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ABSTRACT. For landscapes with a complex topography and a heterogeneous forest
mosaic it is not feasible to map the snow depth directly from optical satellite images. In
this paper, an indirect method to predict the snow-depth distribution is presented and
applied to a 0.7 km2 subalpine catchment in central Switzerland. The method consists of
(a) a parsimonious linear regression model which includes the attributes of topography
and vegetation indices (derived from a Landsat Thematic Mapper (TM) image) as
explanatory variables, and (b) geostatistical interpolationtechniques. A previous analysis
of the forest mosaic revealed two main scales showing up in the LandsatTM image and an
aerial photograph.This discrepancy in scale was assumed to be the major reason why the
vegetation indices derived from the LandsatTM image were only weakexplanators of the
snow-depth variation measured at 100^200 locations within the catchment. Surprisingly,
the geostatistical interpolation (universal kriging) was not able to improve the prediction
of the snow-depth distribution significantly.The residuals of the regression model showed
hardly any spatial dependence for single snow-measurement dates.

INTRODUCTION

Predictive use of watershed runoff models and soil^vegetation^
atmosphere transfer (SVAT) models often fails in landscapes
with a heterogeneous forest cover and a complex topog-
raphy, because these characteristics strongly influence the
micrometeorological surface conditions. This applies espe-
cially to winter conditions in subalpine semi-forested areas
where both the snow accumulation and the snow ablation
are strongly affected by canopy interception of water, snow
and radiation, as well as by the complex wind field within
such a terrain. In order to improve predictive use of models
for such areas, we need to include information on the spatial
structure of the landscape at a much lower resolutionthan the
watershed scale, preferably at the scale of the forest mosaic.

In recent years, most of the remote-sensing studies address-
ing snow-cover distribution had the goal of determining the
areal snow coverage within a certain region.The quantitative
areal information about the snow coverage is an important
feature for mountain hydrology (Rango and Shalaby, 1998).
While in the beginning the objective was to classify the pixels
as snow-covered or snow-free (Dozier,1989), the more recent
works tried to map the fractional snow coverage at subpixel
resolution (Rosenthal and Dozier,1996). In combinationwith
information from the ground or simple snowpack models
such maps were then used to estimate the snow water equiva-
lent and the runoff during the snowmelt in spring (Schaper,
2000; Schaper and others, 2001).

The success of this strategy is strongly influenced by the
image resolution and the overflight frequency of the satellite:
the LandsatThematic Mapper (TM) has a good resolution,

but a limited number of overflights per winter season; the
Moderate Resolution Imaging Spectroradiometer (MODIS)
satellite records an image of the selected area every day, but
with a rather poor resolution.

Unfortunately, mapping fractional snow cover using opti-
cal remote sensors is very difficult for forested areas (Solberg
and others, 1997) because of the highly complicated solar
illumination (direct or diffuse) of snow below a canopy. In a
current analysis of Landsat TM images, Vikhamar and
Solberg (2001) investigate the influence of different tree species
and densities on the reflectance of forest with a snow-covered
ground in the Jotunheimen mountains, Norway. Their results
confirmed the complexity of the reflectance pattern caused by,
among other things, heterogeneous illumination of the forest
ground, the reflection properties of different tree species or
snow interception. A detailed reflectance model including
shadowing effects was able to explain no more than about
60% of the variation in reflectance. Another study of the
reflectance of snow-covered forest was presented by Klein
and others (1998). They improved mapping of snow-covered
area for forests from MODISandLandsatTMimagesby using
two parameters (normalized-difference snow index and
normalized-difference vegetation index (NDVI)).

In contrast to the areal extent of the snow cover, it is not
feasible to map the snow-depth distribution directly from
optical sensor satellite images. Therefore, indirect methods
have to be applied to model the snow depth, based on
assumptions about the influence of topography and forest
density on the snow pattern. Forsythe (1999) showed that
multiple linear regression models using, among other
things, Landsat TM channels as explanatory variables of
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vegetation density were able to reproduce the snow-cover
distribution in the Kalkhochalpen region of Austria and
Germany fairly well.

In this study we use spatial data at different resolutions
from (i) digital elevation maps (gridsize 5 m), (ii) a Landsat
TM image (georectified and resampled to a pixel size of 25 m),
(iii) aerial photographs (pixel size 0.8 m) and (iv) canopy
photographs from the soil surface (support: 60 m2) to derive
attributes of topography and vegetation density. We hypothe-
size that such spatial data allow us to predict the snow-depth
distribution in heterogeneous subalpine areas with a high
accuracy and a fine spatial resolution. The main objective of
this work is to develop a detailed snow-depth distribution
map for a subalpine semi-forested catchment based on (a) a
parsimonious linear regression model which includes the attri-
butes of topography and vegetation indices as explanatory
variables, and (b) geostatistical interpolation techniques.

SITE DESCRIPTION AND MEASUREMENTS

The study area, Erlenbach, is a 0.7 km2 hydrological catch-
ment situated in the central Swiss subalpine zone. It rises
gently from the lowest point at 1100 m a.s.l. up to an altitude
of 1600 ma.s.l. facing westwards (Fig. 1). Typically for this
type of landscape, the forest in the catchment consists of a
heterogeneous mosaic of coniferous trees with marshy mea-
dows and open pasture in between (about 40% forest). In
contrast to alpine areas, redistribution of snow by wind is
not significant in this catchment, apart from the open pasture
close to the crest where snow may be relocated by wind drift.

The spatial snow measurements presented in this paper
are from two winters, 1998/99 and 1999/2000, that were rich
in snow, with peak snow depths of 2^3 m in the upper part of
the area. On 4 days of the first winter and 2 days of the sec-
ond winter, we measured snow depth at 100^200 locations,
fairly evenly distributed within the catchment (Fig. 3a). The

support of the snow-depth measurements was approxi-
mately 4 m2. At most of the forest locations, we took a photo-
graph of the canopy with a hand camera and digitized the
picture. Using a simple threshold operation in the blue
channel, we classified the pixels forming the canopy and
used their relative frequency as a measure for the canopy
closure, fc (support: ¹50 m2; Sta« hli and others, 2000).

A Landsat TM image from 15 June 1996 was selected,
showing a cloudless early-summer landscape with no snow.
The image was georectified using a digital elevation model
provided by the Swiss Federal Office of Topography and
resampled to a pixel size of 25625 m2. No atmospherical
correction was made. From the Landsat TM channels 1^5
and 7 we calculated vegetation indices (Table 1) that had
been reported as feasible indicators of forest density in
earlier studies (e.g. Crist and others, 1986; Cohen, 1991;
Borry and others,1993; Koch and others,1993).

Fig. 1. Digital elevation model superimposed with an aerial photograph of the Erlenbach catchment.

Table 1. Vegetation indices used for the multiple regression
analysis

TCbr Brightness Tasselled-cap transformation
(Crist and others,1986)

TCgr Greenness Tasselled-cap transformation
(Crist and others,1986)

TCwet Wetness Tasselled-cap transformation
(Crist and others,1986)

NDVIred NDVI red TM4¡TM3
TM4‡TM3

NDVIgreen NDVIgreen TM4¡TM2
TM4‡TM2

NDVIir NDVI infrared TM4¡TM7
TM4‡TM7

SR75 Simple ratio TM7/TM5 TM7
TM5

SR43 Simple ratio TM4=TM3 TM4
TM3

SR42 Simple ratio TM4=TM2 TM4
TM2
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ANALYSIS OF THE FOREST STRUCTURE IN THE
ERLENBACH CATCHMENT

Since the forest density strongly influences the snow accumu-
lation and ablation in the Erlenbach catchment (see next
section), we decided to analyze the spatial structure of the for-
est canopy. To this end, we calculated sample variograms of
selected channels of the aerial photograph and the Landsat
TM image of June 1996 that were assumed to be sensitive to
the forest density.The semivariance of a variable a…x†, which
in this study could be either the grey value of a pixel or meas-
ured snow depth, may be estimated by:

®…h† ˆ 1

2n

X
a…x† ¡ a…x ‡ h†‰ Š2

n o
; …1†

where h is the lag distance between two points, and n the num-
ber of locations separatedby lagdistance h. Anattribute is said
to be spatially dependent if ®…h† increases with h. Details on
geostatistics can be found inWebster and Oliver (1990).

The sample variograms of the green channel of the aer-
ial photograph and the Landsat TM 4 image showed that
there are two distinct scales of spatial dependence: one rep-
resenting the small-scale heterogeneity of the forest canopy
(¹10 m; `̀ single-tree scale’’, Fig. 2a), the other representing
the size of the forest patches (¹100 m; `̀ forest mosaic scale’’,
Fig. 2b). Although the heterogeneity at the single-tree scale
obviously cannot be captured by the Landsat TM image,
there are methods available to estimate the areal fraction
of forest per pixel. One such method is to take a high-reso-
lution aerial photograph, classify the forest (e.g. using a sim-
ple threshold algorithm) and then average the classified
image to the larger pixel size of the LandsatTM image.

We applied this method to our catchment using the green
channel of the aerial photograph.The resulting map of areal
forest coverage (Fig. 3b) was related to the vegetation indices
determined from the Landsat TM image. A multiple linear
regression model with the three explanatory variables TM4,
TM7 and brightness (TCbr) explained 72% of the variation
in forest coverage. The single vegetation index that repre-
sented the forest coverage best was TCbr with an R2 value of
0.66, followedby TM4 with an R2 value of 0.55. On the other
hand, the forest coverage was only weakly correlated with
NDVIs (R2 50.29) and the simple ratios (R2 50.34).

From this analysis we concluded that TM4, TM7 and
TCbr offered the most promising way of representing the

forest density in this type of subalpine landscape.We there-
fore expected that these vegetation indices would be best
suited to model the spatial distribution of the snow depth in
the Erlenbach catchment.

MULTIPLE LINEAR REGRESSION ANALYSIS OF
THE SNOW DEPTH

As a next step towards a model for the snow-cover distribu-
tion, we determined a parsimonious multiple linear regres-
sion model for the snow depth, zsnow, within the catchment.
We started from a full model including all the attributes of
topographyand vegetation indices derived from the Landsat
TM image (Table 1) as explanatory variables, and reduced
the set of explanatory variables by a stepwise procedure to a
minimum set that best explained the variation of snow depth
in space.We fitted a common model to the data of all the six
measurement dates.The change of the average snow depth in
time was modelled by a time-dependent constant, leading to
the following model:

zsnow ˆ a1zalt ‡ a2et ‡ a3TM4 ‡ a4TCbr

‡ a5TCwet ‡ a6SR43 ‡
X

aiIi…t† ‡ " ;
…2†

where zalt is altitude a.s.l., Ii…t† are time indicators for the
respective measurement dates, " is the error term, and et is
the solar exposure of the terrain assuming a midday-sun
zenith angle, ¬sz, of 60³ (which corresponds approximately
to an average `̀ winter-season’’ sun zenith at the latitude of
the Erlenbach catchment, 47³ N; Fig. 3c):

et ˆ cos…¬sz ¡ st cos…¬t†† ; …3†
where ¬t is the aspect deviation from south and st is the
slope angle of the terrain.

Obviously, the parsimonious model found by the step-
wise reduction included only some of the vegetation indices
that were found to represent forest density best (see previous
section): TM4 and TCbr. On the other hand, SR43 and
TCwet had a larger influence on the snow depth than TM7.
The coefficient of determination, R2, of model Equation (2)
was 0.704 (Table 2). A linear regression model with the three
vegetation indices representing the forest density best gave
only a slightly smaller coefficient of determination than the
model Equation (2).

More important than the difference between vegetation
indices was that the topography, i.e. zalt and et, and the time-

Fig. 2. Semivariograms for pixel values of the aerial photograph (left) and Landsat TM4 (right).
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dependent constants alone resulted in an R2 value onlymargin-
ally smaller than the coefficient of determination of model
Equation (2). Thus, we concluded that the vegetation indices
of the LandsatTMimage explainedhardlyanyof thevariation
in snow depth. This applies not only to locations that were
mapped as open land during the snow measurements, but also
to the forested or semi-forested measurement locations.

For single measurement dates (exemplified in Table 2 for
23 December 1999, an early-winter situation, and 4 April
2000, a late-winter situation), we found `̀ best-fitting’’ linear
regression models that differed slightly from the parsimo-

nious model for all measurements (Equation (2)). However,
the gain in precision using the best-fitting models for given
dates against model Equation (2) was only minor. We also
observed that the vegetation indices were more influential,
and the topographyless dominant, when the model was fitted
to single dates.

To sum up, the LandsatTM image contained hardly any
information on the forest density that could be used to model
variation of snow depth at the single-tree scale. To see if the
information on the forest density at the single-tree scale
would improve the explanation, we went on to fit a linear
regression model that included the canopy closure, fc, deter-
mined from the photographs taken from below the canopy as
the only vegetation-related explanatory variable. Clearly,
this variable was much more important than the Landsat
TM vegetation indices.This was found for the pooled dataset
of all six measurement dates, but also when fitting the model
to single measurement dates. A particularly impressive gain
of precision was obtained for the data of 23 December 1999
where the model with the canopy closure explained as much
as 76% of the snow-depth variation, whereas the R2 of the
best regression models with Landsat TM images was not
higher than 38%.

So far, we have only discussed regression models where
zsnow was untransformed. Unfortunately, we noted for the
pooled dataset of all six measurement dates that the residuals
of the fitted models were not normally distributed. A square-
root transformation of zsnow resulted in residuals that were
approximately normally distributed. Obviously, this trans-
formation did not significantly impair the coefficient of deter-
mination (Table 2). Fitting the models to the untransformed
zsnow of the single measurement dates resulted in approxi-
mately normally distributed residuals.

INTERPOLATION OF THE SNOW DEPTH USING
UNIVERSAL KRIGING

To analyze the spatial structure of the error term ", we com-
puted the residuals, r, of the square-root-transformed snow
depth for the model in Equation (2), fitted to the full dataset
(n ˆ 853), shown in Figure 4 (top) for 23 December 1999
and 4 April 2000. Considering only the locations on the
75675 m2 grid, the patterns imply some continuity in the
spatial distribution of the residuals. Over shorter distances,
however, there were pronounced differences in the magni-
tude of the residuals: on 4 April, for example, large differ-
ences between adjacent locations were found at (697.5, 211.1)
and (697.3, 211.3).

We then computed the sample variograms (Equation (1))
of the residuals for the individual measurement dates. Figure
4 (bottom) shows these statistics for 23 December 1999 and 4
April 2000. In general, the semivariance depended hardly at
all on the lag distance when analyzed for the six dates indi-
vidually: for example, the average squared difference over
the shortest lag distance was as large as (23 December) or
even larger than (4 April) the differences found for longer
lags. Since there was little to no spatial dependence discern-
ible in the variograms of individual dates, we computed the
variogram of the pooled dataset, and this statistic implied
that the residuals were spatially correlated up to a distance
of 0.5 km with a nugget/sill ratio approximately equal to 0.5.

We checked this model in a cross-validation exercise
using universal (or external drift) kriging (Cressie, 1993),

Fig. 3. (a) Spatial distribution of the snow depth measured on
23 December 1999 and 4 April 2000, (b) areal forest fraction
determined from the aerial photograph, and (c) solar exposure
(Equation (3)) with positive values facing southwards dis-
tributed over the Erlenbach catchment.
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with the pooled variogram and altitude, solar exposure and
the vegetation indices as explanatory variables for the mean
function. In such a leave-one-out scheme we `̀eliminated’’a
given datum from the dataset and predicted its snow depth
from the remaining data. Then we compared the predicted
and the measured values and computed their difference
(prediction error). We repeated this procedure for all the
observations of the set, and computed various statistics
(coefficient of determination, mean squared error of predic-
tion, mean absolute error of prediction, etc.). We used only
the observations that had been recorded on the same date
as the target datum when computing the cross-validation

predictions. Surprisingly, when we used the variogram esti-
mated from the pooleddataset, the universal kriging predic-
tions were no better than the predictions obtained from the
linear regression model, i.e. when the correlation of the error
term was ignored. The coefficients of determination were:
0.687 (universal kriging) and 0.693 (linear regression), and
the respective mean square errors of prediction were 3.48
and 3.39, respectively. Kriging was marginally better with
respect to the mean absolute prediction errors, but the dif-
ferences were negligible. The results of the cross-validation
exercise are in agreement with the lack of spatial dependence
exhibited by the sample variograms of individual dates. It

Fig. 4. Spatial distribution of the residuals of the regression model (Equation (2)) on 23 December 1999 and 4 April 2000 (top).
The area of the circular symbols denoting the position of the measurement locations is proportional to the residuals shifted by a positive
constant.The bottomgraph shows the sample variograms for the corresponding dates. Here the area of the circles is proportional to the
number of data pairs for a given lag class.

Fig. 5. Spatial distribution of the snow depth on 23 December 1999, predicted from the regression model Equation (2) fitted to the
full dataset.
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therefore appears that the spatial correlation signalled by the
pooled variogram is an artifact mainly caused by the super-
position of unrelated patterns.

Since the cross-validation analysis confirmed that there
was no spatial dependence, we used the coefficients deter-
mined by the regression analysis to map the snow depth in
the Erlenbach catchment. Figure 5 shows the spatial distri-
bution on 23 December 1999, a precipitation-free day with a
mean air temperature close to 0³C. On that day, the snow
depth varied in the catchment between 20 and 110 cm. The
model predicted increasing snow depth with increasing alti-
tude, but at the smaller scale the structure of the prediction
surface was largely determined by the vegetation. In particu-
lar, east of 697 the snow depth is closely related to the forest
coverage (cf. Fig. 3b). A very deep snow cover was predicted
around location (698.5, 211). Inspection of the aerial photo-
graph revealed a patch of bare ground at this location which
obviously influenced the spectral signature recorded by
LandsatTM.

DISCUSSION

One main conclusion resulting from this study is that indices
of the forest density derived from the Landsat TM image
were poor explanators of snow-depth variation measured
within the Erlenbach catchment. On the other hand, local
estimates of the canopyclosure from photographs taken from
below the canopy significantly improved our spatial snow-
depth simulation. The key problem related to this result
already showed up in the initial analysis of the forest struc-
ture: measurements and image information are recorded at
partly contrasting scales.Whereas the snow-depth measure-
ments, aerial photographs and canopy photos basically
reproduce the pattern of single trees and glades, the Landsat
TM vegetation indices may only capture the general struc-
ture of the forest mosaic. Altitude and solar exposure were
determined both locally and from a 25 m DEM, which gave
very similar results. In the regression analysis we could not
strictly adhere to one scale, which, at least partly, explains
the modest R2 values of our regression model Equation (2)
for the snow-depthvariation in the catchment for single days.
Using canopy density information (fc) recorded at the same
scale as the snow-depth measurements resulted in a much
better fit of the model. An excellent discussion of such scale
issues is provided in Blo« schl (1999).

The range of goodness of fit obtained with the model
that includes fc is in agreement with the R2 values of
Forsythe (1999) who applied a similar multiple regression
model to snow-course measurements in the Kalkhochalpen
region. As in our study, he found that the goodness of fit of
such a model varied significantly within the season and
between winters.

In spite of the moderate success in the present study, we
are still convinced that one has to take into account vegeta-

tion indices derived from satellite images when modelling
the spatial distribution of the snow cover. The main limita-
tion is the spatial resolution of the remotely sensed spectral
data from which we have to derive the vegetation indices.

A final conclusion from this study is that geostatistical
approaches do not improve the prediction of the snow-depth
variation in this type of landscape, so we have to be content
with applying the multiple linear regression model.
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