through a porous screen
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Figure 2. (a) Drag force (FD) measured for different square porous screens at normal incidence. (b) Drag
coefficient CD as a function of velocity v0, renormalised by the drag coefficient at maximum velocity for each
screen CD(v0max ), including screens showing the higher variation of the drag coefficient with respect to the
velocity. Colour bars: fibre diameter d.

(1932), as well as with the 2-D model derived by Steiros & Hultmark (2018). Furthermore,
we observe that for a given solidity, the drag coefficient increases for decreasing d; this
effect is particularly important at small solidities. In order to take into account the effect
of the fibre diameter d, we define a local Reynolds number for the flow around each fibre
denoted Red, for each screen, following

Red = v0d
ν

(2.3)

as done in Prandtl & Flachsbart (1932). At moderately high Red (∼102), where viscous
effects should not dominate the flow through the screen, the 2-D model overestimates the
drag coefficient obtained experimentally, in particular at high solidities. This highlights
the importance to take into account 3-D effects. At low Red, the model underestimates the
drag coefficient, i.e. viscous effects must be included. We note that the model assumes
a steady wake, and thus, is not applicable in the presence of vortex shedding. However,
our experiments suggest that vortex shedding is negligible for our range of parameters, as
further discussed in § 5.3.

To characterize the influence of the solidity on the flow deviation, we measure the flow
field with a PIV method. We use a wind tunnel with square test section of width 22 cm at
constant velocity 2.84 ± 0.02 m s−1. The fluid is seeded with micro-droplets of water of
diameter 3.0 ± 2.0 μm. The Stokes number is defined as

St = 1
18

ρpd2
pv0

μL0
, (2.4)

where ρp and vp are the particles density and diameter, respectively, and μ = ρν is the
viscosity of the fluid. The Stokes number is of the order of 10−3 	 1 and we can consider
that the water droplets act as passive tracers of the flow. A 1 mm-thick laser sheet is used
to highlight the particles in a plane parallel to the flow. The laser (Elforlight LTD.model
FCHPG-3000) has a wavelength of 532 nm and maximum power of 6.0 W. A high-speed
camera PHOTRON was used at a frame rate of 4000 fps to record successive images that
have been analysed with PIVlab in MATLAB (version 2.62).
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Figure 3. Drag coefficient CDmax as a function of the solidity for various square porous screens normal to the
free flow and comparison with the 2-D model of Steiros & Hultmark (2018). The colour of the points indicates
the value of the fibre diameter d following the colour scale on the right. The data from Prandtl & Flachsbart
(1932) and the value at solidity s = 1 from Blevins (1992) are also plotted.

(b)(a) (c)

Figure 4. Experimental evidence of the deviation of the flow and streamlines around a square porous screen
at different solidities s under normal uniform upstream flow v0 = 2.84 ± 0.02 m s−1. Top view of the screen.
The white bar (110 mm) corresponds to the screen embedded in the frame, the screen alone is 100 mm long.
Results are shown for (a) P14, s = 0.24; (b) P6, s = 0.61; (c) P23, s = 0.82.

In figure 4 we show the trajectories of the particles in a plane orthogonal to the screen at
mid-height (i.e. at the middle of the screen), obtained by the superposition of the maximum
intensity of 2000 successive images. The upstream region is at the bottom of the figures
and the downstream region at the top. We observe that the flow deviation around the screen
increases as the solidity increases. We can further observe that the velocity decreases as
the solidity increases, as shown by the variation of the length of the bright lines, shorter
in figure 4(b) than in 4(a). Furthermore, in figure 4(c) we barely observe any particles
crossing the screen, while some particles appear to be mixed by the recirculation in the
wake.

In the following, we aim at developing a model that takes into account both 3-D and
viscous effects. We then use this model to describe the flow around rectangular screens
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Three-dimensional flow around and through a porous screen

50 mm 50 mm

Transverse Diagonal

Dst
/2

Dsd
/2

(b)(a)

Figure 5. Experimental evidence of the 3-D deviation of the flow and streamlines around a square porous
screen (transverse and diagonal directions) for a screen of solidity s = 0.61 (P6) under normal uniform
upstream flow v0 = 2.84 ± 0.02 m s−1. Here Dsd/2 = 55.8 ± 1.5 mm and Dst/2 = 32.8 ± 1.2 mm; thus,
Dsd/Dst = 1.7 ± 0.1 >

√
2.

and predict the corresponding drag coefficient. In order to model these effects, we start
by extending the 2-D model first proposed by Koo & James (1973) to a 3-D free flow
and arbitrary shape, taking into account the base suction effect considered by Steiros &
Hultmark (2018). We then derive the equations to predict the drag coefficient following the
method proposed by Steiros & Hultmark (2018), and discuss the limits of this approach.
In particular, while this approach takes into account some viscous effects in the pressure
jump, it fails to describe the dependency of our measurements on Red. We thus incorporate
in the model an empirical law as proposed by Brundrett (1993) for the pressure jump. Our
modelling approach is sketched in figure 6.

In addition to these 2-D deviations, we observe 3-D deviations. In order to quantify
them, we look at a plane in the diagonal direction (figure 5). In both the transverse and
diagonal plane, we measure the proportion of deviated streamlines (i.e. the position of the
separation distances Dsd and Dst). If the deviations were purely two dimensional, we would
have Dsd = √

2Dst, i.e. the streamtube formed by the separatrix would be square like the
screens. If 3-D deviations occurs, the streamtube should be deformed, and, in particular,
Dsd > Dst. In our experiments, we found that indeed Dsd/Dst = 1.7 ± 0.1 >

√
2.

3. Three-dimensional model

In this section we derive the equations describing the 3-D flow around and through a
porous screen with arbitrary shape and solidity. First, we adopt the method used by Koo
& James (1973) that showed a good agreement with experimental results for 2-D flow in a
channel except at high solidity. This discrepancy at high solidity may come from the lack
of base pressure and vortex shedding in their theory, as suggested by Steiros & Hultmark
(2018) (see §§ 3.4 and 3.5). We extend the model to the 3-D case for free flow, i.e. a case
where there are no boundaries constraining the flow, which is one of the major differences
with the model of Koo & James (1973). We also take into account the effect of the base
pressure. We first obtain a general formulation of the equations for a porous screen of
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Theoretical 3-D potential model

Extension to

Koo & James (1971)
2-D confined potential

flow model

Steiros & Hultmark
(2018) 2-D drag model

Taylor (1944) pressure
jump model

Brundrett (1993)
measurements of

pressure jump
across mesh screens

Integration of
pressure jump law
across the screen

Integration of empirical
pressure jump law for

mesh screens

Analytical derivation
for inclined

rectangular screens

Viscous effects at
microscopic pore scale

Porosity effect on
the wake at macroscopic

screen scale

3-D geometry effects
and free flow

effects at macroscopic
screen scale

Application to rectangular mesh screens

s and Red

s

Integration of
base pressure

pIII

pI – pII

pI – pII

Three dimensions
φ

Free potential

flow

Arbitrary

porous surface

Figure 6. Diagram of the theoretical model derived in this study and the ingredients from previous models
used. In blue, a complete 3-D potential model. In grey, the theoretical basis used for the application to
rectangular mesh screens. In purple, the application to rectangular mesh screens. Here φ denotes the velocity
potential, pIII denotes the base pressure and pI–pII denotes the pressure jump across the screen.

arbitrary shape. We then apply our equations to the case of a rectangular plate inclined in
a laminar flow for which an analytical solution can be found.

3.1. General formulation
The flow around bluff bodies is complex. In order to obtain an analytical or semi-analytical
description of the flow, a widely used approach consists in simplifying the governing
equations using potential flow theory outside the wake while introducing free parameters
such as base pressure to account for viscous and complex phenomena in the wake and
near the solid structure (Parkinson & Jandali 1970). The model proceeds with the same
idea. The system is separated into four regions delimiting four flow regimes, as shown in
figure 7. The flow is assumed to be stationary, incompressible and inviscid everywhere
except through the porous structure where viscous effects cannot be neglected.

In region I we assume that the flow is potential and the velocity is denoted vI(x, y, z).
Region I is located upstream of the structure as well as downstream outside the wake
zone contained by a well-defined streamtube attached to the contour of the porous
surface as shown in figure 7. Therefore, the velocity derives from a velocity potential
denoted φI(x, y, z) for region I. Using the method employed by Koo & James (1973), and
initially suggested by Taylor (1944), we calculate the flow by modelling the screen with
a continuous source distribution with strength Ω(xs, ys, zs), where (xs, ys, zs) denotes a
point on the surface. We obtain the potential flow in region I by superposing the resulting
potential flow from the distribution of sources with the uniform laminar flow v0. The
two streamfunctions ψI and χI needed to describe general 3-D incompressible flows can
then be deduced using the following relation (for a definition of 3-D streamfunctions,
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Three-dimensional flow around and through a porous screen

Region I

0

Laminar flow

Discontinuity

Region II

Surface

influence

E(ψI, χI)vI E(ψI, χI)v0

Near wake Far wake

Region III

Porous

surface Sp

Constant

Increases

to p0

Vortices

mixing

Separation streamtube

Region IV
A

v0

vI

vI

vII

pI

pI

pII

x

z

p

Cp

Cw

pIII

pIII

B

y

pIIph

Control vloume V1

Figure 7. Diagram of the model for a 3-D potential flow around and through a porous screen. The dashed lines
are the separation streamlines used as a boundary between the regions. The dotted lines are the streamlines
used in the model to calculate the velocities in regions I and II. The incoming flow is laminar and is extended
over the entire height of the system. Here Cw denotes the section of the wake.

see Yih 1957):

vI(x, y, z) = ∇ψI(x, y, z) ∧ ∇χI(x, y, z). (3.1)

Regions II and III are located downstream of the porous surface in the near wake. In
these regions the flow can be rotational so that we cannot use anymore a velocity potential
to describe the flow. In region II the pressure and the velocity are not constant since they
are influenced by the surface. However, in region III the flow is sufficiently far from the
screen so that the streamlines tend to be aligned with the uniform flow v0 as represented
by the contour Cw in figure 7. Therefore, the pressure tends towards a base suction pressure
pIII that is a priori different (and lower) than the constant external pressure p0. This region
is mathematically at infinity (there are no finite separations between regions II and III),
however, since the flow aligns rapidly with the uniform flow, we indicate a region III in
the near wake in figure 7. In two dimensions, the approach of constant pressure along
separating streamlines has been successfully used in free-streamline theory by Wu (1962),
Parkinson & Jandali (1970) and Roshko (1954) to model the wake. In this model, since
we consider three dimensions, we can not adopt free-streamline theory, but pIII can be
considered as having the same role as the constant pressure used in such theory. The flow
in regions II and III is found with matching conditions as explained later.

In figure 7 we added a region IV that is located in the far wake where the mixing with
the outer flow can not be ignored. In this region, the pressure should increase to reach
again the pressure p0 outside the wake. We assume that this region has little influence
on the flow near the porous screen and on the aerodynamic forces, and therefore, it is not
included in the model. Consequently, in our model the pressure in the far wake will remain
equal to pIII .
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3.2. Determination of the flow in region I
In region I the flow is potential, and we derive the velocity from the velocity potential.
For simplicity, we set the reference frame so that the axis (Oz) is aligned with the velocity
v0 without loss of generality. Due to the linearity of the Laplacian, we first consider the
potential flow φ(x, y, z) for the source distribution only, then we add the potential flow
for the uniform flow. The velocity potential from the source distribution Ω located on a
general regular surface Sp is the solution of the equation

�φ(x, y, z) = Ω(x, y, z)1Sp, (3.2)

where 1Sp denotes the Dirac function associated to the surface Sp. For a point source in
three dimensions centred at the origin, the Green function of the Laplacian is

Γ (x, y, z) = − 1
4π

1√
x2 + y2 + z2

. (3.3)

Therefore, if we assume ξ : U ⊂ R
2 → R

3 to be a surface patch of a general regular
surface Sp with coordinates

ξ =
⎛
⎝xs(u, v)

ys(u, v)
zs(u, v)

⎞
⎠ , (3.4)

parametrized by two parameters u and v, with (u, v) ∈ (U = [a, b] × [c, d]) with
(a, b, c, d) ∈ R

4, then the velocity potential φ(x, y, z) is expressed for all (x, y, z) ∈
R

3 \ Sp as (Pressley 2010)

φ(x, y, z) =
∫∫

U
Ω(u, v)Γ (x − xs(u, v), y − ys(u, v), z − zs(u, v))

∥∥∥∥∂ξ∂u
∧ ∂ξ

∂v

∥∥∥∥ du dv,

(3.5)

and the total velocity potential can be written as the sum

φI(x, y, z) = v0z + φ(x, y, z). (3.6)

We deduce the velocity in region I with vI(x, y, z) = grad(φI(x, y, z)). Note that the
Green function can be changed without other modifications in the model to study the
situation of a flow in a confined environment or near a wall.

3.3. Determination of the flow in regions II and III
In region II the flow can be rotational, and therefore, is not necessarily potential. The flow
is obtained from the streamfunctions by considering, as done by Koo & James (1973),
that the streamlines in region II have the same pattern as if they were obtained by the
streamfunctions from the superposition of the distribution of sources and the uniform
flow v0. This can be formulated in a general way by writing the two streamfunctions for
the flow in region II as functions of the streamfunctions of region I. Let ψII and χII be
the streamfunctions in region II. As defined above, ψI and χI are the streamfunctions
deduced from the flow in region I, functions that can be considered in the whole
space. Then, without loss of generality, we choose an analog formulation as the one
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Three-dimensional flow around and through a porous screen

proposed by Koo & James (1973) to describe the flow in region II, using the functions f
and g:

ψII = f (ψI)ψI and χII = g(χI)χI . (3.7a,b)

This means that the velocity vII in region II, and the velocity vI obtained from the velocity
potential φI(x, y, z), are co-linear at any point. We indeed obtain

vII(x, y, z) =
(

df
dψI

+ f (ψI)

)(
dg
dχI

+ g(χI)

)
vI(x, y, z). (3.8)

We define the attenuation function E as

E(ψI, χI) =
(

df
dψI

+ f (ψI)

)(
dg
dχI

+ g(χI)

)
, (3.9)

which is the crucial quantity to determine the flow in region II. Since E is a function only
of the streamfunctions, it is constant along a streamline and is therefore entirely defined
by considering its value on the screen.

In addition to (3.8), the mass flow rate must be conserved when the fluid passes through
the screen implying the continuity of the normal velocity at the screen between region I
and region II:

vIn(xs, ys, zs) = vIIn(xs, ys, zs). (3.10)

At this point, our system thus contains two unknowns that are the attenuation function
E and the distribution of sources Ω . We have one equation (3.10), and another equation
linking the velocities and pressures in the vicinity of the porous structure is required to
close our system of equations. For this purpose, two streamlines are considered as shown
in figure 7: (AP) and (PB) where the point P is on the screen taken as a surface from a
macroscopic point of view. Along each of these streamlines, Bernoulli’s equation can be
applied, and we thus obtain, for (AP),

1
2ρv

2
I (xA, yA, zA)+ pI(xA, yA, zA) = 1

2ρv
2
I (xs, ys, zs)+ pI(xs, ys, zs), (3.11)

and, for (PB),

1
2ρv

2
II(xs, ys, zs)+ pII(xs, ys, zs) = 1

2ρv
2
II(xB, yB, zB)+ pII(xB, yB, zB). (3.12)

We consider that the points A and B are far enough from the screen so that we can
take constant values of the velocities and pressures (see Fail, Lawford & Eyre (1957)
for flat plates normal to an air stream). Therefore, upstream we have vI(xA, yA, zA) = v0
and pI(xA, yA, zA) = p0; downstream we take the mean value of the velocity over a
section of the wake orthogonal to the far-field stream direction (v0): vII(xB, yB, zB) =
limz→+∞ vII(x, y, z) = E(ψI, χI)v0. In the rest of the paper, E(ψI, χI) will be denoted
as Ē. Koo & James (1973) considered a far-downstream constant pressure p0; however,
it is known that the pressure in the wake is lower than the pressure outside the wake
that contributes to aerodynamic forces. Steiros & Hultmark (2018) therefore introduced a
suction base pressure pIII at the point B, which is assumed to be constant far enough from
the screen in region III as explained above. Thus, we introduce a third free parameter
pIII that will be determined from conservation equations in § 3.5. Note that since we

987 A20-13

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

37
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.372


O.C. Marchand, S. Ramananarivo, C. Duprat and C. Josserand

assume that the pressure pIII is constant, the pressure will be discontinuous across the wake
boundaries (as in the model of Koo & James (1973) in the 2-D case). By combining (3.11)
and (3.12), decomposing the velocities according the tangential and normal components
on the screen (respectively, vI t and vIn) and by using (3.10), we obtain the pressure
difference

p0 − pIII = 1
2ρ(1 − E2(ψI, χI))v

2
I t(xs, ys, zs)+ 1

2ρ(Ē
2 − 1)v2

0

+ pI(xs, ys, zs)− pII(xs, ys, zs). (3.13)

If we are able to determine the pressure differences p0 − pIII and pI(xs, ys, zs)−
pII(xs, ys, zs) independently from these equations, then we can use (3.10) to find the
attenuation function E and (3.13) to find the distribution of sources Ω . In order to
determine the suction pressure pIII , we follow the method of Steiros & Hultmark (2018)
in § 3.5, using the conservation law of the momentum in the control volume V1 shown in
figure 7, and at the vicinity of the screen. Before addressing this problem, we focus in the
following § 3.4 on the pressure jump pI(xs, ys, zs)− pII(xs, ys, zs).

3.4. Pressure jump across the screen
A summary of the models for the relation between the pressure jump and screen
porosity can be found in Xu et al. (2020). This problem has largely been discussed in
many papers, raising the difficulties of a general formulation. In their model, Steiros &
Hultmark (2018) consider two streamlines passing through the screen in a hole where
the velocity and the pressure are assumed to be uniform. Immediately upstream after
the acceleration of the fluid, the characteristic pressure of the flow is denoted ph and
is assumed to correspond physically to the mean pressure inside the hole. As noted by
several authors including Taylor & Davies (1944) and Wieghardt (1953), the characteristic
velocity immediately upstream should be regarded as the mean velocity after contraction
of the flow within the holes, vh1, denoting the average velocity through the screen
expressed as

vh1 = vIn(xs, ys, zs)

(1 − s)
, (3.14)

The velocity accelerates to vh1 in the hole and the pressure decreases to ph so that
at this point there are no losses. Along this first streamline, Bernoulli’s equation
leads to

pI(xs, ys, zs)+ 1
2ρv

2
I (xs, ys, zs) = ph + 1

2ρv
2
h1. (3.15)

Immediately downstream, considering also a homogenized velocity, the flow enlarges
and the velocity reaches a value equal to

vh2 = vIIn(xs, ys, zs), (3.16)

taken as the characteristic velocity just after the hole. As discussed by Taylor & Davies
(1944) and Steiros & Hultmark (2018), there are pressure losses in the pores, i.e. pII < pI .
Taylor & Davies (1944) consider that a fraction λ of the pressure lost in acquiring the
velocity vh is regained when the stream becomes uniform again behind the sheet. Steiros
& Hultmark (2018) consider that the pressure loss during the fluid acceleration is not
recovered, i.e. all surplus kinetic energy due to fluid acceleration is lost and not reconverted
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Three-dimensional flow around and through a porous screen

into pressure (i.e. λ = 0). In that case, Bernoulli’s equation along this second streamline
leads to

ph + 1
2ρv

2
h2 = pII(xs, ys, zs)+ 1

2ρv
2
II(xs, ys, zs). (3.17)

We combine (3.8), (3.10) and (3.14)–(3.17) to obtain

pII(xs, ys, zs)− pI(xs, ys, zs) = 1
2ρvI

2
t (xs, ys, zs)(1 − E2(ψI, χI))

+ 1
2ρvI

2
n(xs, ys, zs)θ(s), (3.18)

with

θ(s) = 1 − 1
(1 − s)2

. (3.19)

Injecting the pressure difference pI–pII obtained in (3.18) in (3.13), we have

p0–pIII = −1
2ρv

2
I n(xs, ys, zs)θ(s)+ 1

2ρ(Ē
2 − 1)v2

0 . (3.20)

We assumed that pIII is constant, therefore, the right-hand side of the above equation
has to be constant, which leads to the condition

gradSp
(vI

2
n(xs, ys, zs)θ(s)) = 0, (3.21)

with θ(s) that can vary for non-homogeneous porous surfaces. Therefore, under the
assumptions made so far, we are looking for a source strength Ω that satisfies this
condition. It is possible to relax certain restrictions on the value of Ω by considering
a variable base suction pressure pIII or a variable far wake velocity vII(xB, yB, zB) =
E(ψI, χI)v0. In that case, the problem is far more difficult, and should be solved
numerically. Such a resolution is beyond the scope of the present work.

3.5. Drag coefficient
At this point, our system of equations is not closed. Therefore, in this section we find
another equation by adapting the model of Steiros & Hultmark (2018) in three dimensions
with a screen of arbitrary shape and orientation in the flow. It uses two expressions of the
aerodynamic forces that can be combined to give a final equation, closing eventually our
system of equations.

A first expression is given by the momentum balance around the surface of the screen,
using the drag coefficient as defined in (2.2), giving

CD = 1
1
2
ρSpv

2
0

(∫∫
Sp

( pI–pII)ez · ns dS + ρ

∫∫
Sp

vInez · (vI–vII) dS

)
, (3.22)

where the normal vector ns points in the direction of region II. The pressure difference
pI–pII in (3.22) is given by (3.18).

The second expression of the drag coefficient is provided by the momentum balance in
a control volume V1 around the screen as shown in figure 7. We consider that this volume
V1 is large enough so that the velocities at the surfaces Sx and Sy on the sides of the block
parallel to the z axis are equal to v0 + vε where vε 	 v0. With this approximation, the
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projection of momentum balance equation onto the far-field stream direction (v0) gives an
expression of the drag FD,

FD = ρSw(1 − Ē2)v2
0 + Sw( p0–pIII)− ρv0

∫∫
Sx+Sy

vI · n dS, (3.23)

where Sw is the area of the section of the wake (orthogonal to the z axis), and the bar
over E denotes the mean over the considered surface. The normal vector n points outwards
from the control volume. Then, a mass balance in the same control volume gives

ρv0Sw = ρ

∫∫
Sx+Sy

vI · n dS + ρĒv0Sw. (3.24)

This equation allows us to find the value of the last term of the conservation of momentum
equation (3.23). Moreover, the section of the wake Sw is determined with a mass balance
through the screen

ρ

∫∫
Sp

vI · n dS = ρĒv0Sw. (3.25)

Equations (3.23)–(3.25) are now combined to obtain a second expression of the drag
coefficient, which reads

CD = 1
1
2
ρSpv

2
0

( p0–pIII + ρv2
0(Ē − Ē2))

1
v0Ē

∫∫
Sp

vIn dS. (3.26)

Equation (3.20) giving an expression of p0–pIII is used so that the second expression of
the drag (3.26) is calculated further:

CD = 1
Sp
(−(1 − Ē)2 − v2

In
θ(s))

1
v0Ē

∫∫
Sp

vIn dS. (3.27)

The final equation of the problem is obtained by equalizing the two expressions of the
drag coefficient (3.22) and (3.27), yielding

Ē
∫∫

Sp

(ṽ2
It
(1 − E2)+ ṽ2

In
θ(s))ns · ez + 2ṽIn(1 − E)ṽIt · ez dS

= (−(1 − Ē)2 − ṽ2
In
θ(s))

∫∫
Sp

ṽIn dS, (3.28)

with dimensionless velocities ṽ = v/v0.
Finally, we give the explicit expression for vIn and E. Finding vIn leads to a boundary

surface potential problem. An explicit expression of vIn is found from the gradient of the
velocity potential (3.6) having therefore an integral term. This integral term is known
as a harmonic double-layer potential with density Ω (Gunter 1967), which is defined on a
subdomain of R

3 \ Sp. This integral term becomes singular if it is evaluated on the surface
Sp, however, it can be continuously extended on the surface for each side and the value
depends on the side by which we approach the surface. From the definitions of regions I
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Three-dimensional flow around and through a porous screen

and II, for m = (x, y, z) ∈ Sp, we have

vIn(m) = v0ez · ns + v−
n (m), (3.29)

and

vIIn(m) = E(ψI, χI)(v0ez · ns + v+
n (m)), (3.30)

with

v±
n (m) = lim

ε→0+
∂φ

∂ns
(m ± εns), (3.31)

with φ defined in (3.5) and the directional outward normal derivative

∂φ

∂ns
(m) = grad(φ(m)) · ns. (3.32)

From a theorem that can be found, for instance, in Kress (1999, p. 80), the value of
the limits above can be expressed using an improper integral. For m = (x, y, z) ∈ Sp, this
expression reads

v±
n (m) =

∫∫
U
Ω(u, v)

∂Γ

∂ns
(m − ms(u, v))

∥∥∥∥∂ξ∂u
∧ ∂ξ

∂v

∥∥∥∥ du dv ± 1
2
Ω(m), (3.33)

with ms(u, v) = (xs(u, v), ys(u, v), zs(u, v)). Finally, E is found by applying the continuity
equation (3.10) for the normal velocities across the surface, with the expressions given in
(3.29) and (3.30). For m = (x, y, z) ∈ Sp, we have

E(m) = v0ez · ns + v−
n (m)

v0ez · ns + v+
n (m)

. (3.34)

The system of equations is now closed and enables us to obtain the velocities and
pressure at any location in the flow by determining the source strength Ω , solution of
(3.28). In the next section we solve the problem analytically in a basic but very common
geometry.

3.6. Application to an inclined rectangular screen in free flow
For a rectangular geometry and homogeneous solidity, it is possible to obtain without
major difficulty an analytical solution of the equations of our model. We therefore apply
the 3-D model to the simple case of a rectangular screen (centred at z = 0 as shown in
the figure 8) in a free laminar flow in order to find the flow and the drag coefficient as a
function of the solidity. In that case, the velocity potential (3.6) becomes

φI(x, y, z) = v0z + c − 1
4π

∫∫
Sp

Ω(u, v) du dv√
(x − v)2 + ( y − u sin (β))2 + (z − u cos (β))2

.

(3.35)

We then calculate the velocities at the screen. The objective of the calculus is to obtain
Ω as a function of the solidity, which will determine all the other variables of the problem.
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Figure 8. Diagram of the inclined rectangular porous screen in the (Oyz) plane in a 3-D free flow with an
angle β. The dashed lines are the separation streamlines used as a boundary between the regions of the model.
The dotted line between points A and B is the streamline used in the model to calculate the velocities in the
regions I and III. The incoming flow is laminar.

The normal component of the velocity in region I at the arbitrary position (w, t) on the
surface is

vI
±
n (w, t) = v0 sin (β)+ lim

ε→0±
1

4π

∫∫
Sp

fε(u, v)Ω(u, v) du dv, (3.36)

with

fε(u, v) = ε cos (β) sin (β)
((t − v)2 + (w − u)2 + (2(w − u)+ ε)ε cos (β))3/2

. (3.37)

The details of the calculations are given in Appendix B. At the screen, depending on
the direction from which we approach the screen (ε → 0±), the magnitude of the normal
component of the velocity is constant and is equal to

vIn(w, t) = v−
n (w, t) = v0 sin (β)− 1

2Ω(w, t), (3.38)

vIIn(w, t) = E(ψI, χI)v
+
n (w, t) = E(ψI, χI)(v0 sin (β)+ 1

2Ω(w, t)). (3.39)

At this point, for an homogeneous screen (s constant on the surface), (3.21) leads to
grad(Ω(w, t)) = 0, i.e. the source strength is a constant.
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Three-dimensional flow around and through a porous screen

Thus, (3.10) leads to a constant attenuation function

E =
v0 sin (β)− 1

2
Ω

v0 sin (β)+ 1
2
Ω

. (3.40)

If we found constant normal velocity, it is not the case of the tangential velocity for
which the magnitude varies on the surface of the screen. The tangential component of the
velocity at the surface is

vI t(x,w) = (Ω2I2
x (x,w)+ (Ω(sin (β)Iy(x,w)+ cos (β)Iz(x,w))

+ cos (β)v0)
2)1/2, (3.41)

with Ix, Iy and Iz the following surface integrals that are calculated in Appendix A:

Ix(x,w) = 1
4π

∫∫
Sp

x − v

((x − v)2 + (w − u)2)3/2
du dv, (3.42)

Iy(x,w) = 1
4π

∫∫
Sp

(w − u) sin (β)
((x − v)2 + (w − u)2)3/2

du dv, (3.43)

Iz(x,w) = 1
4π

∫∫
Sp

(w − u) cos (β)
((x − v)2 + (w − u)2)3/2

du dv. (3.44)

For the sake of simplicity, we approximate the magnitude of the tangential component
of the velocity as its root mean square. We note that since in (3.28), vIt appears both in
linear and quadratic form, this approximation becomes exact for a surface normal to the
mean flow direction (β = π/2). We thus take

vI t = (Ω2γ0 + v2
0 cos2 (β))1/2, (3.45)

where γ0 can be considered as a shape factor (see Appendix A). Equation (3.18) becomes

pII − pI = 1
2ρ(vI

2
t (1 − E2)+ vI

2
nθ(s)). (3.46)

Equation (3.13) leads to

pIII − p0 = 1
2ρ(1 − E2)(v2

0 − vI
2
t )+ pII − pI

= 1
2ρ((1 − E2)v2

0 + vI
2
nθ(s)). (3.47)

Using (3.23)–(3.25), we obtain a first expression of the magnitude of the drag force FD:

FD = ρv0(1 − E)vnSp + 1
v0
( p0 − pIII)

vn

E
Sp. (3.48)

The second expression for the drag force FD is obtained with (3.22),

FD = (pI–pII) sin (β)Sp + ρvnv0 cos2(β)(1 − E)Sp. (3.49)

Note that, for a rectangular screen orthogonal to the free flow, the second term of (3.49)
vanishes since β = π/2 and we obtain a drag coefficient proportional to the pressure
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Figure 9. Theoretical prediction of the drag coefficient and velocities on the surface as a function of the
solidity obtained with the 3-D model applied to a square homogeneous screen normal to the flow (β = π/2),
and comparison with different 2-D models. The full lines are obtained with the 3-D model developed in this
paper using the same pressure jump law across the screen as Steiros & Hultmark (2018) (but taking account of
geometric 3-D effects). (a) Drag coefficient. (b) Normal velocity and quadratic mean of the tangential velocity
as defined respectively in (3.38) and (3.45). (a) Theoretical drag coefficient. (b) Theoretical velocity at the
screen.

difference pI–pII . Now, by denoting ω = Ω/v0 and combining (3.48) and (3.49), we obtain
the following equation that we have to solve to find the value of the source strength:

− 1
8ω

4θ(s)+ ω2 sin2 (β)(8γ0 + θ(s)− 2)− 4ω sin (β)− 2 sin4 (β)θ(s) = 0. (3.50)

This equation has been solved using Python 3.9.5 and the method fsolve from
scipy.optimize. The solution for a square porous plate at normal incidence with β = π/2
is plotted in figure 9(a). At low solidity, our model for a square plate is close to the
prediction of Steiros & Hultmark (2018) and Taylor & Davies (1944). Above a solidity
s = 0.4 the drag coefficient becomes slightly different from the prediction of Steiros &
Hultmark (2018) and the difference increases with increasing solidity. Three-dimensional
effects are therefore important at high solidity.

At high solidity (s � 1), the curve converges towards the drag coefficient of a flat
solid plate. This value is predicted to be 1.2 in our model, which is close to the
experimental measurement at the global Reynolds number Re ≈ 104, giving approximately
1.05 according to Blevins (1992), 1.17 according to the synthesis of Hoerner (1965) on
various drag measurements and 0.939 in pour experiments.

Our model takes into account the shape of the porous surface through the parameter γ0.
For a rectangular screen, the aspect ratio, taken into account in γ0, has an influence on the
result as detailed in Appendix A. According to Hoerner (1965), for a flat plate normal to
the flow, the drag coefficient increases very slowly when the aspect ratio is reduced until
a ratio of approximately 0.1. Beyond this point the increase becomes more pronounced,
until it reaches CD = 2.0 for an infinitely thin plate (1.90 according to Blevins 1992). In
our model, we indeed observe an increase of the drag when the aspect ratio decreases (see
Appendix A) from CD = 1.2 for a square plate (with γ0 = 0.0998), 1.29 for a rectangle
with aspect ratio 1/10 (with γ0 = 0884) to CD = 1.33 for an infinitely thin plate. This
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Three-dimensional flow around and through a porous screen

value for an infinitely thin plate is lower than the experimental value, that is, CD ≈ 2.0
according to Blevins (1992) and Hoerner (1965). This difference may be due, in this case
of very high aspect ratio, to the vortex shedding that is not taken into account in the present
wake model, as noted by Steiros & Hultmark (2018).

In figure 9(b) we compare the normal and tangential velocities in the 2-D and 3-D cases.
The tangential velocity is taken in both cases as the quadratic mean over the whole surface,
in three dimensions it is defined in (3.45), the normal velocity is constant on the surface
in both cases also, in three dimensions it is defined in (3.38). While the normal velocity is
the same in two dimensions and three dimensions, we see an influence of 3-D effects on
the tangential velocity.

While taking into account the 3-D effects improve the prediction of CD at high solidities,
it does not improve the prediction at moderate and low solidities. The limitations of
potential flow theory to describe the complex flow around bluff bodies are arising at high
solidity, but should be negligible at low and moderate solidity. Here, we hypothesize that
the main reason for the discrepancy between our experimental results (figure 3) and the
theoretical prediction (figure 9a) lies in the pressure loss at the pore scale. Indeed, the
relation used to estimate the pressure jump pI–pII (3.18) is a strong assumption, and does
not consider the pressure losses by viscous friction. In particular, it does not explicitly
account for the viscosity, and can not account for the variations of the drag coefficient
with the local Reynolds number observed in the experiments.

4. Local viscous effects

As we have seen, the pressure losses are accounted for in (3.18) with the parameter θ(s)
given by (3.19). We have adopted the assumption of Steiros & Hultmark (2018), i.e. that
all energy due to fluid acceleration is lost and not reconverted into pressure, which is a
crucial assumption. The approach of Taylor & Davies (1944) is to assume that a fraction λ
of energy is regained, which would modify θ(s) to read

θ∗(s) = 1 − 1 − λ
(1 − s)2

. (4.1)

In their experiments, Taylor & Davies (1944) estimate λ � 0.4. Taking into account
this effect would decrease the drag coefficient, i.e. bring it closer to our experimental
values at high Red. However, λ can only be obtained empirically. Furthermore, in our
experiments, Red is smaller than the critical value of ≈1000 above which viscous effects
can be neglected (Hoerner 1952). We thus want to account for the pressure losses due
to viscous friction as well. One possible approach is to tune the pressure loss term in
(3.18) with a single prefactor θ(s)f that should depend on Red; it should increase as Red
decreases, accounting for increased viscous dissipation. This prefactor θ(s)f (Red) has
been determined experimentally for wire screens by Brundrett (1993) and Bailey et al.
(2003). In this section we follow their approach to include viscous effects and compare
our predictions with experimental results.

4.1. Pressure jump dependency on the local geometry of the pores and viscous effects
As explained above, in the equation of the pressure jump (3.18) with (3.19), as formulated
by Steiros & Hultmark (2018), we do not take into account the dependency of the pressure
drop on the local Reynolds number Red, computed at the scale of the screen pores (and
thus, much smaller than Re), the geometry of the holes and other possible dependency
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like the energy transfer between the material of the screen and the fluid. For instance,
Ando et al. (2022) showed that a layer of flexible fibres can have a higher permeability
than the same layer of rigid fibres due to a flow-induced deformation. Moreover, as shown
by Schubauer, Spangenberg & Klebanoff (1950), the angle of the screen relative to the
laminar upstream free flow has an impact on the pressure drop. Kalugin et al. (2021)
explained also that for inclined perforated plates, the structure of the flow in the holes
depends on (1) the distance of the hole on the plate from the leading edge, and (2) the angle
of attack of the plate. For a low angle of attack, the effective hole area can be significantly
reduced due to the difficulty of the flow to deflect from its original direction mostly parallel
to the surface of the plate. All these studies underline the current difficulty to obtain a
general formulation of the pressure loss for an arbitrary porous screen. Therefore, in what
follows, we adopt another method based on empirical laws in order to test whether this
would be sufficient to estimate the drag accurately.

Numerous experimental investigations have shown that the pressure drop can be
reasonably considered proportional to the square of the velocity normal to the screen at
the vicinity of it through the resistance coefficient k, especially Taylor & Davies (1944).
More recently, Ito & Garry (1998) studied this problem in the 2-D case of a flow around
and through a gauze for low resistance coefficient, while Eckert & Pflüger (1942) studied
the resistance coefficient for the case of a gauze spanning the entire section of a channel.
In these cases, the pressure drop can be written as

�p = 1
2 kρv2

I n(xs, ys, zs). (4.2)

The resistance coefficient k depends on the geometry of the holes, the material of the
screen and the Reynolds number based on the scale of the holes (sometimes k is directly
related to what is called the loss factor or friction factor). This has been mostly studied
when the screen spans entirely a channel with normal incidence, and oblique incidence
(Schubauer et al. 1950; Reynolds 1969). Note that in (3.18), θ(s) can be interpreted as a
resistance coefficient, the intervention of the tangential velocity in (3.18) comes from the
fact that in our case the fluid can pass around the porous structure.

To formulate the resistance coefficient dependency for porous screens, Pinker & Herbert
(1967) has shown that the resistance coefficient k can reasonably be considered as a
product of a function of the solidity, G(s), and a function f of the local Reynolds number
in a pore. In our definition of Red, we use the upstream velocity of the fluid far from the
mesh; in order to take into account the changes in velocity close to the mesh, we define the
local approach Reynolds number,

Ren = Red
vIn

v0
, (4.3)

based on the scale of holes and the approach velocity that in our formulation corresponds
to vIn . Among several fitted expressions for G with respect to the solidity, Pinker & Herbert
(1967) found that G(s) = −θ(s), which exhibits the best agreement with their data.

For the pressure drop, depending also on the inclination of the surface, we have to
consider in fact the function f (Ren, β), as first proposed by Schubauer et al. (1950).
Since the geometry of our porous screen is arbitrary, β should be considered as a local
characteristic of the inclination of the surface of the screen relative to the direction of the
laminar free flow in the far upstream. Here β = 0 means that the surface is parallel to the
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Three-dimensional flow around and through a porous screen

flow v0. We thus propose the following relation for the pressure jump:

pII(xs, ys, zs)− pI(xs, ys, zs) = 1
2ρvI

2
t (xs, ys, zs)(1 − E2(ψI, χI))

+ 1
2ρvI

2
n(xs, ys, zs)θ(s)f (Ren, β). (4.4)

The expression of f is thus expected to be found experimentally. As far as we know, there
is no general physical formulation of the pressure drop through the holes at the microscopic
level that can cover all types of screens, and there is no general demonstration of an
analytical expression of f for an arbitrary porous screen shape. Therefore, it is expected
that some modifications are required for particular porous structures taking into account,
for instance, the geometry of the holes. For screens composed of fibres, with an angle of
attack β with the upstream flow, and for 10−4 < Ren < 104, Brundrett (1993) gives the
following empirical expression of f :

f (Ren, β) = sin2 (β)

(
c1

Ren sin (β)
+ c2

ln (Ren sin (β)+ 1.25)
+ c3 ln (Ren sin (β))

)
.

(4.5)

Here c1, c2 and c3 are real constant. In this model (4.5), the first term corresponds to
the laminar contribution, the second term to the turbulent friction and the last term is
valid at large Reynolds numbers (Brundrett 1993). Brundrett (1993) obtain a good fitting
with his data for wire mesh screens by taking c1 ≈ 7.125, c2 ≈ 0.88, c3 ≈ 0.055. Bailey
et al. (2003) found also a good fitting with their data by taking c1 ≈ 18, c2 ≈ 0.75 and
c3 ≈ 0.055. For the following sections of the paper, we take the geometric mean of the
different values c1 ≈ 11, c2 ≈ 0.8 and c3 ≈ 0.055. For high Ren, the function f behaves as
a logarithmic function of the Reynolds number Ren, while for low Ren, the variation of f
is much more pronounced (inverse function of the Reynolds number Ren). We thus expect
the viscous effects to be important for the typical flow speeds and mesh sizes considered
in this work, and in applications such as fog harvesting and face masks.

We thus use this empirical expression, which is in principle only valid for fibrous
screens, to account for local viscous effects in our experiments. The last term in the
pressure jump (3.18) is thus multiplied by f (β,Ren). This is carried through all the
calculation. In particular, our equation to determine the source strength (3.50) is modified
such that

− 1
8ω

4θ(s)f (Ren, β)+ ω2 sin2 (β)(8γ0 + θ(s)f (Ren, β)− 2)

− 4ω sin (β)− 2 sin4 (β)θ(s)f (Ren, β) = 0. (4.6)

This equation has been solved using Python 3.9.5 and the method fsolve from
scipy.optimize. In the following, we keep and compare both formulations (3.50) and (4.6).
For high solidity, and for a certain range of the two Reynolds numbers Re and Red, the
term θ(s)f (Ren, β) should behave as the inertial term of the Darcy–Forchheimer equation
for porous media. For porous screens composed of square fibre meshes, the inertial term
of the Darcy–Forchheimer equation calculated with the method of Wang et al. (2021) has
a value reasonably close to θ(s) when s ≈ 0.9. For a very thin porous surface, as discussed
by Teitel (2010), the concept of permeability for porous media involved in the equation of
Darcy, and Darcy–Forshheimer, may not always hold for the pressure loss through screens
depending on the regime of the flow. According to Brundrett (1993) and Bailey et al.
(2003), the expression (4.5) seems to be valid over a larger flow regime.
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Figure 10. Drag coefficient as a function of the solidity for various square porous screens normal to the free
flow with different Red , and comparison between the 3-D model. The full lines are obtained with the 3-D model
developed in this paper, solution of (4.6). The black dash-dotted curve is the solution of (3.50), thus, without
taking into account Red .

4.2. Three-dimensional and viscous effects on the drag coefficient
As seen previously, our experiments suggest a strong effect of the local Reynolds number
on the drag coefficient. We now compare in figure 10 our experimental results with the
prediction of the 3-D model, including local viscous effects using the function f (Ren, β).
For all mesh Reynolds numbers Red, the trend of the curve remains globally the same:
there is an approximately linear increase of the drag coefficient at low solidity before the
curve flattens and reaches a plateau, which is well represented by the 3-D model derived
using the method proposed by Steiros & Hultmark (2018), i.e. without f (Ren, β) (3.50).
However, the slope of the initial linear part strongly depends on Red: it decreases with
increasing mesh Reynolds number Red for Red < 103.

Using our model, (4.4) with the empirical formulation of Brundrett (1993), we obtain a
good fitting with our data for solidity s ≤ 0.6, for different Reynolds numbers. This shows
the importance of both the 3-D effects and the viscous effects through the local Reynolds
number Red. In particular, for a given solidity, the drag coefficient strongly decreases for
increasing Red, as are plotted in figure 11.

We indeed observe a strong effect of the mesh Reynolds number, that also depends
on the solidity. We observe a decrease of drag coefficient with increasing Red that is
well captured by the empirical formulation (4.6). This effect has also been observed for
perforated plates by de Bray (1957). At low Red, all curves tend towards the value of the
drag coefficient of a flat solid plate, i.e. no fluid is passing through the screen and most
of it is deviated around. We then note rapid variations for intermediate values of Red
(5 < Red < 50 depending on the solidity), to finally converge towards a constant value at
high Red. This reduction of drag decreases with increasing solidity. As expected, for high
solidity (s = 0.9), there are no effects of Red, as the flow through the screen is weak. We
obtain a similar drag coefficient using the values for the constants c1, c2 and c3 from either
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Figure 11. Drag coefficient as a function of the Reynolds number Red for three different narrow ranges
of solidities: s = 0.1 ± 0.02, s = 0.28 ± 0.04, s = 0.585 ± 0.025. The bullets represent the experimental
measurements, and the plain lines the results of our model ((4.6) taking into account the effect of mesh
Reynolds number Red). The data points for the drag as well as the Reynolds number values are obtained for the
velocity 5.0 ≤ v0 ≤ 13 m s−1. The dash-dotted lines represent the value of the drag coefficient for a solid plate
(three dimensional) from our experiments and from Blevins (1992).

Brundrett (1993) or Bailey et al. (2003). Indeed, we see that for all solidity and moderate
Reynolds numbers Red = O(200) that correspond to most of the screens we tested, the
difference is small (1 ≤ CD(Bailey)/CD(Brundrett) ≤ 1.05), and the difference is even
lower with increasing Reynolds number Red. For low Reynolds numbers Red = O(5), the
difference is however higher.

To further check the validity of our model, we made screens that have the same solidity
but different hole size and number, keeping however Red constant (see table 1 for s = 0.24
(P14, P15 and P16) and s = 0.7 (P8 and P25)), but still with a periodic distribution. As
expected from our model, we do not observe any difference in the drag coefficient within
the bounds of the measurement uncertainty, demonstrating that for these regular screens,
the friction coefficient depends only on s and Red.

4.3. Flow visualization
We can gain some insights into those behaviours by plotting the streamlines and velocity
magnitude of the flow around and through the screen with our model (figure 12). For a
screen normal to the flow, we observe that as the solidity increases, a larger part of the
flow is deviated around the screen and that the flow is strongly slowed down in front of the
screen, which is consistent with the measured increase of drag coefficient (figure 12a–c).

This analysis is taken further by plotting in figure 13 both the PIV measurements (as
described in § 2) in the symmetry plane of the screen, as well as the theoretical predictions
using the pressure jump equation (3.18) for the sake of simplicity (thus, not accounting for
the mesh Reynolds number Red effect). As the solidity increases, we can observe a stronger
attenuation of the velocity behind the screen, a larger deviation of the flow around the
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Figure 12. Streamlines and velocity magnitude obtained with the 3-D model for a square screen normal to the
flow at v0 = 2.0 m s−1 for different solidities and the pressure jump defined in (3.18) (thus, without dependency
on the mesh Reynolds number Red). Results are shown for (a) s = 0.3 and β = 90◦; (b) s = 0.6 and β = 90◦;
(c) s = 0.9 and β = 90◦.

Screen number P1 P4 P7 P8 P9 P14 P19 P21 P22 P23 P25 P27 P28

Reynolds number Red 53 47 49 24 0.16–3.5
mean 0.75 49 47 47 9.1 5.0 6.7 22 80

Table 2. Reynolds number Red calculated with the fibre diameter d as characteristic size and with a velocity
v0 = 2.84 m s−1 and a kinematic viscosity ν = 15.6 × 10−6 m2 s−1.

screen, as well as the apparition of a slower region upstream of the screen. We note that the
theoretical prediction of the velocity magnitudes are in good agreement with the measured
velocities even for the velocity attenuation downstream in the wake. We also observe that
the attenuation of the velocity upstream is well captured by the model. However, for high
solidity, the width of the wake appears larger in experiments than in the model, which
might also be due to the presence of a thicker frame around the mesh in the experiments.
Indeed, as observed in the streamlines in figure 4, there are vortices attached to the edges
of the frame that may impact both the normal velocity and the shape of the wake.

By mass conservation and since the normal velocity is assumed constant on the surface
in this study, the proportion of the incoming fluid that goes through the screen is directly
given by the dimensionless normal velocity vn/v0. Experimentally, we measure the
velocity using a constant temperature anemometer from Dantec Dynamics (MiniCTA,
with probe 55P11, tungsten wire with diameter 5 μm and length 1.25 mm, precision of
0.01 m s−1, minimum velocity of 0.20 m s−1). In figure 14 we plot this ratio vIn/v0 as a
function of the solidity s for different meshes, i.e. different Red as presented in table 2. For
a high mesh Reynolds number and low solidity, the model exhibits good agreements with
the data. However, we observe a strong effect of Red on the normal velocity: notably,
for a small mesh Reynolds number Red, the normal velocity drops more rapidly than
predicted by the model. The model also overpredicts the normal velocity for high solidity.
For screens commonly used for fog harvesting (Red = O(100)), the normal velocity in the
case where Red is taken into account can be up to 21 % greater than the normal velocity
in the case where Red is not taken into account (according to our theoretical results, this is
true for 0.25 < s < 0.75), and is thus not negligible. These data are coherent with the PIV
measurements.

In figure 15 we plot the dimensionless tangential velocity distribution on the porous
surface for different solidities s and Reynolds number Red. We see that the tangential
velocity is much lower than v0 for a large part of the screen. We thus expect important
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Figure 13. Comparison between the 3-D theoretical model and our experiments for the prediction of the
velocity field in the (z, x) plane with y = 0 for three different solidities (low, moderate and high). The theoretical
velocity field has been obtained using the theoretical pressure jump law (3.18) and (3.19). Uncertainties on
the velocities are estimated to be around 0.1 m s−1. Results are shown for (a) P14, s = 0.24, experimental;
(b) P14, s = 0.24, theoretical; (c) P6, s = 0.61, experimental; (d) P6, s = 0.61, theoretical; (e) P23, s = 0.82,
experimental; ( f ) P23, s = 0.82, theoretical.

differences in the streamlines that are deviated around the screen when the solidity or Red
varies.

In figure 16 we give a representation of the proportion of the fluid passing through the
porous surface (and thus, the proportion of the fluid going around it) for different solidities
and Reynolds numbers (Red = 10 and Red = 100). The contours of these sections Sa
represent the separation between the fluid going through the surface and the fluid going
around the surface at z = −∞, i.e. the section of the streamtube or separation surface.
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Figure 15. Dimensionless tangential velocity magnitude |vIt |/v0 on the screen surface obtained with the 3-D
model for a square screen normal to a flow for different solidities and Reynolds numbers ((4.6) taking into
account the effect of mesh Reynolds number Red). Results are shown for (a–c) Red = 10; (d–f ) Red = 100;
(a) s = 0.1 and Red = 10; (b) s = 0.5 and Red = 10; (c) s = 0.8 and Red = 10; (d) s = 0.1 and Red = 100;
(e) s = 0.5 and Red = 100; ( f ) s = 0.8 and Red = 100.

If we place a passive tracer inside these sections at z = −∞ then the passive tracer will
flow across the surface. We observe a clear effect of the 3-D nature of the flow on these
separation surfaces. As measured in our experiments, the separation distance along a
diagonal is much higher than along the transverse direction, and this effect is amplified
as s increases and Red decreases. The fraction Sa/S0 is always equal to vn/v0. However, in
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Figure 16. Upstream section Sa of the streamtube containing all the fluid passing through the surface, at
z = −∞, seen from the front, for Red = 10 and Red = 100.
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Figure 17. Streamlines and velocity magnitude obtained with the 3-D model for a square screen inclined to a
flow at v0 = 2.0 m s−1 for different solidities and the pressure jump defined in (3.18) (thus, without dependency
on the mesh Reynolds number Red). Results are shown for (a) s = 0.8 and β = 60◦; (b) s = 0.8 and β = 30◦;
(c) s = 1 and β = 30◦.

applications such as filtration or fog harvesting, where the main drop capture mechanism
is inertial impact (Moncuquet et al. 2022), the tangential velocity and the shape of the
streamlines are expected to impact the amount of droplets that leave the streamlines and
are collected on the fibres.

4.4. Drag coefficient for low angle of attack
We then vary the orientation angle of the screen in the flow β. When the orientation
angle is increased away from the normal incidence, the deviation of the streamlines is less
important and the velocity is slightly higher (figure 17a,b). For the extreme case of a solid
plate in figure 17(c), two streamlines are deviated along the plate, the flow slows down
first and increases again with a peak value above the plate as the fluid particle leaves it
and is re-entrained in the surrounding flow. However, if the asymptotic behaviour of the
model may provide some indications about the global flow and the aerodynamic forces, it
is expected to be outside of the assumptions of the model as discussed in the next section.

The experimental results are compared with our model for the two angles β = 65◦ and
β = 43◦ on figure 18. As for panels at a normal incidence, the drag coefficient increases
with increasing solidity. The drag coefficient decreases with decreasing angle of attack,
i.e. as we get further away from the normal incidence. Our model is in good agreement
with the experimental data at β = 65◦ (figure 18a). However, it underestimates the drag
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Figure 18. Comparison between the 3-D model and our experiments for the prediction of the drag coefficient
at two angles of inclination for various porous square screens: (a) β = 65◦ (b) β = 43◦ using (3.50). The black
dash-dotted line is the theoretical result obtained with (4.6).

at orientations further from the normal incidence (β = 43◦ figure 18b). In the case of an
inclined porous screen composed of fibres, the effective solidity should increase as the
angle of attack decreases. The use of this effective solidity would result in shifting our
data closer to the yellow curve (87 ≤ Red ≤ 225) in figure 18(b). We finally observe that
both the slope of the linear part and the final value at s = 1 depend on the angle and that
the drag coefficient decreases with decreasing angle.

In addition, our model predicts a maximum of the drag coefficient at high solidity,
as shown in figure 3 (or 10) and more pronounced in figure 18. Such a non-monotonic
behaviour of the drag coefficient of permeable shells with solidity has been shown and
demonstrated in the viscous regime for Stokes flow by Ledda et al. (2021). In our case,
at high ReL and a square screen normal to the flow, several of the porous screens have
indeed (on average) a higher drag coefficient than a solid screen (e.g. for P3, P5, P8,
P9, P22, P23, P24 and P25). However, due to the uncertainty and the interference drag
with the frame used for the support of the screens (see Appendix C), the difference is
not significant enough to draw a clear conclusion. We do not observe such a maximum
in our measurements for inclined plates at an angle 43◦. However, for an angle of 65◦,
the drag coefficient of the screen P23 is on average higher than the solid screen. It is also
possible that in our experiments we were outside the flow regime for such a non-monotonic
behaviour in the drag coefficient.

5. Model extensions

5.1. Vena contracta
In our model, as done also by Steiros & Hultmark (2018), we neglected the possible
contraction of the flow within the holes. Considering the vena contracta within the
pores, as shown in figure 19, the characteristic velocity immediately upstream given by
(3.14), i.e. the mean velocity after contraction of the flow within the holes vh1, can be
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Figure 19. Diagram of the flow at the scale of the pores in case of parallel fibres (left), and corresponding
imaginary surface as used in the model (right).

expressed as

vh1 = vIn(xs, ys, zs)

C(1 − s)
, (5.1)

where C is the contraction coefficient. This implies that the coefficient θ(s) given in
(3.19) is

θ(s) = 1 − 1
C2(1 − s)2

. (5.2)

As far as we know, there are no measurements of vena contracta for screens constituted of
fibres and especially in the 3-D case of free flow. Simmons & Cowdrey (1945) performed
measurements of the velocity profile behind a porous screen made of a square mesh of
woven material spanning a section of a channel and suggest an estimate of the vena
contracta assuming a uniform velocity vh1 = v0 in the holes. In these experiments the
screens are made of circular rods with diameters ranging from 0.112 to 0.373 mm arranged
in a square mesh. The velocity used was from 2.44 to 10.36 m s−1. The local Reynolds
number Red thus varies from 18 to 248, which is the same order of most of the porous
screens used in our experiments. For a solidity s ≈ 0.5, the coefficient C should be
between 0.9 and 1.0. Note that with the formulation (5.2), if C /= 1, the limit s = 0 leads
to a non-zero pressure difference, suggesting that C may depend on the solidity s at least
for low solidities. We note that if the contraction of the flow is not neglected in θ(s),
i.e. C /= 1, there is an increase of the drag coefficient compared with the curve plotted in
figure 9(a). We would thus still overestimate the drag compared with our data in figure 3.

5.2. Asymptotic behaviour at large solidities
Although the model is built for porous surfaces, it is interesting to explore its asymptotic
behaviour when the solidity tends to 1. In this limit, one can question whether a porous
description of the surface is still valid.

When the screen tends to a solidity equal to one, we can obtain an expression of the drag
coefficient. Taking (4.6), dividing by θ(s), which tends to +∞ when s → 1, we have

(ω2 − 4 sin2 (β))2 = 0. (5.3)
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Figure 20. Comparison between the drag coefficient prediction of the 3-D model and the experimental
measurement for a square plate in a free flow for different angles of inclination. Data are added from Blevins
(1992), Okamoto & Azuma (2011) and Torres & Mueller (2004).

Therefore (excluding the case when ω is negative, which would not correspond to the
type of flow we study in this paper), we obtain

ω = 2 sin (β), (5.4)

which gives vIn = 0 as expected. Introducing this value into the expression of the drag
coefficient gives

CD = 2 sin3 (β)(1 − 4γ0). (5.5)

Note that the solid drag coefficient does not depend on the assumption of the pressure
loss across the screen through the expression of θ(s)f (Ren, β) (in (4.4)) as expected.

We measured the drag coefficient as a function of the angle of attack for a square plate
at solidity 1. We plotted the result in figure 20, and as we can see, there is a gap between
the prediction (5.5) and the experimental value of the drag coefficient especially at a low
angle of attack.

Several explanations for this gap can be listed. First, for the solid plate, assuming a
no-slip boundary condition, the tangential component of the velocity on the surface is
equal to zero and increases gradually in the boundary layer. Here, this component of the
velocity is not equal to zero but takes a value that corresponds to the conservation of the
pressure head along the streamlines in region I. Moreover, it is clearly possible that
the pressure difference pI–pII is not always well determined through the assumptions
of the model, especially for low angle of attacks (or particular shapes) where detachment
of the boundary layer and the formation of separation bubbles can occur that strongly
affects the pressure distribution around the surface (Crompton & Barrett 2000).
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Figure 21. Comparison of the drag force FD with and without a splitter plate for a solid plate (without frame
support) of dimensions 11.0 × 11.0 cm2 and thickness 3 mm. The fitting curves are obtained using a quadratic
law.

5.3. Vortex shedding
Our model is only valid for a steady wake, i.e. without vortex shedding. This could be taken
into account, but is beyond the scope of the current study. However, we believe vortex
shedding has little influence on our experimental results. For instance, it has been shown
that vortex shedding was suppressed for the flow past a porous cylinder (Ledda et al. 2018).
In fact, in our flow field measurements, we do not see any vortex shedding close to the
plate. To evaluate the influence of the vortex shedding on our measurements, we used two
splitter plates of different length located in the wake as done by Steiros & Hultmark (2018).
We note that this method was proposed for a 2-D flow, and might not apply directly to our
3-D configuration. In fact, we are not aware of experiments to suppress vortex shedding
in three dimensions but we believe that splitter plates can still give pertinent information
on vortex shedding. Following Apelt & West (1974), for Reynolds numbers in the range
104 < Re < 5 × 104, which corresponds to our case, the use of a splitter plate three times
longer than the plate already suppresses the vortex shedding. In our experiments the
splitter plate has the same height as the solid plate on which drag is measured but with
length 11 and 30 cm and thickness of 3 mm. Figure 21 shows the measured drag force for
a solid plate (solidity equal to 1, square of 11.0 × 11.0 cm2, 3 mm thickness) with and
without a splitter plate. We see a reduction of the drag coefficient of 0.07 with a splitter
plate three times longer than the plate. This difference is expected to be less and less
significant with decreasing solidity.

While these results are not sufficient to rule out completely the effect of vortex shedding,
we note that vortex shedding increases the drag significantly and reduces the base pressure,
as seen in drag measurements in two dimensions by Steiros & Hultmark (2018); these
effects cannot explain the difference between the theory and the experimental data since
suppressing vortex shedding could lead to a lower value of the drag coefficient compared
with our measurements, thus, the difference between the theoretical model and the data
would be more important.
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6. Conclusion

We have studied both experimentally and theoretically the flow around and through porous
screens. In particular, we have derived a model with a universal core based on clear
physical assumptions that allows us to probe 3-D and shape effects. The main issue lies
in the modelling of the pressure jump law across the screen. At low Reynolds numbers,
Zampogna & Gallaire (2020) derived an analytical expression using homogenization tools.
However, it is still an issue at moderate or high Reynolds numbers where no explicit
relation has been derived directly from Navier–Stokes equations (Wang et al. 2021). We
propose here to use an empirical relation obtained for fibrous screens in the literature. The
semi-empirical model accurately predicts our experiments, with the only fitting parameters
in the pressure jump; we note that these parameters are taken identical to those obtained
in previous studies for other screens, suggesting that they are universal for any wire
screens (or textiles) that are widely used in applications. For other types of screens,
including perforated plates, once the pressure jump law across is known, it can be directly
implemented in the model.

In addition, the empirical function includes both laminar and turbulent viscous friction,
and is thus applicable to a wide range of local Reynolds numbers. The interest of the
semi-empirical model lies in the fact that it uses only three types of information that are
readily available: the solidity, the macroscopic geometry of the screen and the Reynolds
number based on the fibre diameter. Both viscous effects (i.e. the local Reynolds number
Red) and 3-D effects have a significant impact on the flow and aerodynamic forces. We
performed experiments on more than 30 porous screens composed of fibres to measure
the drag force and the flow deviation around the screen. We show both theoretically and
experimentally that for screens of identical solidity, the lower the local Reynolds number
based on the fibre diameter is, the higher the drag coefficient is, and the stronger the
deviations are. The drag coefficient for square porous screens, either normal or with a
high angle of attack, show a good agreement with the model except at very high solidity for
which however the prediction is improved compared with previous models. Furthermore,
the model can predict the proportion of the flow deviated around the screen, as well as the
detailed separation surface and the tangential velocity, which are important quantities in
many applications such as filtration or fog harvesting.

Our model might also be useful for a non-homogeneous porous screen. Indeed, for high
solidity perforated square plates, de Bray (1957) found that the drag coefficient depends
on the distribution of the perforations, i.e. is slightly higher with outer holes than inner
holes. It is worth emphasizing that it should be possible in our model to implement such a
surface with non-homogeneous solidity and, therefore, try to reproduce such a difference
in the drag coefficient. However, this consideration goes beyond the scope of this paper
and will be explored in a further study.

We note that this model may find an application to the wind tunnel blockage correction
(Steiros et al. 2022) and turbines modelling (Ayati et al. 2019). According to Steiros et al.
(2022), the use of a porous plate potential model as the one we use in the present paper
improves the blockage correction accuracy for moderate and high solidity compared with
other models. However, these models are in two dimensions (Ayati et al. 2019; Steiros
et al. 2022), while the turbine can have a circular 3-D structure. Our theoretical and
experimental results show that the use of a 3-D model may improve the accuracy at
moderate and high solidity for the drag compared with the 2-D models (see figures 9(a)
and 3). Moreover, our experimental results show that the normal velocity vIn on the screen
may be significantly overestimated at high solidity by both 2-D and 3-D models. We stress
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Three-dimensional flow around and through a porous screen

again that our model assumes a steady wake, and thus, is not applicable in the presence of
vortex shedding that occurs at high solidity for a certain range of Reynolds numbers.

Further study should focus on more complex shapes with curvature; a straightforward
formulation would be to use several small rectangular plates like the well-known panel
method (adapting therefore the velocity potential φ). Furthermore, they should focus on
the pressure and velocity distribution around the porous screen, as there are very few, if
any, data for free 3-D flow. Indeed, we only found data for the drag in 3-D free flow in
Prandtl & Flachsbart (1932) and more recently Letchford (2001).
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Appendix A

This appendix contains the details of the calculation of the velocities for a rectangular
screen inclined with an angle β (with respect to the z axis) in a laminar flow.

Using the previous notations in § 2, the velocity potential in region I is

φI(x, y, z) = v0z + c + φ(x, y, z)

= v0z + c − 1
4π

∫∫
Sp

Ω(u, v) du dv√
(x − v)2 + ( y − u sin (β))2 + (z − u cos (β))2

.

(A1)

A.1. Normal component of the velocity
From the velocity potential we deduce the velocity in region I:

vI(x, y, z) =
(
v0 + ∂φ

∂z
(x, y, z)

)
ez + ∂φ

∂y
(x, y, z)ey + ∂φ

∂x
(x, y, z)ex. (A2)

The vector normal to the surface with an angle β is

en = − cos (β)ey + sin (β)ez. (A3)

Therefore, the component of the velocity normal to the surface is

vI n(x, y, z) =
(

sin (β)
(
v0 + ∂φ

∂z
(x, y, z)

)
− cos (β)

∂φ

∂y
(x, y, z)

)
en, (A4)

with
∂φ

∂z
(x, y, z) = 1

4π

∫∫
Sp

(z − u cos (β))Ω(u, v)
((x − v)2 + ( y − u sin (β))2 + (z − u cos (β))2)3/2

du dv, (A5)

∂φ

∂y
(x, y, z) = 1

4π

∫∫
Sp

( y − u sin (β))Ω(u, v)
((x − v)2 + ( y − u sin (β))2 + (z − u cos (β))2)3/2

du dv. (A6)
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The normal velocity magnitude is therefore

vIn(x, y, z) = sin (β)v0 + 1
4π

I(x, y, z), (A7)

with

I(x, y, z) =
∫∫

Sp

(sin (β)z − cos (β)y)Ω(u, v)
((x − v)2 + ( y − u sin (β))2 + (z − u cos (β))2)3/2

du dv. (A8)

When this component is evaluated on the surface, the integral becomes singular at the
position of this evaluation. We have to calculate the value of this singularity. To simplify
the calculation, we introduce two parameters:

h = y sin (β)+ z cos (β),

t = y cos (β)− z sin (β).

}
(A9)

Thus, we have inversely

y = h sin (β)+ t cos (β),

z = h cos (β)− t sin (β).

}
(A10)

Denoting Ĩ the integral I with the new parameters and without the source strength Ω
assumed to be continuous, we obtain

Ĩ(x, h, t) = −
∫ vb

va

∫ ub

ua

t
((x − v)2 + t2 + (h − u)2)3/2

du dv

= Fua,va(x, h, t)− Fub,va(x, h, t)− Fua,vb(x, h, t)+ Fub,vb(x, h, t), (A11)

with

Fua,va(x, h, t) = arctan

(
(h − ua)(va − x)

t
√
(x − va)2 + t2 + (h − ua)2

)
. (A12)

We can now introduce

y = w sin (β),

z = (w + ε) cos (β).

}
(A13)

The parameters become

h = w,

t = −ε cos (β) sin (β).

}
(A14)

At the surface ε → 0± (± depending on the direction from which we approach the
surface, upstream or downstream), denoting ˜̃I the integral I with the new parameters w,
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Three-dimensional flow around and through a porous screen

we have

vIn(x,w) = v−
n , (A15)

vIIn(x,w) = Ev+
n , (A16)

with

v±
n = sin (β)v0 + 1

4π
lim
ε→0±

˜̃I(x,w). (A17)

Whatever the constant integral bounds, we have the following limit:

lim
ε→0±

˜̃I(x,w) = ±2πΩ(x,w). (A18)

Therefore, the normal component of the velocity at the position (x,w) on the porous
surface is

vIn(x,w) = sin (β)v0 − 1
2Ω(x,w) (A19)

and

vIIn(x,w) = E
(

sin (β)v0 + 1
2Ω(x,w)

)
. (A20)

A.2. Tangential component of the velocity
We define the tangential vector on the porous surface as

t = t1 + t2, (A21)

with

t1 = ex, (A22)

t2 = sin (β)ey + cos (β)ez. (A23)

Thus, the magnitude of the tangential component of the velocity in region I is

vI t(x, y, z) = ‖(vI · t1)t1 + (vI · t2)t2‖

=
((

∂φ

∂x

)2

+
(

sin (β)
∂φ

∂y
+ cos (β)

(
v0 + ∂φ

∂z

))2
)1/2

. (A24)

If we consider a constant source strength Ω then we can write the tangential velocity at
the point (x,w) on the surface with w defined in (A13) as

vI t(x,w) = (Ω2I2
x (x,w)+ (Ω(sin (β)Iy(x,w)+ cos (β)Iz(x,w))+ cos (β)v0)

2)1/2.
(A25)

For simplicity, we use the root mean square of the magnitude of the tangential
component of the velocity on the surface. We have

vI t = 1√
Sp

(∫∫
Sp

vI
2
t (x,w) dx dw

)1/2

= (Ω2γ (β)+Ωα(β)v0 + v2
0 cos2 (β))1/2, (A26)
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with

γ (β) = 1
Sp

∫∫
Sp

I2
x (x,w)+ (sin (β)Iy(x,w)+ cos (β)Iz(x,w))2 dx dw, (A27)

and

α(β) = 1
Sp

∫∫
Sp

2 cos (β)(sin (β)Iy(x,w)+ cos (β)Iz(x,w)) dx dw, (A28)

with the following integrals:

Ix(x,w) = 1
4π

∫∫
Sp

x − v

((x − v)2 + (w − u)2)3/2
du dv, (A29)

Iy(x,w) = 1
4π

∫∫
Sp

(w − u) sin (β)
((x − v)2 + (w − u)2)3/2

du dv, (A30)

Iz(x,w) = 1
4π

∫∫
Sp

(w − u) cos (β)
((x − v)2 + (w − u)2)3/2

du dv. (A31)

There is no particular difficulty to compute the integrals, if we define a function Fa,b :
(x,w) �→ Fa,b(x,w) as well as Ga,b : (x,w) �→ Ga,b(x,w) where |a| ≥ |x|, |b| ≥ |w|,

Fa,b(x,w) = 1
4π

ln (
√
(x − a)2 + (w − b)2 + w − b) (A32)

and

Ga,b(x,w) = 1
4π

ln (
√
(x − a)2 + (w − b)2 + x − a), (A33)

then if we integrate over the rectangular domain [va, vb] × [ua, ub], we have

Ix(x,w) = Fva,ua(x,w)− Fva,ub(x,w)− Fvb,ua(x,w)+ Fvb,ub(x,w), (A34)

Iy(x,w) = sin (β)(Gva,ua(x,w)− Gva,ub(x,w)

− Gvb,ua(x,w)+ Gvb,ub(x,w)), (A35)

Iz(x,w) = cos (β)(Gva,ua(x,w)− Gva,ub(x,w)

− Gvb,ua(x,w)+ Gvb,ub(x,w)), (A36)

and those expressions are integrable again over the rectangular domain [va, vb] × [ua, ub].
For a screen normal to the free flow v0, β = π/2; thus, the mean tangential velocity is

reduced to

vI t = Ω

√
γ
(π

2

)
. (A37)

A.3. Value of the shape parameters for a rectangular screen with different aspect ratio
Starting from (A27) and (A28) we can rewrite the expression of γ (β) and α(β) in order
to separate the shape terms and the inclination terms, we see for this particular case of a
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Three-dimensional flow around and through a porous screen

Aspect ratio l1 l2 γ0

1 0.1 0.1 0.0998
2 0.1 0.2 0.0977
4 0.1 0.4 0.0934
8 0.1 0.8 0.0894
10 0.1 1.0 0.0884
20 0.1 2.0 0.0861

Table 3. Shape parameter for rectangular plate with different aspect ratios. Here l1 and l2 are the lengths of
the sides of the rectangular plate. The aspect ratio is l2/l1.

rectangular plate that these expressions can be simplified as

γ (β) = γ0 (A38)

and

α(β) = 2α0 cos (β), (A39)

with

J (x,w) = 1
4π

∫∫
Sp

w − u
((x − v)2 + (w − u)2)3/2

du dv

= Gva,ua(x,w)− Gva,ub(x,w)− Gvb,ua(x,w)+ Gvb,ub(x,w), (A40)

γ0 = 1
Sp

∫∫
Sp

I2
x (x,w)+ J 2(x,w) dx dw,

α0 = 1
Sp

∫∫
Sp

J (x,w) dx dw.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(A41)

For symmetry reasons, α0 = 0. Thus, the mean tangential component of the velocity at
the surface for a rectangular plate inclined in the flow is actually

vI t = (Ω2γ0 + v2
0 cos2 (β))1/2. (A42)

We computed the values of the parameter γ0 in table 3 for different aspect ratios (vb =
−va = l1/2 and ub = −ua = l2/2). We used Python 3.9.5 with the method nquad from
scipy.integrate.

Appendix B

This appendix contains the details of the calculation of the source strength Ω for the case
of a rectangular screen inclined to the laminar free flow with an angle β with respect to
the z axis. We start from the following equations.

987 A20-39

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

37
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.372


O.C. Marchand, S. Ramananarivo, C. Duprat and C. Josserand

The pressure difference is expressed as

pII − pI = 1
2ρ(vI

2
t (1 − E2)+ vI

2
nθ(s)f (Ren, β)), (B1)

pIII − p0 = 1
2ρ((1 − E2)v2

0 + vI
2
nθ(s)f (Ren, β)). (B2)

The drag forces are expressed as

FD = ρv0(1 − E)vnSp + 1
v0
( p0–pIII)

vn

E
Sp, (B3)

FD = (pI–pII) sin (β)Sp + ρvnv0 cos2(β)(1 − E)Sp. (B4)

In these expressions the normal and tangential components of the velocity at the surface
of the screen are

vIn = sin (β)v0 − 1
2Ω, (B5)

vI t = (Ω2γ0 + v2
0 cos2 (β))1/2. (B6)

Then, by denoting ω = Ω/v0 we have, for the velocities,

vIn

v0
= sin (β)− 1

2
ω, (B7)

vI t

v0
= (ω2γ0 + cos2 (β))1/2. (B8)

The attenuation coefficient E is

E =
sin (β)− 1

2
ω

sin (β)+ 1
2
ω

. (B9)

For the pressure differences, we obtain

pII − pI

1
2
ρv2

0

= (ω2γ0 + cos2 (β))
2ω sin (β)(

sin (β)+ 1
2
ω

)2 +
(

sin (β)− 1
2
ω

)2

θ(s)f (Ren, β),

(B10)

pIII − p0
1
2
ρv2

0

= 2ω sin (β)(
sin (β)+ 1

2
ω

)2 +
(

sin (β)− 1
2
ω

)2

θ(s)f (Re, β). (B11)

The first expression of the drag force is

FD

1
2
ρv2

0Sp

=
2ω
(

sin (β)− 1
2
ω

)

sin (β)+ 1
2
ω

+
(

sin (β)+ 1
2
ω

)
p0–pIII

1
2
ρv2

0

. (B12)
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Three-dimensional flow around and through a porous screen

The second expression of the drag force is

FD

1
2
ρv2

0Sp

= pI–pII

1
2
ρv2

0

sin (β)+ cos2(β)

2ω
(

sin (β)− 1
2
ω

)

sin (β)+ 1
2
ω

. (B13)

The two expressions of the drag coefficient are

CD = −ω2

sin (β)+ 1
2
ω

−
(

sin (β)+ 1
2
ω

)(
sin (β)− 1

2
ω

)2

θ(s)f (Ren, β), (B14)

CD = cos2(β)

2x
(

sin (β)− 1
2
ω

)

sin (β)+ 1
2
ω

− sin (β)
(

sin (β)− 1
2
ω

)2

θ(s)f (Ren, β)

− (ω2γ0 + cos2 (β))
2ω sin2 (β)(

sin (β)+ 1
2
ω

)2 . (B15)

By combining the expression (B14) and (B15), we obtain the equation

− 1
8ω

4θ(s)f (Ren, β)+ ω2 sin2 (β)(8γ0 + θ(s)f (Ren, β)− 2)

− 4ω sin (β)− 2 sin4 (β)θ(s)f (Ren, β) = 0. (B16)

Note that, for a rectangular screen normal to the free flow, this equation is reduced to

−1
8ω

4θ(s)f (Ren, β)+ ω2(8γ0 + θ(s)f (Ren, β)− 2)− 4ω − 2θ(s)f (Ren, β) = 0. (B17)

If the length L (or the width D) of the rectangular screen is infinitely long then we can
show that

lim
L→∞

γ0 = 1
12
, (B18)

and we tend to the 2-D case studied by Steiros & Hultmark (2018).

Appendix C

This appendix contains the details of the experimental data and their processing.

C.1. Screen samples
The characteristics of the different porous screens used for the measurement are presented
in table 4. They are mainly square wire mesh screens, as represented in figure 22. In
addition, five other types of screen were used to test the robustness of the model.

987 A20-41

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

37
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.372


O.C. Marchand, S. Ramananarivo, C. Duprat and C. Josserand

Screen no.
Fibre diameter

d (mm) Reynolds number Red Solidity s Note

P1 0.29 ± 0.01 186 0.58 ± 0.01 Square woven mesh, nylon fibres
P2 1.1 ± 0.5 705 0.41 ± 0.05 Regular net
P3 1.9 ± 1.0 1218 0.87 ± 0.05 Regular net
P4 0.26 ± 0.01 167 0.61 ± 0.01 Square woven mesh, nylon fibres
P5 0.10 ± 0.01 64 0.56 ± 0.02 Square woven mesh, nylon fibres
P6 0.18 ± 0.02 115 0.61 ± 0.02 Square woven mesh, metal fibres
P7 0.27 ± 0.01 173 0.45 ± 0.01 Square woven mesh, nylon fibres
P8 0.13 ± 0.01 83 0.70 ± 0.01 Square woven mesh, nylon fibres
P9 0.0009–0.019 0.6–12 0.26 ± 0.03 Surgical face mask, physical characteristics

mean 0.006 ± 0.003 4 according to Monjezi & Jamaati (2021) and Du et al. (2021)
P10 0.27 ± 0.01 173 0.11 ± 0.01 Square woven mesh, nylon fibres
P11 0.27 ± 0.01 173 0.37 ± 0.01 Square woven mesh, nylon fibres
P12 0.27 ± 0.01 173 0.31 ± 0.01 Square woven mesh, nylon fibres
P13 0.27 ± 0.01 173 0.17 ± 0.01 Square woven mesh, nylon fibres
P14 0.27 ± 0.01 173 0.24 ± 0.01 Square woven mesh, nylon fibres
P15 0.27 ± 0.01 173 0.24 ± 0.01 Square woven mesh, nylon fibres
P16 0.27 ± 0.01 173 0.24 ± 0.01 Square woven mesh, nylon fibres
P17 0.27 ± 0.01 173 0.15 ± 0.01 Square woven mesh, nylon fibres
P18 0.27 ± 0.01 173 0.28 ± 0.01 Square woven mesh, nylon fibres
P19 0.26 ± 0.01 167 0.52 ± 0.01 Square woven mesh, nylon fibres
P20 0.26 ± 0.01 167 0.42 ± 0.01 Square woven mesh, nylon fibres
P21 0.26 ± 0.01 167 0.32 ± 0.01 Square woven mesh, nylon fibres
P22 0.050 ± 0.002 32 0.65 Square woven mesh, homogeneous, polyamide fibres
P23 0.025 ± 0.002 16 0.82 Square woven mesh, homogeneous, polyamide fibres
P24 0.030 ± 0.002 19 0.75 Square woven mesh, homogeneous, polyamide fibres
P25 0.037 ± 0.002 24 0.70 Square woven mesh, homogeneous, polyamide fibres
P26 0.44 ± 0.01 282 0.405 ± 0.002 Parallel nylon fibres
P27 0.12 ± 0.01 38 0.115 ± 0.002 Parallel nylon fibres
P28 0.44 ± 0.01 141 0.114 ± 0.002 Parallel nylon fibres
P29 0.02 ± 0.002 6 0.080 ± 0.002 Parallel copper fibres
P30 0.44 ± 0.01 282 0.080 ± 0.001 Parallel nylon fibres
P31 — — 1.00 Flat plate, thickness 0.1 mm

Table 4. Porous screen characteristics. The Reynolds number Red is calculated with a velocity v0 = 10 m s−1

and a kinematic viscosity ν = 15.6 × 10−6 m2 s−1, except for the screens P27, P28 and P29 where the velocity
is v0 = 5 m s−1.

C.2. Correction of the coupling drag
Due to the mast and frame supporting the porous structure, to obtain the drag coefficient
of the porous structure from the raw data composed of the measured forces denoted Ft+m,
the contributions of each part must be decoupled.

In our analysis of the data, we consider the most simple assumption that the coupling
is negligible. Therefore, the drag force of the porous screen is the drag force of the total
system (mast, frame and porous screen) minus the drag force of the mast and the frame
(without the porous screen, measured before the series of measurements). In order to
justify this assumption, we estimated the coupling drag force (the additional term due
to the interference between the frame and the screen) for what we assumed to be the worst
case, that is, for the solidity equal to 1.

As far as we know, this coupling is nonlinear and there is no general method. We adopt
the approach we detail here, based on different measurements with and without the frame
illustrated in figure 23. Due to the elongated shape of the mast and the way it is connected
to the screen, it is reasonable to assume that the drag force of the mast Fm and the rest
of the system Ft add up (giving what we denote Ft+m). For the frame, the coupling with
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Three-dimensional flow around and through a porous screen

Experience v0 (m s−1) Fp (N) Fc (N) Ft (N) Fr (N) Estimation of �F (N) Ft − Fc (N)

Screen at 90◦ 0.51 0.002 0.002 0.004 0.003 0.000 0.002
1.02 0.008 0.003 0.011 0.010 0.000 0.008
4.00 0.101 0.022 0.118 0.122 −0.005 0.096
5.03 0.159 0.036 0.185 0.191 −0.010 0.149
5.98 0.221 0.052 0.260 0.272 −0.013 0.208
7.00 0.301 0.072 0.350 0.370 −0.023 0.278
8.02 0.398 0.095 0.467 0.490 −0.026 0.372
8.97 0.495 0.118 0.588 0.606 −0.025 0.470
9.99 0.620 0.144 0.710 0.750 −0.054 0.566

11.01 0.753 0.173 0.862 0.919 −0.064 0.689
12.03 0.897 0.208 1.024 1.092 −0.081 0.816
12.98 1.042 0.240 1.178 1.262 −0.104 0.938

Drag coefficient CD — 0.993 — 0.973 0.986 — 0.939

Table 5. Summary of the values of the coupling drag force for a flat plate (solidity s = 1) for different
velocities. All the values have an uncertainty of approximately 0.020 N. For the measurement of Fp and Fr,
a solid flat plate with 4.0 mm thickness has been used, corresponding to the thickness of the frame used
for measuring Fc and Ft. The drag coefficients are obtained using the dimensions shown in figure 23 with
fluid density estimated from the measurement of temperature, pressure and humidity during the different
experiments.

d 2d
l

l

Figure 22. Diagram of the fibre mesh.

the porous structure is expected to be more important. We measured the drag force of the
mast alone Fm and subtracted the value of Ft+m. We measured the drag force of the mast
alone Fm and substracted it from the total force Fm+t. The drag force of the porous screen
is denoted Fp and the coupling term is denoted �F. The total force measured of the frame
and the porous screen Ft can be written as

Ft = Fc + Fp +�F. (C1)

To determine the coupling (or interference) term �F, we know exactly the value of the
drag force of the porous structure for two points: the first at solidity s = 0 where Fp = 0,
and the second at solidity s = 1 for which we can determine easily the drag force without
a frame since we can use a solid plate with the same surface area and thickness.

Note that the value of the coupling is not independent of the solidity: indeed, if we
assume a monotone dependency, then the lower the solidity, the lower the coupling will
be, until it reaches a zero value at zero solidity. These two points allow us to estimate the
coupling.
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Figure 23. Diagram of the screens (in dark gold) and the frame support (in green).
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Figure 24. Drag force for the plates and the frame represented in figure 23. Values and drag coefficients are
in table 5. Data are fitted using a quadratic law with respect to the velocity v0. The surface is orthogonal to the
mean far-field flow direction v0.

The frame has a thickness of 0.2 mm each side of the system. Therefore, to quantify
the influence of this extrusion on the drag force, we measured for the solidity s =
1, the drag force Fr of a plate in figure 23(d) and the drag force Ft of the system
composed of the frame and the porous screen in figure 23(c), with the same width at
the border. The drag forces are shown in table 5 and in figure 24.

We notice that correcting our data with a constant coupling (interference) drag term
would not change the curve shape. Doing so with a linear coupling would have a minor
effect. Indeed, if the use of a frame to stretch the textiles seems to underestimate the drag
coefficient, the difference for the worst case in the drag coefficient between the screen
measured directly (0.993) and the screen measured with the frame after subtraction of its
drag force (0.939) is closed to the order of the uncertainty calculated in the next section.
Even if we added the coupling drag force estimated for solidity 1 in all our data, this
would not change our conclusions. Therefore, it is reasonable to neglect the interference
drag, and simply proceed with the subtraction of the frame drag force from the total
drag force.
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Three-dimensional flow around and through a porous screen

C.3. Determination of the drag coefficient
To determine the drag coefficient, we calculate a nonlinear regression of the corrected data
with the method of the least squares. The model function is

Fpi = f (vi,CD) = 1
2ρSpCDv

2
i , (C2)

where CD is the adjustable parameter. We minimize the sum of the square residuals S,

S =
n∑

i=1

( yi − f (vi,CD))
2. (C3)

This leads to

CD = 2
ρS

n∑
i=1

Fpiv
2
i

n∑
i=1

v4
i

. (C4)

C.4. Measurement uncertainty
In what follows, we estimate the measurement uncertainty u of the physical quantities. We
assume, for simplicity, that the parameters ρ, Fpi, vi and S, for i ∈ [[1, n]] are mutually
independent, and that their respective uncertainty is small compared with their value. We
neglect the uncertainty on the velocity, then the uncertainty can be calculated with

u2(CD) = 4

ρ2S2

( n∑
i=1

v4
i

)2

⎛
⎝( n∑

i=1

Fpiv
2
i

)2 (
u2(ρ)

ρ2 + u2(S)
S2

)
+

n∑
i=1

v4
i u2(Fpi)

⎞
⎠ .

(C5)
We assume that the force uncertainty is the same for all the data, this assumption

is supported by the different repeated measurements we performed for several porous
screens, we take the mean value of the deviation we obtained for the force uncertainty.

C.4.1. Solidity uncertainty
The solidity of the porous screens with a regular nylon woven mesh are determined
using an image of the screen at the scale of a hundred meshes, taken with a microscope.
Several image analyses are used to estimate the solidity and the associated uncertainty.
The uncertainty is estimated to ±0.02.

C.4.2. Parameter and drag force uncertainties
The uncertainty of the drag force arises from the error of the force balance. By
repeating the measurement several times, for different porous screens, we estimated the
drag force uncertainty to approximately ±0.02 N. The uncertainty of the air density is
±0.005 kg m−3. Finally, the uncertainty on the surface of the screen is estimated to
±4 × 10−6 m2.
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