
4 
THE MORITA THEORY 

Let Rand S be rings and let W be an R-S-bimodule. It may happen that the 
change of rings functor - 0 R W induces an equivalence, known as a Morita 
equivalence, between the categories MODR and MODs. The investigation of 
the circumstances in which this happens is called the Morita theory, after its 
instigator [Morita 1958]. 

It turns out that many of the module categories associated to Morita equiv­
alent rings are also equivalent, and that the rings have many properties in 
common. 

This chapter has only two sections. In the first, we analyse the properties 
that a bimodule W must have if it is to give rise to a Morita equivalence, 
namely, that W must be a 'projective generator', both as a left R-module and 
as a right S-module. In the second section, we investigate the consequences 
that follow from the existence of such a bimodule. Here, we also look at the 
Picard group of a ring. This group, which arises from the 'self-equivalences' 
of a ring, can be regarded as a generalization of the ideal class group of a 
Dedekind domain. 

It is worth mentioning here two themes that are developed in the exercises. 
One lengthy series of computations for a special type of tiled order leads to 
explicit descriptions of the projective modules and generators for such orders, 
and hence to a computation of Picard groups. Another set of exercises outlines 
a Morita theory for nonunital rings that has recently been investigated in 
[Quillen]. 

4.1 PROJECTIVE GENERATORS 

A ring R plays a very distinctive role in the category RMoD of left R-modules 
since it enjoys two important properties as an object of that category. The 
first property, which we have used on many occasions, is that R is projective. 
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4.1 PROJECTIVE GENERATORS 185 

The second, which we have not formalized before, is that R is a generator: 
any module is the homomorphic image of AR for some index set A. In fact, 
R is an example of a left R-progenerator (that is, it is both projective and a 
generator) . 

Our aim in this section is to give a criterion for a left R-module W to be a 
progenerator in terms of its relationship with its dual W* = Hom(R W, RR), in 
preparation for our study of Morita equivalence in the next section. It turns 
out that a progenerator is 'invertible' in a sense to be made more precise 
later. As an illustration, take R to be a field K and W to be rK, row-space of 
dimension r. Then the dual can be identified as the column-space Kr, and the 
phenomenon of 'invertibility' amounts to the informal identities rK . Kr = K 
and Kr . rK = Mr(K), the r x r matrix ring. 

In a departure from the usual practice in this text, the prime object of study 
in this section will be a left module rather than a right module. The reason is 
that in the Morita theory we wish to consider the effect of the functor - ® R W 
on the category MCWR of right modules, where R is an arbitrary ring. The 
notational consequences are as follows. 

By our fundamental convention (1.1.4), a left R-module homomorphism 
from W to another left R-module X is regarded as operating on the right 
of W. Thus W becomes an R-End(RW)-bimodule, and the additive group 
Hom(RW, RX) of left R-module homomorphisms from W to X is then an 
End(R W)-End(RX)-bimodule by the rule 

w(eaf) = ((we)a)f 

for a E Hom(RW, RX), e E End(RW) and f E End(RX). 
Similarly, homomorphisms of right modules are written on the left. In cases 

where there is no special reason to write a map on one side or the other, for 
example, with bimodule homomorphisms or ring homomorphisms, it is put on 
the left. As we observed in (3.1.9), we are sometimes obliged to write tensor 
products of homomorphisms on the 'wrong' side as a lesser evil. 

4.1.1 The dual of a module 

Now let RW be a left R-module and write S = End(RW), so that W is an 
R-S-bimodule. 

The dual of W (as a left module) is W* = Hom(R W, RR). Given ¢ E W* 
and s E S, r E R, we define s¢r by 

w(s¢r) = ((ws)¢)r, 

which makes W* into an S-R-bimodule. 
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186 THE MORITA THEORY 

Similarly, given a right R-module V with endomorphism ring T, its dual 
V* = Hom(VR' RR) is an R-T-bimodule. 

We may now in turn take the dual of the right R-module W*, and define 
the double dual of our original left R-module R W as W** = Hom(WR, RR), 
which is an R-End(WR)-bimodule. 

There is a ring homomorphism t from S to End(WR), given by 

(ts)¢ = s¢ for s E Sand ¢ E W*. 

That t preserves multiplication follows from commutativity of the diagram 

s' s 
W -------+1 W -------+1 W 

R 

Then W** is in fact an R-S-bimodule by restriction of scalars t#. There is 
also a natural R-S-bimodule homomorphism v : W --+ W**, given by 

(vw)(¢) = w¢ for wE Wand ¢ E W*. 

The double dual of a right R-module is defined similarly. The following lemma 
is now a good exercise. 

4.1.2 Lemma 

There are canonical R-R-bimodule isomorphisms 

D 

4.1.3 The dual of a free module 

We interpret the dual first in the important special case that W = nR, the 
free left R-module of finite rank n. (Recall that we use the notation Rn for 
the free right R-module.) Choose a basis {h, ... , In} of nR; if you wish, this 
can be the standard basis consisting ofthe row vectors Ii = (0, ... ,0,1,0, ... ), 
with 1 in the i th place. The dual basis for (nR) * is {Ii, ... , I~}, defined by 

* {I i = j, Ii . Ij = 0 i =I- j. 
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To see that the dual basis is indeed a basis of (nR) * , for any ¢ E (nR)* write 

li¢ = ¢i E R. Then 

¢ = Ii ¢I + ... + I~ ¢n, 
since both maps have the same effect on each Ii, and ¢ = 0 precisely when 
all ¢i = O. 

Thus we can identify the right R-module (nR)* as the standard free right 
module Rn. It is clear that when {II, ... , In} is the standard basis, its dual is 
the standard basis of the column-space Rn. The effect of the action of I; on Ii 
is given simply by the product Iii; of the standard row and column vectors. 
More generally, for any x E nR and ¢ E (nR) * , x¢ can also be interpreted as 
the product of the coordinate row vector of x with respect to the basis {Ii} 
and the coordinate column vector of ¢ with respect to the basis {II}. 

4.1.4 Endomorphisms of a free left module 

As we saw in (1.3.5), an endomorphism of a free right module can be rep­
resented by a matrix once we have chosen a basis of the module. The cor­
responding statement for free left modules follows by duality, but, for future 
applications, it will be convenient to give the details explicitly for the standard 
free left module nR of finite rank n. 

Let {II, ... , In} be a basis of nR. (Although we do not assume that R has 
invariant basis number, it will suffice for our purposes to consider only bases 
of nR that consist of n elements.) 

Define ¢jk E End(nR) for each pair of indices j, k by 

i = j, 
i =1= j, 

and define a ring homomorphism (J from R to End(nR) by 

Ii . (Jr = r Ii, i = 1, ... ,n. 

(That this map does indeed preserve multiplication follows from the relation 
r'(1i . (Jr) = (r'li) . (Jr.) Then (Jr· ¢jk = ¢jk . (Jr in End(nR) for all r, j and k. 

Given a in End(nR) , write lia = 2:j aijlj, so that a = 2: j,k((Jajk)¢jk. 
The map a f---+ (ajk) is a ring isomorphism from End(nR) to the matrix ring 
Mn(R), with {¢jd corresponding to the set of standard matrix units {ejd 
and (Jr to the diagonal matrix diag(r, ... , r). We often treat this (natural) 
isomorphism as an identification. 

The free right module Rn acquires the structure of a left End(nR)-module 
in two ways, once of itself and once as the dual of nR, but these structures 
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188 THE MORITA THEORY 

can easily be seen to be the same. Thus there are two ways of making Rn 

into a left Mn(R)-module, which coincide provided that we choose the basis 
of Rn dual to the original basis of nR. 

4.1.5 The evaluation homomorphisms 
We associate with a left R-module Wand its dual W* = Hom(RW, RR) two 
evaluation homomorphisms a and T that play an important role. As before, 
let S = End(RW). 

We define the R-R-bimodule homomorphism 

a: W®s W* -> R 

by 

a( w ® ¢) = w¢ for w E Wand ¢ E W*. 

We also define the S-S-module homomorphism 

T: W* ®R W -> S 

by 

T( ¢ ® w) = ¢w for w E W and ¢ E W*, 

where the endomorphism ¢w of W is defined by the equation 

w'(¢w) = (w'¢)w for w' E W. 

This equation may be reformulated as the commutativity of the square 

W®SW*®RW 

a ®id I 
id® T 

W®sS 

I 
W 

In general, properties such as this flow readily from the associativity we have 
built into our notation. As an example, the reader may like to use the S­
R-bimodule structure of W*, expressed in (4.1.1) by the equation w(s¢r) = 
((ws)¢)r, to deduce the commutativity of 

W*®RW®SW* 
id®a 

W*®RR 

T®id I I 
S®sW* W* 
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For another viewpoint here, note that the Adjointness Theorem (3.1.19) shows 
that there is an isomorphism 

HomR-R(W Q9s W*, R) ~ Homs-R(W*, W*); 

then a is the distinguished element of the left-hand term corresponding to 
idw*. Although similar considerations apply to T, the formulas are messier 
in general. In the cases of interest to us they simplify, as in (4.1.14) below. 

Suppose in particular that W = nR with basis {fJ, that {fn is the dual 
basis of Rn (4.1.3), and that {¢jd is the corresponding set of matrix units 
for End(nR) = Mn(R) (4.1.4). 

Then the map a : nR Q9Mn(R) R n ---. R is given by Ii Q9 Ij 1-+ Idj, while 
T : Rn Q9R nR ---. End(nR) sends Ij Q9 Ik to ¢jk. Clearly, both a and Tare 
isomorphisms. (The fact T is an isomorphism can also be regarded as a special 
case of (3.1.15).) When {fi} and {In are the standard bases, the maps a 
and T can be regarded as the multiplication of 'a row by a column' and 'a 
column by a row'. 

4.1.6 Projective modules 
We next find a characterization of finitely generated projective left R-modules 
W in terms of the homomorphism T : W* Q9R W ---. S, where S = End(RW), 
and we derive some consequences. 

4.1. 7 Theorem 
The left R-module R W is finitely generated and projective if and only if the 

map T : W* Q9 R W ---. S is a surjection. 

Proof 
Suppose that W is finitely generated and projective. This means that, for 

some integer n, we have nR ~ WEB V as left R-modules. There is no loss 
of generality in replacing W by an isomorphic module (if necessary) so that 
there is an internal direct sum decomposition nR = WEB V. 

Let {/J be a basis for nR, and write fi = Wi EB Vi for i = 1, ... , n, with 
Wi in Wand Vi in V. For j = 1, ... , n, let ¢j be the restriction to W of the 
member fj of the dual basis in (nR)*. 

For any x in nR, we have x = 'L.(xfJ)fJ; thus for x in W we have x = 
'L.(x¢j)Wj and hence 

in S. Now T is S-S-bilinear, so 1m T is an ideal in S, and thus T is surjective. 
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190 THE MORITA THEORY 

Conversely, suppose that we have {1>j} in W* and {Wj} in W with 1 = 
2:7=11>jWj. Choose a basis Ud for nR and define an R-homomorphism p 
from nR to W by fiP = Wi for each i. Define also a map ry from W to nR by 
wry = 2:(w1>j)fJ. Then ry is an R-homomorphism which splits P, making W 
a direct summand of nR. 0 

The collection of elements {Wj} together with the maps {1>j} is sometimes 
called a projective coordinate system for W, since an element W of W can be 
written 

(w1>l, ... , w1>n) being not necessarily unique 'coordinates' for w. 

4.1.8 80me identifications 
By the left-handed version of part (i) of (3.3.24), any finitely generated projec­
tive left R-module W is isomorphic to one of the form nRE for some idempotent 
E of the ring End(nR). 

Let ~ : W -+ nRE be such an isomorphism. Then there is a ring isomorphism 
from 8 to the ring 8' = End(nRE), given by s f-t ~-lS~, as in the commuting 
diagram below. 

s 
W lW 

I ~-1 
C1S~ 

1 ~ 
nRE l nRE 

There is also an induced isomorphism from W* to (nRE)*, given by 1> f-t 

~-11>, that converts the 8-R-bimodule structure on W* to the 8'-R-bimodule 
structure on (nRE)*. If we identify W with nRE via ~, these isomorphisms 
become identities. 

These identifications are used in the proof of the following result. 

4.1.9 Proposition 
Let R W be a finitely generated projective left R-module, with 8 = End(R W). 

Then, for some n, the following hold. 

(i) W ~ nRe, where e is an idempotent element of Mn(R). 
(ii) W* ~ eRn. 

(iii) There is a ring isomorphism 8 ~ eMn(R)e. 
(iv) T: W* ®R W -+ 8 is an isomorphism of S-S-bimodules. 
(v) W** ~ W as an R-S-bimodule. 
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Proof 
(i) By the preceding remarks, we can write W = nRf for some idempotent 
fin End(nR), and we can realise f as an idempotent matrix e in Mn(R) if we 
fix some basis of nR that consists of n elements. 
(ii) We have WEB V = nR with V = nR(1- e). If ¢ is in Rn = (nR)*, 
clearly e¢ is in W*. On the other hand, any element 'ljJ in W* extends to an 
element 'ljJ' of Rn, by setting 'ljJ' = 0 on elements of V, and then 'ljJ = e'ljJ'. 
(iii) Proceeding as in (ii), we note that if s' is an endomorphism of nR, 
then es' e is an endomorphism of W. Conversely, any element s in S extends to 
an element s' of Mn (R), by setting s' = 0 on elements of V, and then s = es' e. 
Moreover, these inverse constructions respect composition of endomorphisms. 
(iv) We need only check that T is an injection. Expanding the tensor 
product, we have a direct decomposition (as abelian groups) 

where V* = (1 - e)Rn. 
The homomorphism T : W* (59 R W ---+ S is induced by restriction of the 

corresponding homomorphism T' from Rn(59nR to Mn(R). Since T' is injective, 
so is T. 

(v) Repeating the arguments for right modules, we have 

o 

Thus, finitely generated projectives may be characterized as those left R­
modules W for which T : W* (59 R W ---+ S is an isomorphism. We next describe 
those W for which a : W (598 W* ---+ R is an isomorphism. 

4.1.10 Generators 
A left R-module W is called a generator of RMoD if there is a surjective 
homomorphism wn ---+ R of left R-modules for some integer n. Then given 
any left R-module N, there is a surjection WA ---+ N for some index set A 
(which depends on N). This fact explains the term 'generator'. 

There is a nice symmetry between the concepts of generator and of finitely 
generated projective. For, since RR is a projective R-module, the surjective 
homomorphism wn ---+ R must be split, making R a direct summand of some 
wn whenever W is a generator. On the other hand, any finitely generated 
projective left R-module is a direct summand of some nR. This symmetry is 
developed further in the next result, to be compared with (4.1.7) and (iv) of 
(4.1.9) above. 
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4.1.11 Proposition 
The finitely generated left R-module W is a generator if and only if the 

homomorphism 

a: W®s W* ---+ R, a(w ® <p) = w<p, 

is surjective. 
Further, if a is surjective then it is an isomorphism of R-R-bimodules. 

Proof 
Suppose that there is a surjection f : wn ----> R, and choose x = (Xi) in wn 

with xf = 1. Let ai : W ----> wn be inclusion at the i th coordinate and put 
<Pi = ad : W ----> R. Then 

Conversely, given {xd and {<pd with a(L: Xi ® <Pi) = 1, define f : wn ----> R 
by (wi)f = L:Wi<Pi. Thus (xi)f = 1, making W a generator. 

Suppose further that a(L: Wj ® 'ljJj) = 0 for some Wj and 'ljJj. Then, noting 
that each <PiWj is a member of S, we have 

L: j Wj ® 'ljJj = L: j L:i(Xi<PiWj ® 'ljJj) 
= L: j L:i(Xi ® <PiWj'ljJj) 
= L:i Xi ® <Pi(L:j Wj'ljJj) 
=0, 

which shows that a is injective. 

4.1.12 Progenerators 

o 

A left R-module W is said to be a progenerator (of RMoD), or a left R­
progenerator, if it is a finitely generated projective generator. Some texts use 
the term faithfully projective module instead of progenerator. This terminol­
ogy derives from an alternative definition of a generator - see Exercise 4.1.8 
and [Bass 1968], Chapter II, Proposition 1.2 and Corollary 4.8. 

Collecting our previous results (4.1.7), (iv) of (4.1.9) and (4.1.11), and 
writing S = End(R W) and W* = Hom(R W, RR) as usual, we obtain the 
following important result. 

4.1.13 Theorem 
The left R-module W is a progenerator if and only if 

a: W®sW* ~R 
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and 

T: W*0R W~8 

are bimodule isomorphisms. o 
It is clear that the preceding definitions and results all have right-handed 

counterparts which we invoke in both the statement and the proof of the next 
result, the keystone of the Morita theory. 

4.1.14 Theorem 

Suppose that W is a left R-progenerator. Then the following statements are 
true. 

(i) W* ~ Hom(Ws, 8s) as an 8-R-bimodule. 
(ii) R ~ End(Ws) as a ring. 

(iii) Ws is a right 8-progenerator. 
(iv) W* is both a left 8-progenerator and a right R-progenerator, and there 

are ring isomorphisms R ~ End(sW*) and 8 ~ End(Wil). 

Proof 
We make repeated use of the isomorphisms a and T. 

(i) Given ~ E Hom(Ws ,8s), define a(~) E Hom(RR, WR) ~ W* as the 
composition 

~0id 
R ---~) W 0s W* ---~) 80s W* ---~) W*. 

To see that a is injective, observe that a(~) can be zero only if 

~ 0 id : W 0s W* ---+ 80s W* 

is zero. But then the commutative diagram 

W0sW*0RW 

~ 1 id 0 T 

W0s 8 

~ 1 
W 

80sW0RW* 

~ 1 id 0 T 

80s8 

8 
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shows that ~ is zero too. In formulas, if 

a-1 (1) = LXi Q9 ¢i E W Q9s W*, 

then a(~) = L~(Xi)¢i' where we recall that w(s¢) = (ws)¢. 
This construction is reversible. Define 

(3 : W* -----; Hom(Ws, Ss) 

by 

(3(¢)(w) = ¢w E S, 

where we recall that w'(¢w) = (w'¢)w. In other words, {3 corresponds to 'T 

under the adjunction (see (3.1.19)) 

Hom(sW* Q9R Ws,sSs) ~ Hom(sWR,sHom(Ws,Ss)R)· 

Evidently 

so that a and (3 are inverse isomorphisms. 
Note that, using these isomorphisms, we have an adjunction 

Homs-s(W*Q9RW,S) ~ Homs_R(W*,Hom(Ws,Ss)) ~ Homs-R(W*, W*) 

with 'T the distinguished element corresponding to idw •. 
(ii) We use the homomorphism T: WQ9sHom(Ws, Ss) -> End(Ws) which 
plays the same role for the right module Ws as 'T does for the left module 
RW. There is a commutative square 

WQ9s W* 

~ I id Q9 a 

W Q9s Hom(Ws,Ss) 
'T 

R 

End(Ws) 

where the natural action of R on W gives a ring homomorphism L : R -> 

End(Ws). Since a is an isomorphism, the identity element idw of End(Ws) 
is in the image of T. But T is an End(Ws)-bimodule homomorphism, hence 
it is surjective. By the right-handed version of (4.1. 7), T is an isomorphism. 
Thus L must be a ring isomorphism. 
(iii) Since T is surjective, W is projective as a right S-module. To show 
that Ws is a generator, we have to show that the homomorphism 

(j : W* Q9End(Ws) W -----; S 
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4.1 PROJECTIVE GENERATORS 195 

is an isomorphism. However, by using the isomorphism i, we can define an 
isomorphism () : W* ®End(Ws) W ~ W* ®R W making the following square 
commutative: 

W* ®End(Ws) W S 

r 
S 

The result follows. 

(iv) Since we have an R-S-bimodule isomorphism W** ~ W, we can re­
peat the arguments with the roles of Wand W* interchanged. D 

We note also that progenerators can be characterized in terms of 'invert­
ibility'. 

4.1.15 Theorem 

Let Rand S be arbitrary rings and let W be an R-S -bimodule. Suppose 
that there is an S-R-bimodule W' together with bimodule isomorphisms 

a / : W ®s W' ~ Rand r/: W' ®R W ~ S. 

Then W is a left R-progenerator with ring isomorphisms S ~ End(R W) 
and R ~ End(Ws), and there is an S -R-bimodule isomorphism W' ~ W*, 
where W* = Hom(R W, RR). 

Proof 
Using the adjunction 

Hom(RW ®s W~, RRR) ~ Hom(sW' R, sWR), 
we define an S-R-bimodule homomorphism () : W' ~ W* by 

w((}w' ) = a'(w 181 w'). 

Then the commuting triangle 

id 181 () 
W®R W' -------

R 

W®sW* 
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shows that W is an R-generator. Tensoring again on the left with W' and 
using 7', we see that () is an isomorphism. 

In the commuting square of (4.1.5) 

W@SW*@RW 
id@7 

W@Ss 

O'@id j j 
W 

we again cancel W on the left, by tensoring with W' and using 7', to deduce 
that 7 also is an isomorphism. It follows that Sand End(R W) are both S-S 
isomorphic to W' @R Wand hence to each other. The identification of S with 
End(RW) allows us to apply part (ii) of (4.1.14), yielding R ~ End(Ws). D 

4.1.16 Commutative domains 
Some interesting explicit computations of duals can be made for modules 
over a commutative domain O. Here, we lay the foundations for these com­
putations by showing that a fractional ideal of 0 is a progenerator precisely 
when it is invertible, which gives an alternative view of the definition of a 
Dedekind domain (2.3.20). Further developments of this discussion, particu­
larly for modules over O-orders, will be given in the exercises below and in 
the following chapter. 

Let K be the field of fractions of O. By definition, a fractional ideal of 0 
is a nonzero finitely generated O-submodule a of K. 

The ring End(K,IC) can be identified as K itself, where the elements of K 
are viewed as operating on the right module K by left multiplication. This 
identification leads to the identification 0 = End(Oo), and, for any pair of 
fractional ideals a and b of 0, we have an identification 

Homo(a, b) = {x E K I xa ~ b}. 

This is again a fractional ideal of 0 when 0 is Noetherian, since Homo (a, b) ~ 
a-1b for any nonzero element a of a. We see below that Homo(a, b) is also a 
fractional ideal if a is projective. 

In particular, the dual of a is 

a* = {x E K I xa ~ O}. 

We have also shown (3.2.16) that the tensor product a @o b of fractional 
ideals a and b can be identified with the product ab evaluated in K. Thus the 
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criterion in (4.1. 7) for a to be (left or right) finitely generated and projective 
over 0 now reads 

(1) aa* = End(ao) = {x E K I xa ~ a}. 

Since aa* ~ 0 ~ End(ao) always, equation (1) gives 

(2) aa* = O. 

On the other hand, if equation (2) holds, then 0 = End(ao) by (4.1.15), 
which shows that (2) is a restatement of (1). 

As both 0 and End( ao) are domains having field of fractions K, aa* can 
be considered to be the tensor product over either 0 or End( ao). It follows 
that equation (2) is also equivalent to the criterion for a fractional ideal a be 
a generator (4.1.11). 

Now suppose that equation (2) holds. Since a ~ a**, we have 

0= a*a ~ a*a** ~ 0, 

and hence that 

a*a = a*a** 

and 

a = aa*a = aa*a** = a**. 

Thus a* is itself a fractional ideal and a progenerator, by (4.1.15) again. 
Recall that a fractional ideal a of a domain 0 is said to be invertible if 

there is some fractional ideal a-I with aa- I = 0 (whence (4.1.15) yet again 
applies). Our discussion is summarized in the following result. 

4.1.17 Proposition 
Let 0 be a commutative domain, and let a be a fractional ideal of O. Then 

the following assertions are equivalent. 

(i) a is invertible as an ideal. 
(ii) a is a finitely generated projective O-module. 

(iii) a is a generator (as an O-module). 
(iv) aa* = O. 

Furthermore, if these statements hold, then a** = a, and, for any fractional 
ideal b of 0, Homo (a, b) = a* b is also a fractional ideal. 0 

Our definition of a Dedekind domain (2.3.20) is that a Dedekind domain is a 
commutative domain 0 for which every nonzero fractional ideal is invertible. 
Thus the following corollary is immediate. 
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4.1.18 Corollary 

Let a be a commutative domain. Then the following assertions are equiv­
alent. 

(i) a is a Dedekind domain. 
(ii) Every fractional ideal of a is a (left and right) projective a-module. 

(iii) Every fractional ideal of a is a (left and right) a-generator. D 

Exercises 

4.1.1 Let R be a ring. Show that a direct sum of R-generators is also an 
R-generator. 

Let the ring R = 8 1 X 82 be the internal direct product of two 
nontrivial rings. 

Show that 8 1 is not a generator when considered as an R-module. 
Deduce that a direct summand of a generator need not be a generator. 

4.1.2 For this exercise, the discussions in (4.1.3), (4.1.4) and (4.1.5) are 
helpful. 

Let R be a ring, and let the 'row-space' nR be regarded as a right 
Mn(R)-module in the usual way. 

Verify that there are natural isomorphisms 

(i) R ~ End((nR)Mn(R)) as rings, 

(ii) ((nR)Mn(R))* ~ Rn as Mn(R)-R-bimodules, 

and deduce that nR is an Mn(R)-progenerator. 

4.1.3 Morita context 

The situation described in (4.1.5) can easily be generalized, as 
follows. Let Rand 8 be rings, and let V be an 8-R-bimodule 
and W an R-8-bimodule. Then a generalized Morita context con­
sists of these objects together with an R-R-bimodule homomorphism 
a : W@s V ---> R and an 8-8-module homomorphism T : V@RW ---> 8 
which make the following squares commute. 

W@SV@RW 

a@id I 
R@RW 

id@T 
W@s8 

I 
W 
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V0R W0sV 
id0a 

T0id j j 
S0sV V 

(a) Show that a generalized Morita context defines a ring 

In the case W = nR, V = W* and S = End(W) of (4.1.4), this 
ring is just Mn+l(R). 

(b) Let C be a preadditive (left) category with two nonzero objects 
x,y, and let R = Mor(x, x), S = Mor(y,y), W = Mor(x,y) and 
V = Mor(y, x). Show that we have a generalized Morita context. 

Show conversely that a generalized Morita context gives such a pre ad­
ditive category. 
Remark. When the homomorphisms a, T are both isomorphisms, we 
have a Morita context, and then Rand S are Morita equivalent, which 
phenomenon we discuss in the next section. 

4.1.4 Morita context for firm nonunital rings 
Extending the previous exercise, a Morita context may be defined 

for nonunital rings and their modules. We continue the data of 
Exercise 3.2.5, that is, we consider firm nonunital rings Rand S 
with firm R-modules VR and RW, an R-R-bimodule isomorphism 
a : W 0s V -+ R and an S-S-isomorphism T : V 0R W -+ S. Show 
that we have a Morita context defining a firm nonunital ring 

which is isomorphic to 

We may therefore describe W as a generalized left R-progenerator. 
4.1.5 Let K be a field. Show that the ideal (X, Y) in the polynomial ring 

K[X, YJ is neither projective nor a generator. 
Extend this result to the ideal (Xl, ... , X k) of the polynomial ring 

KlX1 , ... , XnJ for n 2: k 2: 2. 
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(These results are considered from a more elementary viewpoint in 
[BK: IRM] Exercises 5.1.6 and 6.1.2.) 

4.1.6 Let 0 be a Dedekind domain with field of fractions K and let 0' be 
a proper subring of 0 which also has field of fractions K. Show that 
o is neither projective nor a generator as an O'-module. 

(This is a variation on [BK: IRM] Exercise 5.1.10.) 
4.1. 7 Let 0 be a commutative domain and let a be an integral ideal of 0, 

that is, a <:;; O. This long example investigates the nature of some 

modules over the tiled order R = (~ ~), comprising those ma­

trices in M2 ( 0) with 1,2 entry belonging to a. (See Exercise 2.4.5 for 
the general definition of an order.) Orders of this shape are worthy 
of a detailed analysis because it is possible to make explicit computa­
tions which exhibit some fundamental differences between the prop­
erties of commutative and noncommutative rings. This class of order 
also includes prototypes of hereditary and maximal orders (7.3.30), 
which are themselves of great interest. 

We obtain explicit criteria for a certain type of right ideal to be 
projective or a generator, and we show how to find a right projective 
generator I with End(IR) #- R. The results refine and extend those in 
[BK: IRM] Exercise 5.1.12, and will be revisited in Exercises 4.2.12, 
7.2.5 and 7.3.2. 

Throughout, K is the field offractions of 0 and { ell, e12, e21, e22} is 
the standard set of matrix units for M 2 (0), and unadorned 0, Hom, 
End and dual will be understood to be computed with respect to O. 
Successively stronger conditions are imposed on the ring 0 and ideal 
a as we progress. 

(i) Let L be a right R-module. Deduce from the inclusion of rings 
Oell ffi Oe22 <:;; R that L = Lell ffi Le22 as an Oell ffi Oe22-
module, where Lell and Le22 are both O-modules and KLell ~ 
KLe22 as a K-space. 
Conversely, given O-modules M, N with KM = KN, show 
that the 'row vector' L = (M N) <:;; (KM KN) is a right R­
module under the obvious matrix multiplication if and only if 
Ma <:;; N <:;; M, in which case Lell = M and Le22 = N. 

(ii) Suppose from now on that L = (M N) is in fact a right R­
module, and that KM = Kr, the column space of dimension r. 
Show that 
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(iii) Using the identification of HomdK7, IC) with rIC, verify that 
(LR)* = M* n N* <:::; rIC. 

(iv) Put S = End(LR)' Deduce that 

L* 08 L ~ (M* nN*)M + (M* nN*)N <:::; R 

and 

L 0R L* ~ M(M* n N*) + N(M* n N*) <:::; S <:::; Mr(IC). 

Show that L is a projective right R-module if and only if 

(M* n N*)M + (M* n N*)N = R, 

and that L is a right R-generator if and only if 

M(M* n N*) + N(M* n N*) = End(M) n End(N). 

(v) Assume now that L = (b c) where band c are fractional ideals 
of 0 (so that r = 1). Interpret the above results to obtain: 

(a) L is an R-module if and only if c <:::; band ab <:::; c. 
(b) Suppose that L is a right R-module. Then 

End(LR) = End(b) n End(c) 

and 

(vi) From now on, assume that the ideal a is invertible. 
Show that if x E Homo (c, a), then xab <:::; xc <:::; a and so xb <:::; 

End( a) = 0, that is, x E b*. Obtain the simplified formula 

(vii) Derive the formulas 

and 

(L)* L~ (b'HOm(C,a) c'Hom(C,a)) 
R 08. b*b b*c 

<:::; L 2 (IC), 

where S = End(b) n End(c). 
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( ... ) Sh h E d( L) (End(b) Hom(b, c) ) C M (V") 
Vlll ow t at n S = Hom(c, b) End(c) _ 2 '" , 

and deduce that L cannot be a right R-generator (save in the 
trivial case that a = 0 and b = c is invertible). 

(ix) Prove that L is right R-projective if and only if 

b . Hom(c, a) + cb* = End(b) n End(c). 

Using the relations c ~ b and Hom( c, a) ~ b*, deduce that L is 
R-projective if and only if b is invertible and 

b· Hom(c, a) + cb* = O. 

Prove further that L is R-projective if and only if L = b(O il) 
where b is invertible, a ~ il ~ 0 and Hom(il, a) + il = O. 
(Of course, (0 a) is projective regardless of whether or not a is 
an invertible ideal.) 

(x) For simplicity, assume from now on that 0 is a Dedekind do­
main. Let a = p~(1) ... p~(k) and il = p~(1) ... p~(k), where 

a(i) ~ d(i) ~ 0, be the prime factorizations of a and il. Show 
that (0 il) is R-projective if and only if for each i, we have 
either a( i) = d( i) or d( i) = O. 
Remark. If a is squarefree, that is, all a(i) = 1, then all modules 
(0 il) must be projective. This is a key step in showing that 
R is then a hereditary order, that is, every submodule of a 
projective (right) R-module is again projective (7.3.30). We 
consider this topic again in Exercises 7.2.5 and 7.3.2. 

(xi) Let I be a fractional right ideal of R in M2(K), by which we 
mean a finitely generated right R-submodule of M2(K) with 
KI = M2(K). (This extends the definition given in [BK: IRM] 
Exercise 5.1.11, and anticipates (4.2.22).) By part (i), we can 

write I in the form I = (~ ~~) where b, f are fractional 

ideals of 0 and il, I) integral ideals with a ~ il ~ 0 and a ~ 
I)~O. 

Verify that I is a left R-module if and only if the relations 
af ~ b ~ f and afl) ~ bil ~ fl) hold. 

(xii) Write T = End(IR ) and U = End(TI), and let L = (b bil) 
and P = (f fl)) denote the 'rows' of Ij both Land P are right 
R-modules. Using (ii), verify that 

End(TI) = End(oL) n End(oP) = ( il- I ~ 1)-1 il ~ I) ) . 
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(Notice that we do not need to know T explicitly!) 
(xiii) Before proceeding, we remind ourselves of a definition. Two 

integral ideals II and ~ of the Dedekind domain 0 are said to 
be coprime if II + ~ = 0, which is the same as asserting that 
they have no common prime ideal as a factor. 
Now deduce that End(TI) = R if and only ifll and ~ are coprime 
ideals with a = lI~. If this holds, show also that Land Pare 
both right R-projective and that I is a right R-progenerator. 

(xiv) Let C and D denote the 'column' components of I. Obtain the 
formula 

End(Iu) = End(Co) nEnd(Do) 

( 
0 bf-1 n bf-lll~-l ) 

= b-1f n b-lfll-l~ 0 . 

Put m = bf-1 and n = bf-lll~-l, which are integral ideals 
because of the relations b ~ f and bll ~ f~. 
Show that if End(Iu) = R, then m and n are coprime ideals 
with mn = a, and that 

I = (b bll) = (fm fmll) = (fm nf~) 
f f~ f f~ f f~ , 

where mll = n~. 
(xv) Suppose that End(IR) = R = End(RI). Show that m = ~, 

II = n and n~ = a, and deduce that I = f (6 ~), where f 

is a fractional ideal of 0 and ~ is a factor of a such that ~ and 
a~-l are coprime. 
Prove the converse: if I has this form, then 

and I is an R-R-progenerator. 
(xvi) We can now manufacture ideals which are right R-progenerators 

but have End(IR) -=1= R. Suppose that a = p2 where p is prime. 
Take b = p, II = p2 and f = ~ = 0, so that m = p, n = p3 and 

( p p3) (0 p3) 1= 0 0 . Then End(IR) = p-l 0 . 

4.1.8 The term 'faithfully projective' is used sometimes in place of 'progen­
erator' since a generator can be defined alternatively as follows. 

A left R-module G is a generator if and only if HomR (G, -) is a 
faithful functor. 
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Show that our definition (4.1.10) does imply that Hom( G, -) is a 
faithful functor. Here is an outline of the proof of the converse. 

(i) For any maximal left ideal m of R, there is a homomorphism 
0: : G ----- R with Go: C£. m. (Note that there are two R-module 
homomorphisms from R to Rim, the canonical and the zero 
homomorphisms. ) 

(ii) Deduce that the left ideal I:{Go: I 0: E Hom(G,R)} of R must 
be R. (Note that any proper ideal of a ring is contained in a 
maximal ideal [BK: IRMJ(1.2.22).) 

(iii) 1R = glO:l + ... + gnO:n for some elements gi of G and homomor­
phisms O:i : G ----- R. 

(iv) There is a surjection Gn ----- R. 

4.2 MORITA EQUIVALENCE 

Given rings Rand S, an R-S-bimodule W defines a functor - Q9R W : 
MODR ----- MODS. If W is an R-progenerator and S ~ End(RW), then this 
functor is an equivalence of categories, and Rand S are said to be Morita 
equivalent through W. 

The prime examples of Morita equivalences are those between a ring Rand 
the matrix rings Mn(R), n ~ 1, which arise through the free left R-modules 
nR. However, it is possible for R to be equivalent to a ring which is not a 
full matrix ring over Rj for this to happen, R must have a nonfree projective 
generator. 

When Rand S are Morita equivalent, the categories MR and Ms are also 
equivalent, as are P Rand Ps, and the rings Rand S share many ring-theoretic 
properties. 

It can be shown that any equivalence between MODR and MODS must 
arise through an R-progenerator, so that Morita equivalence can be defined 
alternatively in terms of the equivalence of categories, but we do not use this 
approach in this text. 

There may be several essentially distinct ways in which a pair of rings 
are Morita equivalent, since different modules may induce equivalences from 
MODR to MODS which are not isomorphic as functors. The amount of vari­
ation can be described by the Picard group Pic(R) of R, which measures the 
distinct self-equivalences of MODR. This group can be regarded as a general­
ization of the class group of a Dedekind domain to rings in general. 

In our discussion, we view a left R-module as an operator on the category 
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MODR of right modules. However, it turns out that the theory is left-right 
symmetric. 

4.2.1 The definition and first results 
Let Rand S be rings and let W be a left R-progenerator. If S ~ End(R W), 
then Rand S are, by definition, Morita equivalent through W. Of course, 
there may be many left R-progenerators that give rise to Morita equivalences 
between Rand S. 

By (4.1.14), the dual Wli = Hom(RW,RR) is a right R-progenerator with 
S ~ End(WIi) , so the definition is left-right symmetric in that we could 
equally work with right R-progenerators acting on left modules. 

Again appealing to (4.1.14), we see that sW* is a left S-progenerator with 
R ~ End(sW*). Therefore Morita equivalence is a symmetric relation beween 
rings. It is obviously reflexive and the next lemma shows that it is transitive, 
so that Morita equivalence is genuinely an equivalence relation on the category 
RING of rings. 

4.2.2 Lemma 
Suppose that the ring R is Morita equivalent to the ring S through the left 

R-progenerator Wand that S is Morita equivalent to the ring T through the 
left S -progenerator X. 

Then R is Morita equivalent to T through the left R-progenerator W (9s X, 
and there is an isomorphism (W (9s X)* ~ X* (9s W* ofT-R-bimodules. 

Proof 
We have isomorphisms 

aw : W (9s W* ~ R, TW : W* (9R W ~ S, 

ax : X (9T X* ~ Sand TX: X* (9s X ~ T. 

Since the tensor product is associative, we can use ax and aw in turn to 
provide an isomorphism 

(W (9s X) (9T (X* (9s W*) ~ R. 

Similarly, (X* (9s W*) (9R (W (9s X) ~ T, so the result follows by (4.1.15). 
o 

The most important consequence of the existence of a Morita equivalence 
between rings Rand S is that it guarantees that any (reasonable) category 
of modules over R is equivalent, as a category, to its counterpart over S. 
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The basic result is the following. 

4.2.3 Theorem 

Suppose that the rings Rand S are Morita equivalent through the left R­
progenerator W. Then the following statements hold. 

(i) The functors 

- 0R W: MODR ----'> MODS and - 0sW* : MODS ----'> MODR 

are mutually inverse equivalences between the categories of right modules. 
(ii) The restrictions of these functors are mutually inverse equivalences be­

tween MR and Ms, the categories of finitely generated modules, and 
between P Rand P s, the categories of finitely generated projective mod­
ules. 

(iii) The functors 

W* 0R - : RMoD ----'> SMOD and W 0s - : SMOD ----'> RMoD 

are also mutually inverse equivalences which induce equivalences between 
RM and sM and between RP and sP. 

Proof 
The composite of the functors - 0R W : MODR -+ MODS and - 0s W* : 

MODS -+ MODR is the functor - 0R W 0s W* : MODR -+ MODR. There is 
a natural transformation from this composite functor to the identity functor 
on MOD R which is exhibited by the commuting diagram 

id0a '=" 

M0RW0s W* M0RR M 

110 id0 id j 
id0a 

j 110 id j 11 
'=" 

N0R W0sW* N0RR N 

for any R-homomorphism 11 : M -+ N. Since a is an R-R-bimodule isomor­
phism (4.1.13), this transformation is a natural isomorphism. 

Similarly for the other composition. 

The remaining assertions follow by (3.1.17) since Wand W* 
generated and projective on both sides, and by symmetry. 

are finitely 
o 
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4.2.4 Further developments 
1. The converse of the preceding result is true: if the categories MODR and 

MODs are equivalent, the equivalence must be given by - ®R W for some 
progenerator W. A weak version of this result is indicated in Exercise 
4.2.13 below; for full details see [Rowen 1988] §4.1, for example. 

2. There is an extension of the concept of progenerator to an arbitrary abelian 
category. It can then be shown that an abelian category is equivalent to 
MODR for some ring R precisely when it has a progenerator (and contains 
arbitrary coproducts of copies of the progenerator); see [Pareigis 1970] 
§4.11 Theorem 1. 

Another far-reaching categorical generalization of Morita theory is given 
in §2 of [Kuhn 1994]. 

3. [Quillen] has generalized the preceding result to firm nonunital rings, as 
defined in Exercise 3.2.5. His results require an appropriate generalization 
of the category MODR to the case that R may be nonunital. Let us here 
use the same notation MOD R for this category. Then there is a bijec­
tive correspondence between equivalences from MODR to MODS with R 
and S firm nonunital rings and firm generalized R-progenerators W (as in 
Exercise 4.1.4). 

His approach uses a notion of relative Morita equivalence which we out­
line in Exercise 6.3.6. 

The refinement of Theorem 4.2.3 presented there leads to a definition of 
MOD R for nonunital rings in Exercise 6.3.7. 

4. Recently, the Morita theory has been applied to mathematical physics. 
For a discussion, which involves setting up the corresponding machinery 
for categories of modules over C* -algebras, see [Schwarz 1998]. 

4.2.5 Properties preserved by Morita equivalence 
Our aim now is to show that many important properties of rings are pre­
served by Morita equivalence. We start by examining the effect of a Morita 
equivalence on the submodules of a module. 

4.2.6 Theorem 

Suppose that Rand S are Morita equivalent through the left R-progenerator 
W. Let M be a right R-module and N a right S -module. Then there are 
order-preserving bijections 

(i) M' ~ M'®R W between R-submodules of M and S-submodules of M®R 
W. 
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(ii) N' f---+ N' @s W* between S-submodules of Nand R-submodules of N@s 
W*. 

(iii) a f---+ T(W* @R aW) between the twosided ideals of R and those of S. D 

If we make the informal identification W*W = S, then part (iii) can 
be stated more expressively as 'a f---+ W*aW gives a bijection between the 
twosided ideals of R and those of S'. 

4.2.7 Corollary 

(i) M is Noetherian or Artinian if and only if M @R W is Noetherian or 
Artinian respectively. 

(ii) N is Noetherian or Artinian if and only if N @s W* is Noetherian or 
Artinian respectively. 

(iii) 

rad(M@R W) = Im((radM) @R W -? M @R W) 

and 

rad(N @s W*) = Im((radN) @s W* -? N @s W*), 

where the homomorphisms are injections induced by the obvious inclu­
sions. 

(iv) rad(R) f---+ T(W* @R (rad(R)W)) = rad(S). 

Proof 
Parts (i) and (ii) are immediate from the characterizations of these prop­

erties in terms of the ascending and descending chain conditions ([BK: IRM], 
(3.1.6) and (4.1.1) respectively). Part (iii) follows directly from the defini­
tion of the radical rad( L) of a module L as the intersection of the maximal 
submodules of L ([BK: IRM] (4.3.1)), and for (iv) , we use the fact that the 
Jacobson radical rad(R) of a ring R is a twosided ideal of R which is equally 
the intersection of the maximal right ideals of R and of the maximal left ideals 
of R - see [BK: IRM], (4.3.7) and (4.3.11) respectively. D 

We come to our main result. 

4.2.8 Theorem 
Suppose that rings Rand S are Morita equivalent. Then the following 

statements are true. 

(i) R is right Noetherian if and only if S is right Noetherian. 
(ii) R is right Artinian if and only if S is right Artinian. 

(iii) R is Artinian semisimple if and only if S is Artinian semisimple. 
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(iv) R is simple (as a ring) if and only if S is simple. 

Furthermore, the left-handed versions of (i) and (ii) also hold. 

Proof 

209 

(i) - (iii) are most conveniently deduced from the categorical characteriza­
tions of these properties given in (2.3.9): for example, R is right Noetherian 
if and only if the category N OETHR of Noetherian modules is the same as 
the category MR of finitely generated modules. Alternatively, one may argue 
directly from the definitions. 

For (iv), recall that a simple ring is one without any proper twosided ideals 
except O. 0 

Next, we show that the centre Z(R) of a ring is preserved under Morita 
equivalence. 

4.2.9 Proposition 

Suppose that rings Rand S are Morita equivalent. Then there is a ring 
isomorphism Z(R) ~ Z(S). 

Proof 
Let W be a left R-progenerator giving the equivalence. We use the ring 

isomorphisms given in (4.1.15) to identify S with End(RW) and R with 
End(Ws). If z E Z(R), there is an R-endomorphism az of W defined by 
1O(az) = z10 for 10 in W, and a : Z(R) --+ Z(S) is clearly a ring homomor­
phism. Similarly, an element z' E Z(S) gives an S-endomorphism (3z' of W 
by ((3z')10 = 1Oz', and a and (3 are mutually inverse. 0 

As an application, we recall that, for a commutative domain 0, a ring R is 
an O-order if 0 embeds in Z(R) and if, as both a left and right O-module, R 
is finitely generated over 0 and torsion-free. 

4.2.10 Corollary 

Let 0 be a commutative domain and suppose that R is an O-order. If a 
ring S is Morita equivalent to R, then S is also an O-order. 

Proof 
Since 0 is contained in the centre of R, it can also be embedded in the 

centre of S. Since R is finitely generated as an O-module, and R Wand WR 
are finitely generated as R-modules, they are finitely generated as O-modules, 
and hence S ~ W*®R W is also finitely generated as an O-module. Essentially 
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the same argument shows that S is torsion-free over 0, for R is torsion-free 
and hence the projective R-modules Wand W* are also torsion-free. 0 

Recall from Exercise 2.4.5 that, for an O-order R, T ORO,R is the full subcat­
egory of MR given by the finitely generated R-modules which are O-torsion, 
and TFo,R is that given by the finitely generated R-modules which are 0-
torsion-free. We record: 

4.2.11 Proposition 
Suppose that Rand S are Morita equivalent O-orders. Then there are 

induced equivalences of categories 

T ORO,R ~ T ORO,S 

and 

TFo,R ~ TFo,s. o 

4.2.12 An illustration: matrix rings 

For any ring R and integer n, the full matrix ring Mn(R) is Morita equivalent 
to R, since we have Mn(R) ~ End(R(nR)) by (4.1.4). Thus we have shown 
that the matrix ring inherits most of the significant properties of R. 

If R has a direct product decomposition R = Rl X ... X Rk as a ring, 
then there is a corresponding decomposition of the matrix ring. To see this, 
we review some facts about idempotents that are discussed in detail in [BK: 
IRM], (2.6.2). 

An idempotent f of a ring R is central if f is in the centre Z(R) of R. 
Idempotents h, ... ,fk are orthogonal if 

fiij = fJfi = 0 whenever i =I- j. 

A set {h, ... , fk} of orthogonal, central idempotents is called a full set of 
orthogonal central idempotents for R if further 

There is a bijective correspondence between direct product decompositions 
of R (as a ring) and full sets of orthogonal idempotents in R, in which the 
idempotents fi are the identity elements of the components Ri = Rfi of R 
([BK: IRM], Proposition 2.6.3). 

Since a full set of orthogonal central idempotents of R is evidently a full set 
of orthogonal central idempotents of Mn(R), the following result is straight­
forward. 
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4.2.13 Proposition 

Suppose that R = Rl X ... X Rk, a direct product of rings. 
Then 

(i) Mn(R) = Mn(Rd x ... x Mn(Rk); 

211 

(ii) R is Morita equivalent to Mnl (Rd X· .. x Mnk (Rk) for any set of integers 
nl, ... ,nk>O. 0 

Taking Rl' ... ' Rk all to be division rings, we obtain an alternative proof 
of the fact that a direct sum of matrix rings over division rings is Artinian 
semisimple [BK: IRM] (4.2.6). The theory of Artinian semis imp Ie rings can 
actually be derived from the Morita theory, as in [Bass 1968] Chapter III. 

We also note a characterization of Morita equivalence in terms of matrix 
rings, which is suggested by (4.1.9). 

4.2.14 Proposition 

The following statements are equivalent. 

(i) The rings Rand S are Morita equivalent. 
(ii) There is a ring isomorphism S ~ eMn(R)e, where n is an integer and e 

is an idempotent element of Mn(R) such that 

Proof 
In view of (4.1.9) it suffices to consider a bimodule W of the form nRe. Then 

W* is eRn and the image of T is eRn. nRe in S. However, Rn . nR = Mn(R) 
(see (3.1.15)), so that the image of T is isomorphic to eMn(R)e. Now T is 
an isomorphism precisely when the image contains 1, that is, S ~ eMn(R)e. 
On the other hand, (j is an isomorphism so long as nReRn contains 1; this is 
just the requirement that the twosided ideal of Mn(R) generated by e should 
contain the identity matrix and thus equal Mn(R). 0 

4.2.15 An illustration: orders over Dedekind domains 
In the discussion so far, our explicit examples of Morita equivalences between 
rings all derive from the equivalence of a ring R with its full matrix rings 
Mn(R), n ~ 1. Some examples of Morita equivalence which are not of this 
type can be found by taking the base ring R to be a Dedekind domain which 
has non-principal ideals. 

Let 0 be a Dedekind domain with field of fractions K. Our definition 
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of a Dedekind domain (2.3.20) requires that any fractional ideal a of 0 is 
invertible. By (4.1.17), the inverse a- l of a can be identified as its dual a*: 

a- l = {x E K I ax ~ O}, 

and a is a finitely generated (left and right) projective O-module, in fact a 
progenerator. 

Let P be a finitely generated projective (left) O-module. Then (2.3.20 - C) 

P = al EB ... EB ar 

for some fractional ideals al, ... , ar. Further, by Steinitz' theorem (2.3.20 
- D), P is isomorphic to a module in the standard form r-lQ EB a, where 
a = al ... ar and the rank r and ideal class {a} in the class group Cl( 0) are 
invariants of the isomorphism class of P. (See [BK: IRM] Chapter 5, for a 
fuller discussion.) 

Given a fractional ideal a, we therefore have a EB a ~ 0 EB a2 . Thus the fact 
that 0 is a generator shows again that a is also a generator, and hence that 
any finitely generated projective module is a generator. Now KP = rK, the 
row-space, and the dual (rK)* can be identified as the column-space Kr; then 

P* = {y E Kr I Py ~ O} = or-l EB a- l . 

Put S = End(oP). By (4.2.10), S is an O-order in Mr(K), and, computing 
naively in Kr . '7C = Mr(K), we find that S can be represented as a tiled order 

S = P* Q90 P = ( ! 
a- l 

o 

(More details of the calculation are given in [BK: IRM] Exercise 6.1.3.) This 
description of S makes it plausible that S is not the matrix ring Mr (0). 
However, it may happen that S is isomorphic to Mr(O) as a ring. For example, 

take r = 2 and a = aO principal, and let t = (~ ~); then S f-> rl st 

gives such an isomorphism. In Exercise 4.2.5 below, we indicate the argument 
which shows that, for r = 2, there can be no such isomorphism in general. 

The full answer for arbitrary r can be found in [Curtis & Reiner 1987], 
§55.39: End(r-lQ EB a) ~ Mr (0) if and only if {a} is an r th power in the class 
group Cl(O). 
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4.2.16 The Picard Group 

We next investigate, for an arbitrary ring R, those R-R-bimodules that give 
rise to self-equivalences on the category MODR. Such bimodules define a 
group, the Picard group Pic(R), which provides a generalization to rings in 
general of the ideal class group of a Dedekind domain. 

The Picard group also measures the different Morita equivalences between 
a pair of rings, since if U and V are both R-S-progenerators for some rings 
Rand S, then U ®s V* will be an R-R-progenerator and so give rise to an 
element of Pic(R). An interpretation of this fact in terms of groupoids is 
indicated in Exercise 4.2.10. 

We start with a result which extends (3.3.19). 

4.2.17 Lemma 
Suppose that Wand X are R-S -bimodules. 
Then the functors - ® R Wand - ® R X are naturally isomorphic if and 

only if there is an R-S -bimodule isomorphism from W to x. 

Proof 
Suppose that - ®R Wand - ®R X are naturally isomorphic. By the 

definition (1.3.1), this means that for each right R-module M there is an 
isomorphism 

of right S-modules, and that for each homomorphism 

a:M'----+M, 

the diagram 

a ®id j 
commutes. 

In particular, there must be an isomorphism of right S-modules 'TIR from 
R®R W to R®RX, which we can regard as an S-isomorphism from W to X. 

For r in R, let '>"(r) : R ----+ R be the right R-homomorphism given by left 
multiplication. Then the equality 

('>"(r) ® l)'TIR = 'TIR(.>..(r) ® 1) 
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shows that TJR is also a homomorphism of left R-modules. 

The converse is clear. o 

4.2.18 Definition of Pic(R) 

Suppose that W defines a Morita equivalence from R to itself. Then W must 
be an R-R-bimodule, and by (4.1.15) it is invertible, that is, there is an inverse 
R-R- bimodule W* such that 

as R-R-bimodules. Conversely, if W has such an inverse, then W is a left R­
and right R-progenerator and defines a Morita self-equivalence on R. The pre­
ceding lemma shows that two such bimodules W, V give the same equivalence 
on MODR if and only if they are isomorphic as R-R-bimodules. 

We therefore define the Picard group Pic(R) of R to be the set of R-R­
bimodule isomorphism classes of invertible R-R-bimodules. The class of W 
will be denoted {W}. The multiplication in Pic(R) is given by 

{W}· {X} = {W@RX}, 

the identity is {R}, and {W}-l = {W*}. Closure follows from (4.2.2) and 
associativity from (3.1.5). 

There is no reason why Pic(R) need be abelian, but examples where it is 
not abelian are too complicated to include in this account; see statement 55.58 
of [Curtis & Reiner 1987]. 

The next two results give the fundamental properties of the Picard group. 

4.2.19 Proposition 

Suppose that the rings Rand S are Morita equivalent. Then there is an 
isomorphism of groups Pic(R) ~ Pic(S). 

Proof 

Let RU be a progenerator giving the equivalence. Then the isomorphism is 

11 : {W} 1--+ {U* @R W @R U} for {W} E Pic(R). 

It is easy to check that 11 is well-defined. To see that 11 is a (mUltiplicative) 
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homomorphism, recall that the square 

- IZlR U 
MODs 

j -IZls U* IZlR W IZlR U 

MODs 

215 

is a commutative diagram of functors, at least to within an isomorphism 
afforded by 0". Now take V to be an R-R-bimodule, and evaluate the effect 
of these functors on U* IZlR V in both ways. We then see that 

/L( {V} )/L( {W}) = /L( {V}{W}). 

The fact that /L is an isomorphism follows from the observation that it has an 
inverse, the homomorphism induced by U*. D 

4.2.20 Proposition 
Suppose that R = Rl X ... X Rk, a direct product of rings. 
Then Pic(R) ~ Pic(Rd x ... x Pic(Rk), the direct product of groups. 

Proof 
Let el, ... ,ek be the full set of orthogonal central idempotents of R that 

gives the decomposition ([BK: IRM] (2.6.2)). If W is an R-R-bimodule, then 

W = Wel EB ... EB Wek 

where each Wei is an Ri-Ri-bimodule, and if X is another R-R-bimodule, we 
have 

In the other direction, if Wl , .•. , Wk is a set of bimodules over the respective 
components of R, then W = Wl EB·· ·EBWk is an R-R-bimodule with Wei ~ Wi 
for each i. 

It is now easy to check that the invertibility of W corresponds to that of 
each Wei, and that the map 

gives an isomorphism. 
A first calculation. 

4.2.21 Theorem 

{W} f-+ ({Wel}, ... , {Wed) 

Let R be an Artinian semisimple ring. Then Pic(R) = 1. 

D 
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Proof 
By the Wedderburn-Artin Theorem ([BK: IRM] (4.2.3)), 

R = Mnl (VI) x ... x Mnk (Vk ), 

where each Vi is a division ring. The preceding results show that it is enough 
to prove that Pic (V) = 1 for V a division ring. But this is obvious, since any 
V-module is free, of unique dimension. 0 

4.2.22 Orders 
The most direct analogy between the Picard group of a ring and the class 
group of a Dedekind domain occurs when R is an O-order for some (com­
mutative) integral domain O. Let K be the field of fractions of O. Since 
R is a finitely generated torsion-free O-module, R spans a finite-dimensional 
K-space KR which is necessarily an Artinian ring. (The existence of KR is 
an application of the localization techniques that we meet in Chapter 6 - see 
(6.2.1). A direct approach is given in [BK: IRM] (1.2.23).) 

We extend the definition of a fractional ideal from commutative domains 
to orders as follows. A (twosided) fractional ideal a of an O-order R is an 
R-R-submodule of KR which is finitely generated (on both sides), and which 
spans KR. If a is instead only a left R-module, then a is a left fractional ideal, 
and if it is a right R-module, it is a right fractional ideal. (These definitions 
were anticipated in Exercise 4.1.7.) 

We say that a twosided fractional ideal a is invertible if there is some frac­
tional ideal a' with aa' = R = a' a. 

We assume also that KR is semisimple. This is frequently the case in 
situations arising from integral representation theory and algebraic number 
theory. For example, the integral group ring 'E.G of a finite group G spans the 
algebra QG, which is semisimple by Maschke's Theorem ([BK: IRM] Exercise 
4.3.9). 

Suppose that W is an invertible R-R-bimodule. As we remarked in the 
proof of (4.2.10), W is O-torsion-free, and so spans a KR-KR-bimodule KW, 
which is also invertible, with inverse KW*. Thus there is a homomorphism 
from Pic(R) to Pic(KR). Since Pic(KR) = 1 by the preceding theorem, we 
have KW ~ KR, as a bimodule. 

Then the image of W under such an isomorphism must be a fractional ideal 
a. It is also obvious that a must be invertible, with inverse isomorphic to W*. 
Thus the Picard group can be described as the group of isomorphism classes 
of invertible fractional ideals of R, with product given by {a} . {b} = {ab}. 

If {a} = 1, then R ~ a as a bimodule. Let () : R ----t a be such an isomorphism 
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and put 8(1) = ao in o. Then ao has the properties that rao = aor for all r 
in R, 0 = Rao, and rao = ° only if r = 0, allowing it to be termed a regular 
central generator of o. 

Conversely, if the fractional ideal 0 has a regular central generator ao, then 
o is isomorphic to R. 

When 0 is a Dedekind domain, the ideal class group CI( 0) is, by definition, 
the quotient group 

CI(O) = Frac(O)jPr(O) 

where Frac( 0) is the group of all fractional ideals of 0 and Pr( 0) is the 
subgroup comprising all principal ideals. (Note that Frac( 0) is a group since 
every fractional ideal of 0 is invertible.) It is not hard to see directly ([BK: 
IRMJ (5.1.14)) that the class {a} of 0 is trivial in the ideal class group precisely 
when 0 is isomorphic to O. Thus the fractional ideals with a regular central 
generator play the role taken by the principal ideals for Dedekind domains. 

This discussion makes it plain that if 0 is a Dedekind domain, then Pic( 0) = 
CI(O), the ideal class group. If 8 is a tiled O-order of the type constructed 
in (4.2.15), then Pic(8) ~ CI(O) by (4.2.19). 

The calculation of Picard groups for orders is an extensive subject; we give 
one illustrative computation as Exercise 4.2.12. A survey can be found in 
[Curtis & Reiner 1987], §55. 

Exercises 
4.2.1 Let the ring R = 8 1 X 8 2 be the direct product of two nontrivial rings. 

Show that R is not Morita equivalent to Mn(8d for any integer 
n~1. 

4.2.2 Let R be any ring and W any left R-module, and put 8 = End(R W) 

and T = (~ ~), the triangular matrix ring. Show that 

End(R(R EB W)) = (:* ~). 
Is this the same as End(T(R EB W))? (Consider special cases.) 

4.2.3 Suppose that we have a Morita context 

(~ ~), a: W ®s V ~ R, T: V ®R W ~ 8, 

as in Exercise 4.1.3. 
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(a) Observing that Hom(M 0R W 0s VR, M) is naturally isomorphic 
to Hom(M 0R Ws, Hom(VR, M)) (3.1.18), deduce that there is a 
natural transformation from the functor M I---' M 0 R W to the 
functor M I---' Hom(VR' M) from MODR to MODs, which is a 
natural isomorphism in the case of Morita equivalence (that is, 
when a is an isomorphism). 

Likewise, there is a natural transformation between N I---' N 0s V 
and N I---' Hom(Ws, N) from MODs to MODR which is a natural 
isomorphism in the case of Morita equivalence. 

(b) Given a (right) R-module L and a twosided ideal a of R, we 
sometimes say that L is a-torsion to indicate that La = O. 

Let 

be the distinguished element determined by a and let Ma' be its 
counterpart in Hom(M 0R Ws , Hom(VR, M)). Show that both 
Ker Ma and CokMa are (1m a)-torsion R-modules, while Ker Ma' 

and Cok Ma' are (1m T)-torsion S-modules. 

(There is a corresponding result with the roles of a and T inter­
changed.) 

4.2.4 Let K be a field. Describe the rings which are Morita equivalent to 

( ~~ ~O :~.). the n x n triangular matrix ring '" 

4.2.5 Let 0 be a Dedekind domain and suppose that the class group Cl( 0) 
contains an element {a} which is not the square of any other element 
of Cl(O). For example, the class group of the ring of integers Z[A] 
of Q( A) contains such an element since it has order 2 ([BK: IRM] 
(5.3.17)). 

Let P = 0 EB a. We now outline in stages the proof of the fact 

promised in (4.2.15): the ring End(Po) = (a~l ~) is not iso­

morphic to the matrix ring M2(0). 

(i) Since M2(0) is Morita equivalent to 0 through 0 2, the M2(0)­
submodules of 0 2 are of the form b EB b, with b a (fractional) 
ideal of O. 

(ii) If there is a ring isomorphism from End(P) to M 2 ( 0), then P is 
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a projective M 2 (0)-submodule of 0 2 by change of scalars, and 
so is isomorphic to b EB b for some b. 

(iii) This isomorphism must be given by left multiplication by an 
element x in K, and so {a} = {b p, a contradiction. 

4.2.6 Contrary to expectations that might be raised by the result in the 
previous exercise, it can happen that non-isomorphic O-modules give 
rise to isomorphic orders. We now take 0 to be a Dedekind domain 
that has an ideal a such that {ap is nontrivial ([BK: IRMJ (5.3.20) 
gives an example). 

Continuing with the notation of the previous exercise, write Q = 

o EB a-1. 

Show that P';p Q but that End(P) = T- 1 End(Q)T for the 2 x 2 

. (0 1) matnx T = 1 0 . 

4.2.7 Let 0 be a Dedekind domain and let a be any integral proper ideal of 

O. Put R = (~ ~). Show that the projective right R-module 

(0 a) cannot be R-isomorphic to (b b) for any ideal b of 0, and 
deduce that R is not Morita equivalent to O. 

4.2.8 Let Rand S be commutative rings and suppose that there is a ring 
homomorphism f : R ----+ S, so that S becomes an R-module by 
restriction of scalars. Show that extension of scalars W f--+ W (>9 R S 
induces a homomorphism from Pic(R) to Pic(S), and deduce that Pic 
is a functor from the category of commutative rings to the category 
of abelian groups. (You will need (3.1.5) and (3.2.15).) 

4.2.9 Let R be an O-order spanning a semisimple K-algebra, where 0 is a 
commutative domain with field of fractions K. 

Show that a twosided fractional ideal a of R is invertible if and only 
if a is both a left and a right R-progenerator. 

Extend the definition of invertibility as follows. A right fractional 
ideal a of R is invertible if there is a right fractional R-ideal a' such 
that aa' = R and a' a = S for some O-order S. 

Show that a is a right R-progenerator if and only if it is invertible, 
in which case S is Morita equivalent to R through a. 

4.2.10 Let 0 be a commutative domain with field of fractions K, and let ~ 
be a finite-dimensional semisimple K-algebra. 

The category BRANDT(~) has as objects the O-orders which span 
~, a morphism from R to S being an S-R-bimodule isomorphism class 
{W} of a left S-, right R-progenerator W. 
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Verify that BRAN DT(~) is actually a groupoid, the vertex group at 
R being Pic(R) - see Exercise 1.1.9. 

(The name is in honour of H. Brandt, who first introduced this 
groupoid as a generalization of the ideal class group of a Dedekind 
domain to noncommutative arithmetic [Brandt 1926].) 

4.2.11 Suppose that W is a right R-progenerator and let S = End(WR ), so 
that S is Morita equivalent to R. If there is a ring homomorphism 
() : R ----+ S, then, according to our definitions, W defines a self­
equivalence on R and hence an element of Pic(R). 

Confirm that W becomes an R-R-bimodule through restriction of 
scalars via (), and hence that {W} is trivial in Pic(R). 

Deduce that, for R a noncommutative right principal ideal domain, 
Pic(R) is trivial. 

4.2.12 We now give a calculation of a Picard group as promised in (4.2.22). 
Let 0 be a Dedekind domain, let n be an integral ideal of 0, and 

consider the tiled order R = (~ ~). By part (xv) of Exercise 

4.1.7, an R-R-progenerator, that is, a twosided invertible fractional 

R-ideal, has the form I = f (6 ~), where f is a fractional ideal 

of 0 and ~ is a factor of n such that ~ and n~-l are coprime. 
2 

Verify that (6 ~) = ~R. 
Let n = ql'" qk, where ql,"" qk are the distinct prime power 

factors of n, and set M(i) = (6 :q;l) for i = 1, ... , k. Denote 

the group of invertible twosided fractional ideals of R by In(R). 
Show that In(R) is a free abelian group with generating set the ide­

als M(l), ... , M(k) together with the ideals pR where I' runs through 
the prime ideals of 0 that do not divide n. 

By definition, the Dedekind domain 0 has In(R) = Frac(O), the 
set of fractional ideals. Deduce that the natural homomorphism 
0: : Frac( 0) ----+ In( R), defined by sending the generators I' of Frac( 0) 
to 0:(1') = pR, induces an injective homomorphism (3 : CI( 0) ----+ 

Pic(R), and that the cokernel Cok((3) is the direct product of k 
cyclic groups of order 2, with generating set the images of the classes 
{M(l)}, ... , {M(k)}. 

4.2.13 Using (4.2.17) together with (4.1.15), prove the following result that 
was promised in (4.2.4), part 1. 

Given rings Rand S, suppose that U is a left R-module, V is a 
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left S-module, and that - Q9R U : MODR ---- MODs and - Q9 sV : 

MODs ~ MODR are mutually inverse equivalences of categories. 
Show that U is an R-S-progenerator and V ~ U* as an S-R­

bimodule. 
4.2.14 Morita equivalence not true to type 

Suppose that a ring R does not have Invariant Basis Number, that 
is, there are R-module isomorphisms Rm ~ Rn for differing ranks 
m, n. Then R can be given a type (w, d) which measures the extent 
to which free modules can have bases with differing numbers of ele­
ments; (w, d) is a pair of non-negative integers such that no two of 
R, R2, ... , Rw-l are isomorphic, and, when w ::; m ::; n, Rm ~ Rn if 
and only if n = m + kd for some integer k ;:::: 1. Details are given in 
[BK: IRM] Exercise 2.3.2, or [Berrick & Keating 1997]. 

Show that Mn(R) has type (1,1) if n is a sufficiently large mul­
tiple of d, and hence that the type is not preserved under Morita 
equivalence. 
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