Bull. Austral. Math. Soc. Vol. 56 (1997) [69-79]

ON THE METRIC THEORY OF THE OPTIMAL CONTINUED FRACTION EXPANSION

R. Nair

Suppose k_n denotes either $\phi(n)$ or $\phi(r_n)$ $(n = 1, 2, \dots)$ where the polynomial ϕ maps the natural numbers to themselves and r_k denotes the kth rational prime. Let $(p_n/q_n)_{n=1}^{\infty}$ denote the sequence of convergents to a real numbers x for the optimal continued fraction expansion. Define the sequence of approximation constants $(\theta_n(x))_{n=1}^{\infty}$ by

$$heta_n(x) = q_n^2 \left| x - \frac{p_n}{q_n} \right|. \qquad (n = 1, 2, \cdots).$$

In this paper we study the behaviour of the sequence $(\theta_{k_n}(x))_{n=1}^{\infty}$ for almost all x with respect to Lebesgue measure. In the special case where $k_n = n$ $(n = 1, 2, \dots)$ these results are due to Bosma and Kraaikamp.

1. INTRODUCTION

In this paper we refine some results on the optimal continued fraction expansion of a real number proved in [1]. We first introduce the notion of a semi-regular continued fraction expansion, which both the regular continued fraction expansion and the optimal continued fraction expansion (our primary object of study) are examples of. For a real number x we write

$$x = c_0 + \frac{\varepsilon_1}{c_1 + \frac{\varepsilon_2}{c_2 + \frac{\varepsilon_3}{c_3 + \frac{\varepsilon_4}{c_4 + \cdots}}}}$$

also sometimes written more succinctly as $[c_0; \varepsilon_1 c_1, \cdots,]$ where $(c_i)_{n=1}^{\infty}$ is a sequence of integers and $\varepsilon_i \in \{-1, 1\}$. The numbers c_i $(i = 1, 2, \cdots)$ are called the partial quotients of the expansion and for each natural number n the truncates

$$\frac{P_n}{Q_n} = [c_0; \, \varepsilon_1 c_1, \, \cdots, \, \varepsilon_n c_n],$$

Received 15 August 1997

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9729/97 \$A2.00+0.00.

are called the convergents of the expansion. The expansion is called semi-regular if: (i) c_n is a natural number, for positive n; (ii) $\varepsilon_{n+1} + c_{n+1} \ge 1$ for all natural numbers n and (iii) $\varepsilon_{n+1} + c_{n+1} \ge 2$ for infinitely many n if the expansion is itself infinite. Central to the class of semi-regular continued fraction expansions is the regular continued fraction expansion which is also the most familiar and is obtained when c_n is a natural number and ε_n takes the value one for all n. Notice that for the regular continued fraction expansion $c_0 = \lfloor x \rfloor$, that is, the greatest integer not less than x. Each regular convergent is always a best approximation to x in the sense that there do not exist better approximations with smaller denominators. That is, for all integers r and s such that $0 < s \leq Q_n$, if for some rational r/s we have

$$\left|x-\frac{r}{s}\right| \leqslant \left|x-\frac{P_n}{Q_n}\right|$$

then $r/s = P_n/Q_n$. The converse does not hold [13, Section 16]. It is none the less possible to improve the approximation properties of x by convergents in other regards by looking at other continued fraction expansions in the semi-regular class. We consider two senses in which this can be done below. Firstly, as a form of Dirchlet's theorem on diophantine approximation [6] recall the inequality

$$\left|x-\frac{P_n}{Q_n}\right|\leqslant \frac{1}{Q_n^2},$$

satisfied by the convergents of the regular continued fraction expansion. Clearly if for each natural number n we set

(1.1)
$$\theta_n(x) = Q_n^2 \left| x - \frac{P_n}{Q_n} \right|,$$

then for each x the sequence $(\theta_n(x))_{n=1}^{\infty}$ lies in the interval [0, 1]. It turns out that because the convergents of any semi-regular continued fraction expansion are a subsequence of the sequence of convergents of the regular continued fraction expansion, the sequence $(\theta_n(x))_{n=1}^{\infty}$ may also be defined similarly for any semi-regular continued fraction expansion. In particular it was observed by Minkowski that the regular convergents for which $\theta_n(x) < 1/2$ are the convergents of a semi-regular continued fraction expansion [13]. In addition a theorem of Legendre tells us that if Q |Qx - P| < 1/2then P/Q is a regular convergent [6]. We shall therefore confine attention henceforth to expansions for which $\theta_n(x) < 1/2$ holds for all natural numbers n. Secondly we are interested in semi-regular continued fractions with convergents, henceforth denoted $(p_k/q_k)_{n=1}^{\infty}$, which are as sparse as possible as a subsequence of the sequence of regular convergents $(P_n/Q_n)_{n=1}^{\infty}$. There is a restriction on how sparse the sequence $(p_k/q_k)_{n=1}^{\infty}$ [3]

can be in that to remain a semi-regular expansion one of any two consecutive terms of $(p_k/q_k)_{n=1}^{\infty}$ must remain in $(P_n/Q_n)_{n=1}^{\infty}$. A semi-regular continued fraction expansion is called closest if the first requirement, namely that $\theta_n(x) < 1/2$ is true for all natural numbers n and called fastest if $(p_k/q_k)_{n=1}^{\infty}$ is as sparse as a subset of $(P_n/Q_n)_{n=1}^{\infty}$. A number of semi-regular continued fraction expansions satisfy one or other of these properties. See [7], [14], [9] or [10] for details. The optimal continued fraction expansion introduced in [3] satisfies both. In Section 4 we shall introduce and describe in detail this expansion which is our primary object of study. In Section 2 we introduce certain general results from ergodic theory necessary for our investigation. In Section 3 we present certain information about the regular continued fraction expansion we also need for our investigation. Finally in Section 5 the results of Section 2 are applied to obtain new results on the distribution of the sequence $(\theta_n(x))_{n=1}^{\infty}$ for almost all x with respect to Lebesgue measure in the case of the optimal continued fraction expansion. These results extend earlier work contained in [2].

2. BASIC ERGODIC THEORY

Here and throughout the rest of the paper by a dynamical system (X, β, μ, T) we mean a set X, together with a σ -algebra β of subsets of X, a probability measure μ on the measurable space (X, β) and a measurable self map T of X that is also measure preserving. By this we mean that if given an element A of β if we set $T^{-1}A =$ $\{x \in X : Tx \in A\}$ then $\mu(A) = \mu(T^{-1}A)$. We say a dynamical system is ergodic if $T^{-1}A = A$ for some A in β means that $\mu(A)$ is either zero or one in value. We say the dynamical system (X, β, μ, T) is weak mixing (among other equivalent formulations [17]) if for each pair of sets A and B in β we have

$$\lim_{N\to\infty}\frac{1}{N}\sum_{n=1}^N \left|\mu\left(T^{-n}A\cap B\right)-\mu(A)\mu(B)\right|=0.$$

Weak mixing is a strictly stronger condition than ergodicity. A piece of terminology that is becoming increasingly standard is to call a sequence $\mathbf{k} = (k_n)_{n=1}^{\infty}$ of non-negative integers L^p good universal if given any dynamical system (X, β, μ, T) and any function f in $L^p(X, \beta, \mu)$ it is true that

$$\lim_{N\to\infty}\frac{1}{N}\sum_{n=1}^N f(T^{k_n}x) = \ell_f(x),$$

exist almost everywhere with respect to the measure μ . Here and henceforth for each real number y, let $\langle y \rangle$ denote its fractional part, that is $y - \lfloor y \rfloor$. The following theorem is proved in [12].

R. Nair

THEOREM 2.1. Suppose the sequence $\mathbf{k} = (k_n)_{n=1}^{\infty}$ of non-negative integers is such that for each irrational number α the sequence $(\langle k_n \alpha \rangle)_{n=1}^{\infty}$ is uniformly distributed modulo one and for a particular p greater or equal to one that $\mathbf{k} = (k_n)_{n=1}^{\infty}$ is L^p good universal. Then if the dynamical system (X, β, μ, T) is weak mixing, $\ell_f(x) = \int_X f(t) d\mu(t)$ almost everywhere with respect to μ .

If k_n denotes either $\phi(n)$ or $\phi(p_n)$ where ϕ denotes any non-constant polynomial mapping the natural numbers to themselves and p_n denotes the *n*th rational prime then **k** is L^p good universal for any *p* greater than one. See [4] and [11] respectively for proofs. The fact that for each irrational number α the sequence $(\langle k_n \alpha \rangle)_{n=1}^{\infty}$ is uniformly distributed modulo one in both instances are well known classical results. See [16] and [18] respectively. Other sequences are known by the author to satisfy both hypotheses but these results have yet to appear in print. Henceforth for reasons of brevity, we shall call a sequence $\mathbf{k} = (k_n)_{n=1}^{\infty} p$ -good if it satisfies the hypothesis of Theorem 2.1 and we call it good in the special case when it is *p*-good for $p = \infty$.

3. Regular continued fractions

Suppose for a real number x that it has regular continued fraction expansion

$$x = c_0 + \frac{1}{c_1 + \frac{1}{c_2 + \frac{1}{c_3 + \frac{1}{c_4 \cdots}}}}$$

Let $g: [0, 1] \rightarrow [0, 1]$ be the map defined by

$$gx = \left\langle \frac{1}{x} \right\rangle x \neq 0; \quad g0 = 0,$$

also known as the Gauss map. Notice that $c_n(x) = c_{n-1}(gx)$ $(n = 1, 2, \dots)$ and recall that

$$\frac{P_n}{Q_n} = [c_0; c_1, \cdots, c_n] \qquad (n = 1, 2, \cdots).$$

We have the following classical recurrence relations [6]

$$P_{-1} = 1; P_0 = 0; P_n = c_n P_{n-1} + P_{n-2} \qquad (n = 1, 2, \cdots)$$

and

$$Q_{-1} = 1; \ Q_0 = 0; \ Q_n = c_n Q_{n-1} + Q_{n-2} \qquad (n = 1, 2, \cdots).$$

Set

$$T_n = g^{n-1}(x-c_0)$$
 $(n = 1, 2, \cdots)$

and

[5]

$$V_n = V_n(x) = \frac{Q_{n-1}}{Q_n}(x)$$
 $(n = 1, 2, \cdots).$

Then it is straightforward to check that

$$T_n = [0; c_{n+1}, c_{n+2}, \cdots],$$

and

$$V_n = [0; c_n, c_{n-1}, \cdots, c_1].$$

From g we build a two dimensional map \mathcal{T} defined on $\Omega = ([0, 1) \setminus \mathbf{Q}) \times [0, 1]$ by

$$\mathcal{T}(x, y) = \left(gx, \frac{1}{\lfloor 1/x \rfloor + y}\right).$$

Then for each natural number n

$$\mathcal{T}^{n}(x, y) = (g^{n}x, [0; c_{n}, c_{n-1}, \cdots, c_{2}, c_{1} + y])$$

and in particular for non-negative n

$$T^{n}(x, 0) = (T_{n}(x), V_{n}(x)).$$

Let β denote the σ -algebra of Borel sets in Ω and η the measure on Ω defined for A in β by

$$\eta(A) = rac{1}{(\log 2)} \int_A rac{dxy}{\left(1+xy
ight)^2}.$$

We have the following theorem [7].

THEOREM 3.1. The dynamical system (Ω, β, η, T) is weak mixing.

4. BASIC THEORY OF THE OPTIMAL CONTINUED FRACTION EXPANSION

Let x be an irrational real number and suppose it lies in the interval $(c_0 - 1/2, c_0 - 1/2)$ for some integer c_0 and put $t_0 = x - c_0$, $\varepsilon_1(x) = \operatorname{sgn}(t_0)$ and

(4.1)
$$p_1 = 1, p_0 = c_0, q_1 = 0, q_0 = 1,$$

and $v_0 = 0$. Suppose t_i , p_i , q_i , c_i , v_i and ε_{i+1} have been defined for $i \leq k$ and some positive integer k. Then define t_{k+1} , p_{k+1} , q_{k+1} , c_{k+1} , v_{k+1} and ε_{k+2} inductively as follows. Let

$$c_{k+1} = \left\lfloor |t_k|^{-1} + \frac{\lfloor |t_k|^{-1}\rfloor + \varepsilon_{k+1}v_k}{2\left(\lfloor |t_k|^{-1}\rfloor + \varepsilon_{k+1}v_{k+1}\right) + 1}\right\rfloor,$$
$$t_{k+1} = |t_k|^{-1} - c_{k+1},$$
$$\varepsilon_{k+2} = \operatorname{sgn}(t_{k+1}),$$

(4.2)
$$p_{k+1} = c_{k+1}p_k + \varepsilon_{k+1}p_{k-1}; q_{k+1} = c_{k+1}q_k + \varepsilon_{k+1}q_{k-1}$$

and $v_{k+1} = q_k/q_{k+1}$. Now the optimal continued fraction expansion of x is

$$x = [c_0; \varepsilon_1 c_1, \varepsilon_2 c_2, \cdots].$$

One straight forwardly verifies that

$$t_{k} = [0; \varepsilon_{k+1}c_{k+1}, \varepsilon_{k+2}c_{k+2}, \cdots],$$

and

$$v_{k} = [0; c_{k}, \varepsilon_{k}c_{k-1}, \cdots, \varepsilon_{2}c_{1}].$$

The sequence $(p_k/q_k)_{k=-1}^{\infty}$ are the convergents and as we said in the introduction are a subsequence of the sequence of regular convergents $(P_n/Q_n)_{n=-1}^{\infty}$ and if we define the function $n: \mathbb{N} \to \mathbb{N}$ by $p_k/q_k = P_{n(k)}/Q_{n(k)}$ then n(k+1) = n(k) + 1 if and only if $\varepsilon_{k+2} = 1$ and n(k+1) = n(k) + 2 otherwise, once we have set n(0) = 0 for x > 0and n(0) = 1 otherwise. Define $\Gamma \subset \Omega$ by

$$\Gamma = \left\{ (T, V) \in \Omega : V < \min\left(T, \frac{2T-1}{1-T}\right) \right\}$$

and put $H = \Omega \setminus \Gamma$. We have the following lemma [2].

LEMMA 4.1. Suppose x is irrational and n a natural number. The following are equivalent:

- (i) the regular continued fraction convergent P_n/Q_n is not an optimal continued fraction convergent;
- (ii) $c_{n+1} = 1$, $\theta_{n-1} < \theta_n$ and $\theta_n > \theta_{n+1}$; and
- (iii) (T_n, V_n) is in Γ .

We now define the map $U: H \to H$, by

$$U(T, V) = \begin{cases} \mathcal{T}(T, V) & \text{if } \mathcal{T}(T, V) \in H; \\ \mathcal{T}^2(T, V) & \text{if } \mathcal{T}(T, V) \notin H. \end{cases}$$

It is convenient to write $g = (1 - \sqrt{5})/2$ and $G = (1 + \sqrt{5})/2$ henceforth. Let β_H denote the σ -algebra of Borel subsets of H and μ_H the probability measure on H with density $(\log G)^{-1}(1 + xy)^{-2}$. In [8] it is shown that the dynamical system (H, β_H, μ_H, U) , which is in fact the system induced on H by \mathcal{T} , is exact and hence weak mixing. It is possible to describe a dynamical system explicitly which is isomorphic to (H, β_H, μ_H, U) and which is not described indirectly as an induced system. We do this as follows. Let $\Delta \subset (-1, 1) \times (-1, 1)$ be defined by

$$\Delta = \left\{ (y, v) \in (-1, 1) \times (-1, 1) \colon v \leq \min\left(\frac{2t+1}{t+1}, \frac{t+1}{t+2}\right); v \geq \max\left(0, \frac{2t-1}{1-t}\right) \right\}.$$

Define a map W from Δ to itself by

$$W(t, v) = \left(\left| t \right|^{-1} - \beta(t, v), \frac{1}{\beta(t, v) + \operatorname{sgn}(t)v} \right),$$

where

$$\beta(t, v) = \left\lfloor |t|^{-1} + \frac{\lfloor |t_k|^{-1}\rfloor + \operatorname{sgn}(t)v}{2\left(\lfloor |t_k|^{-1}\rfloor + \operatorname{sgn}(t)v\right) + 1}\right\rfloor$$

Also define a measure μ_{Δ} on Δ by setting its Radon Nikodym derivative relative to two dimensional Lebesgue measure to be $(\log G)^{-1}(1+xy)^{-2}$. Finally note that if x is in (-1/2, 1/2) then $W^k(x, 0) = (t_k, v_k)$ for all positive integers k. The dynamical system $(\Delta, \beta_{\Delta}, \mu_{\Delta}, W)$, where β_{Δ} is the σ -algebra of Borel sets on Δ , is Bernoulli [8] and hence weak mixing.

5. Statistical properties of the sequence $(\theta_n(x))_{n=1}^{\infty}$

We have the following theorem from which all the other results of this paper may be derived.

THEOREM 5.1. Suppose $(t_k, v_k)_{k=1}^{\infty}$ is as defined in Section 4. Then if $\mathbf{k} = (k_n)_{n=1}^{\infty}$ is good for each element A of β_H we have

$$\lim_{N \to \infty} \frac{1}{N} \sum_{n=1}^{N} \chi_A(t_{k_n}, v_{k_n}) = \frac{1}{\log G} \int_A \frac{dt dv}{(1+tv)^2},$$

almost everywhere with respect to Lebesgue measure.

PROOF: Note that for all y such that (x, y) is in Δ we have

$$\lim_{n\to\infty} \left(W^n(x,\,y) \right) - \left(W^n(x,\,0) \right) = 0,$$

and that $W^n(x, 0) = (t_n, v_n)$. Then Theorem 5.1 is an immediate consequence of Theorem 2.1.

We now consider applications of this theorem. Let

$$\Pi = \{ (w, z) \in \mathbf{R} \times \mathbf{R} \colon w > 0, \, z > 0, \, 4w^2 + z^2 < 1, \, w^2 + 4z^2 < 1 \}.$$

THEOREM 5.2. Suppose A is a Borel subset of the set Π . If $\mathbf{k} = (k_n)_{n=1}^{\infty}$ is good we have

$$\lim_{N \to \infty} \frac{1}{N} \sum_{n=1}^{N} \chi_A(\theta_{k_n-1}(x), \theta_{k_n}(x)) = \int_{A \cap \Pi} \left(\frac{1}{\sqrt{1-4wt}} + \frac{1}{\sqrt{1+4wt}} \right) dw dz,$$

almost everywhere with respect to Lebesgue measure.

PROOF: Let ψ denote the two to one map from Δ to Π defined by

$$\psi(t, v) = \left(\frac{v}{1+tv}, \frac{\varepsilon(t)t}{1+tv}\right),$$

where $\varepsilon(t)$ denotes the sign of t. We note that $\psi(t_k, v_k) = (\theta_{k-1}, \theta_k)$ for each natural number k. To see this note that from a standard fact from the elementary theory of continued fractions we have

(5.1)
$$x = \frac{p_k + t_k p_{k-1}}{q_k + t_k q_{k-1}}$$

and so

(5.2)
$$\theta_k = \frac{\varepsilon_{k-1} t_k}{1 + t_k v_k}.$$

Set

$$\Delta_{-1} = \{(t, v) \in \Delta \colon \varepsilon(t) = -1\}$$

and

$$\Delta_1 = \{(t, v) \in \Delta \colon arepsilon(t) = 1\}.$$

Also let $\psi_{-1} = \psi_{|\Delta_{-1}}$ and $\psi_1 = \psi_{|\Delta_1}$. These maps are then continuously differentiable bijective maps from Δ_{-1} (respectively Δ_1) to Π . Using the coordinate change formula for measures, the image measure for

$$\mu(A) = \frac{1}{\log G} \iint_{A \cap \Pi} \frac{dtdw}{(1+tv)^2}$$

under both maps ψ_{-1} and ψ_1 is given by

$$(\psi_{-1}\mu)(B) = (\psi_1\mu)(B) = rac{1}{\log G} \iint_{B\cap\Pi} \left(rac{1+xy}{1-xy}\right) dxdy$$

Since by (5.1) and (5.2) if $\varepsilon(t_k) = \varepsilon_{k+1} = 1$ then

$$\left(\frac{1-t_k v_k}{1+t_k v_k}\right)^2 = 1 - 4\theta_{k-1}\theta_k$$

and if $\varepsilon(t_k) = \varepsilon_{k+1} = -1$ then

$$\left(\frac{1-t_k v_k}{1+t_l v_k}\right)^2 = 1 + 4\theta_{k-1}\theta_k$$

and hence the image of μ under ψ is given by

[9]

$$(\psi\mu)(A) = \int_{A\cap\Pi} \left(\frac{1}{\sqrt{1-4wt}} + \frac{1}{\sqrt{1+4wt}}\right) dwdt.$$

The result now follows from Theorem 5.1.

In [2] it is shown that for each irrational x we have
$$0 < \theta_{k-1} + \theta_k < 2/\sqrt{5}$$
. Let

$$h(z) = \begin{cases} \left(\log\sqrt{1+z} - \log\sqrt{1-z} + \arctan z\right) / \log G \\ & \text{if } z \in [0, 1/2]; \\ \left(\log\left(\frac{5\sqrt{5-4z^2} - 5z}{\sqrt{5-4z^2} + z}\right) + 2\arctan\left(\frac{2\sqrt{5-4z^2} - 3z}{5\sqrt{1+z^2}}\right)\right) / 2\log G \\ & \text{if } z \in [1/2, 2/\sqrt{5}]. \end{cases}$$

THEOREM 5.3. Let h be as just above. If $\mathbf{k} = (k_n)_{n=1}^{\infty}$ is good

$$\lim_{N \to \infty} \frac{1}{N} \left| \{ 1 \leq n \leq N \colon \theta_{k_n - 1}(x) + \theta_{k_n}(x) < a \} \right| = \int_0^a h(t) dt,$$

almost everywhere with respect to Lebesgue measure.

PROOF: The result follows immediately by applying Theorem 5.2 to the function w + t = const.

In [2] it is shown that for each irrational x we have $0 \leq |\theta_{n-1} - \theta_n| \leq 1/2$ for each natural number k. Let

$$j(z) = \frac{1}{\log G} \left(\log \left(\frac{5\sqrt{5 - 4z^2} - 5z}{1 + z} \right) - \arctan z + \arcsin \left(\frac{2\sqrt{5 - 4z^2} - 3z}{\sqrt{1 + z^2}} \right) \right).$$

We have the following theorem.

THEOREM 5.4. Let j be as defined just above. If $\mathbf{k} = (k_n)_{n=1}^{\infty}$ is good and a is in [0, 1/2), we have

$$\lim_{N\to\infty}\frac{1}{N}\left|\left\{1\leqslant n\leqslant N\colon \left|\theta_{k_n-1}(x)-\theta_{k_n}(x)\right|< a\right\}\right|=\int_0^a j(t)dt,$$

almost everywhere with respect to Lebesgue measure.

PROOF: The proof of this result is an immediate consequence of Theorem 5.2 and the appropriate choice of A.

In [2] it is shown that for irrational x, $\theta_k(x)$ is in (0, 1/2). Let

$$k(z) = \begin{cases} \frac{1}{\log G} & \text{if } z \in (0, 1/\sqrt{5}); \\ \frac{1}{\log G} \frac{\sqrt{1-4z^2}}{z} & \text{if } z \in [1/\sqrt{5}, 1/2). \end{cases}$$

We have the following result:

Ο

THEOREM 5.5. Suppose k is defined as just above. If $\mathbf{k} = (k_n)_{n=1}^{\infty}$ is good and a is in [0, 1/2), we have

$$\lim_{N \to \infty} \frac{1}{N} \sum_{n=1}^{N} \chi_A(\theta_{k_n}(x)) = \int_{A \cap (0, 1/2)} d(z) \, dz,$$

almost everywhere with respect to Lebesgue measure.

PROOF: Apply Theorem 5.2 with w < z.

Also calculating the first moment of k we have:

THEOREM 5.6. If $\mathbf{k} = (k_n)_{n=1}^{\infty}$ is good then

$$\lim_{N \to \infty} \frac{1}{N} \sum_{n=1}^{N} \theta_{k_n}(x) = \frac{1}{4 \log G} \arctan \frac{1}{2}$$

almost everywhere with respect to Lebesgue measure.

References

- [1] W. Bosma, 'Optimal continued fractions', Indag. Math. 49 (1987), 353-379.
- [2] W. Bosma and C. Kraaikamp, 'Metrical theory for optimal continued fractions', J. Number Theory 34 (1990), 251-270.
- J. Bourgain, 'On the maximal ergodic theorem for certain subsets of the integers', Israel. J. Math. 61 (1988), 39-72.
- [4] J. Bourgain, 'Pointwise ergodic theorems for arithmetic sets', Inst. Hautes Études Sci. Publ. Math. 69 (1989), 5-45.
- [5] I.P. Cornfeld, S.V. Formin and Ya. G. Sinai, *Ergodic theory* (Springer-Verlag, Berlin, Heidelberg, New York, 1982).
- [6] G.H. Hardy and E. Wright, An introduction to number theory (Oxford University Press, New York, 1979).
- [7] S. Ito, H. Nakada and S. Tanaka, 'On the invariant measure for the transformation associated with some real continued fractions', *Keio Engineering Reports* **30** (1981), 61-69.
- [8] C. Kraaikramp, 'Maximal S-expansions are Bernoulli shifts', Bull. Soc. Math. France (to appear).
- B. Minnigerode, 'Über eine neue Methode die Pellsche Gleichung auf zielösen', Nachr. Göttingen (1873).
- [10] H. Minkowski, 'Über die Annäherung an eine reelle Grösse durch rationale Zahlen', Math. Ann. 54 (1901), 91-124.
- [11] R. Nair, 'On the metrical theory of continued fractions', Proc. Amer. Math. Soc. 120 (1994).
- [12] R. Nair, 'On Polynomials in primes and J. Bourgains's circle method approach to ergodic theorems II', Studia Math. 105 (1993), 207-233.

0

[10]

[11] The optimal continued fraction expansion

- [13] O. Perron, Die Lehre von der Kettenbrüche, Band 1, 3Auft (B-G Teubner, Stuttgart, 1954).
- [14] G.J. Rieger, 'Mischung und Ergodizität bei Kettenbrüche nach nächsten Ganzen', J. Reine Angew. Math. 310 (1979), 171-181.
- [15] G.J. Rieger, 'Über die Länge von Kettenbtrüchen mit ungeraden Teilnennern', Abh. Braunschweig. Wiss. Ges. 32 (1981), 61-69.
- [16] G. Rhin, 'Sur la répartition modulo 1 de suites f(p)', Acta. Arith. 23 (1973), 217-248.
- [17] P. Walters, An introduction to ergodic theory, Graduate Texts in Mathematics 79 (Springer Verlag, Berlin, Heidelberg, New York, 1982).
- [18] H. Weyl, 'Über die Gleichvertilung von Zahlen mod. Eins', Math. Ann. 77 (1916), 313-361.

Department of Pure Mathematics University of Liverpool PO Box 147 Liverpool L69 3BX United Kingdom