Bull. Austral. Math. Soc.
Vol. 56 (1997) [69-79]

ON THE METRIC THEORY OF THE OPTIMAL CONTINUED FRACTION EXPANSION

R. NAIR

Suppose k_{n} denotes either $\phi(n)$ or $\phi\left(r_{n}\right)(n=1,2, \cdots)$ where the polynomial ϕ maps the natural numbers to themselves and r_{k} denotes the k th rational prime. Let $\left(p_{n} / q_{n}\right)_{n=1}^{\infty}$ denote the sequence of convergents to a real numbers x for the optimal continued fraction expansion. Define the sequence of approximation constants $\left(\theta_{n}(x)\right)_{n=1}^{\infty}$ by

$$
\theta_{n}(x)=q_{n}^{2}\left|x-\frac{p_{n}}{q_{n}}\right| . \quad(n=1,2, \cdots)
$$

In this paper we study the behaviour of the sequence $\left(\theta_{k_{n}}(x)\right)_{n=1}^{\infty}$ for almost all x with respect to Lebesgue measure. In the special case where $k_{n}=n(n=1,2, \cdots)$ these results are due to Bosma and Kraaikamp.

1. Introduction

In this paper we refine some results on the optimal continued fraction expansion of a real number proved in [1]. We first introduce the notion of a semi-regular continued fraction expansion, which both the regular continued fraction expansion and the optimal continued fraction expansion (our primary object of study) are examples of. For a real number x we write

$$
x=c_{0}+\frac{\varepsilon_{1}}{c_{1}+\frac{\varepsilon_{2}}{c_{2}+\frac{\varepsilon_{3}}{c_{3}+\frac{\varepsilon_{4}}{c_{4} \cdots}}}}
$$

also sometimes written more succinctly as $\left[c_{0} ; \varepsilon_{1} c_{1}, \cdots,\right]$ where $\left(c_{i}\right)_{n=1}^{\infty}$ is a sequence of integers and $\varepsilon_{i} \in\{-1,1\}$. The numbers $c_{i}(i=1,2, \cdots)$ are called the partial quotients of the expansion and for each natural number n the truncates

$$
\frac{P_{n}}{Q_{n}}=\left[c_{0} ; \varepsilon_{1} c_{1}, \cdots, \varepsilon_{n} c_{n}\right]
$$

Received 15 August 1997
Copyright Clearance Centre, Inc. Serial-fee code: 0004-9729/97 \$A2.00+0.00.
are called the convergents of the expansion. The expansion is called semi-regular if: (i) c_{n} is a natural number, for positive n; (ii) $\varepsilon_{n+1}+c_{n+1} \geqslant 1$ for all natural numbers n and (iii) $\varepsilon_{n+1}+c_{n+1} \geqslant 2$ for infinitely many n if the expansion is itself infinite. Central to the class of semi-regular continued fraction expansions is the regular continued fraction expansion which is also the most familiar and is obtained when c_{n} is a natural number and ε_{n} takes the value one for all n. Notice that for the regular continued fraction expansion $c_{0}=\lfloor x\rfloor$, that is, the greatest integer not less than x. Each regular convergent is always a best approximation to x in the sense that there do not exist better approximations with smaller denominators. That is, for all integers r and s such that $0<s \leqslant Q_{n}$, if for some rational r / s we have

$$
\left|x-\frac{r}{s}\right| \leqslant\left|x-\frac{P_{n}}{Q_{n}}\right|
$$

then $r / s=P_{n} / Q_{n}$. The converse does not hold [13, Section 16]. It is none the less possible to improve the approximation properties of x by convergents in other regards by looking at other continued fraction expansions in the semi-regular class. We consider two senses in which this can be done below. Firstly, as a form of Dirchlet's theorem on diophantine approximation [6] recall the inequality

$$
\left|x-\frac{P_{n}}{Q_{n}}\right| \leqslant \frac{1}{Q_{n}^{2}},
$$

satisfied by the convergents of the regular continued fraction expansion. Clearly if for each natural number n we set

$$
\begin{equation*}
\theta_{n}(x)=Q_{n}^{2}\left|x-\frac{P_{n}}{Q_{n}}\right| \tag{1.1}
\end{equation*}
$$

then for each x the sequence $\left(\theta_{n}(x)\right)_{n=1}^{\infty}$ lies in the interval $[0,1]$. It turns out that because the convergents of any semi-regular continued fraction expansion are a subsequence of the sequence of convergents of the regular continued fraction expansion, the sequence $\left(\theta_{n}(x)\right)_{n=1}^{\infty}$ may also be defined similarly for any semi-regular continued fraction expansion. In particular it was observed by Minkowski that the regular convergents for which $\theta_{n}(x)<1 / 2$ are the convergents of a semi-regular continued fraction expansion [13]. In addition a theorem of Legendre tells us that if $Q|Q x-P|<1 / 2$ then P / Q is a regular convergent [6]. We shall therefore confine attention henceforth to expansions for which $\theta_{n}(x)<1 / 2$ holds for all natural numbers n. Secondly we are interested in semi-regular continued fractions with convergents, henceforth denoted $\left(p_{k} / q_{k}\right)_{n=1}^{\infty}$, which are as sparse as possible as a subsequence of the sequence of regular convergents $\left(P_{n} / Q_{n}\right)_{n=1}^{\infty}$. There is a restriction on how sparse the sequence $\left(p_{k} / q_{k}\right)_{n=1}^{\infty}$
can be in that to remain a semi-regular expansion one of any two consecutive terms of $\left(p_{k} / q_{k}\right)_{n=1}^{\infty}$ must remain in $\left(P_{n} / Q_{n}\right)_{n=1}^{\infty}$. A semi-regular continued fraction expansion is called closest if the first requirement, namely that $\theta_{n}(x)<1 / 2$ is true for all natural numbers n and called fastest if $\left(p_{k} / q_{k}\right)_{n=1}^{\infty}$ is as sparse as a subset of $\left(P_{n} / Q_{n}\right)_{n=1}^{\infty}$. A number of semi-regular continued fraction expansions satisfy one or other of these properties. See [7], [14], [9] or [10] for details. The optimal continued fraction expansion introduced in [3] satisfies both. In Section 4 we shall introduce and describe in detail this expansion which is our primary object of study. In Section 2 we introduce certain general results from ergodic theory necessary for our investigation. In Section 3 we present certain information about the regular continued fraction expansion we also need for our investigation. Finally in Section 5 the results of Section 2 are applied to obtain new results on the distribution of the sequence $\left(\theta_{n}(x)\right)_{n=1}^{\infty}$ for almost all x with respect to Lebesgue measure in the case of the optimal continued fraction expansion. These results extend earlier work contained in [2].

2. Basic Ergodic theory

Here and throughout the rest of the paper by a dynamical system (X, β, μ, T) we mean a set X, together with a σ-algebra β of subsets of X, a probability measure μ on the measurable space (X, β) and a measurable self map T of X that is also measure preserving. By this we mean that if given an element A of β if we set $T^{-1} A=$ $\{x \in X: T x \in A\}$ then $\mu(A)=\mu\left(T^{-1} A\right)$. We say a dynamical system is ergodic if $T^{-1} A=A$ for some A in β means that $\mu(A)$ is either zero or one in value. We say the dynamical system (X, β, μ, T) is weak mixing (among other equivalent formulations [17]) if for each pair of sets A and B in β we have

$$
\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^{N}\left|\mu\left(T^{-n} A \cap B\right)-\mu(A) \mu(B)\right|=0
$$

Weak mixing is a strictly stronger condition than ergodicity. A piece of terminology that is becoming increasingly standard is to call a sequence $\mathbf{k}=\left(k_{n}\right)_{n=1}^{\infty}$ of non-negative integers L^{p} good universal if given any dynamical system (X, β, μ, T) and any function f in $L^{p}(X, \beta, \mu)$ it is true that

$$
\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^{N} f\left(T^{k_{n}} x\right)=\ell_{f}(x)
$$

exist almost everywhere with respect to the measure μ. Here and henceforth for each real number y, let $\langle y\rangle$ denote its fractional part, that is $y-\lfloor y\rfloor$. The following theorem is proved in [12].

THEOREM 2.1. Suppose the sequence $\mathbf{k}=\left(k_{n}\right)_{n=1}^{\infty}$ of non-negative integers is such that for each irrational number α the sequence $\left(\left\langle k_{n} \alpha\right\rangle\right)_{n=1}^{\infty}$ is uniformly distributed modulo one and for a particular p greater or equal to one that $\mathbf{k}=\left(k_{n}\right)_{n=1}^{\infty}$ is L^{p} good universal. Then if the dynamical system (X, β, μ, T) is weak mixing, $\ell_{f}(x)=$ $\int_{X} f(t) d \mu(t)$ almost everywhere with respect to μ.

If k_{n} denotes either $\phi(n)$ or $\phi\left(p_{n}\right)$ where ϕ denotes any non-constant polynomial mapping the natural numbers to themselves and p_{n} denotes the nth rational prime then \mathbf{k} is L^{p} good universal for any p greater than one. See [4] and [11] respectively for proofs. The fact that for each irrational number α the sequence $\left(\left\langle k_{n} \alpha\right\rangle\right)_{n=1}^{\infty}$ is uniformly distributed modulo one in both instances are well known classical results. See [16] and [18] respectively. Other sequences are known by the author to satisfy both hypotheses but these results have yet to appear in print. Henceforth for reasons of brevity, we shall call a sequence $\mathbf{k}=\left(k_{n}\right)_{n=1}^{\infty} p$-good if it satisfies the hypothesis of Theorem 2.1 and we call it good in the special case when it is p-good for $p=\infty$.

3. Regular continued fractions

Suppose for a real number x that it has regular continued fraction expansion

$$
x=c_{0}+\frac{1}{c_{1}+\frac{1}{c_{2}+\frac{1}{c_{3}+\frac{1}{c_{4} \cdots}}}} .
$$

Let $g:[0,1] \rightarrow[0,1]$ be the map defined by

$$
g x=\left\langle\frac{1}{x}\right\rangle x \neq 0 ; \quad g 0=0
$$

also known as the Gauss map. Notice that $c_{n}(x)=c_{n-1}(g x)(n=1,2, \cdots)$ and recall that

$$
\frac{P_{n}}{Q_{n}}=\left[c_{0} ; c_{1}, \cdots, c_{n}\right] \quad(n=1,2, \cdots)
$$

We have the following classical recurrence relations [6]

$$
P_{-1}=1 ; \quad P_{0}=0 ; P_{n}=c_{n} P_{n-1}+P_{n-2} \quad(n=1,2, \cdots)
$$

and

$$
Q_{-1}=1 ; Q_{0}=0 ; Q_{n}=c_{n} Q_{n-1}+Q_{n-2} \quad(n=1,2, \cdots)
$$

Set

$$
T_{n}=g^{n-1}\left(x-c_{0}\right) \quad(n=1,2, \cdots)
$$

and

$$
V_{n}=V_{n}(x)=\frac{Q_{n-1}}{Q_{n}}(x) \quad(n=1,2, \cdots)
$$

Then it is straightforward to check that

$$
T_{n}=\left[0 ; c_{n+1}, c_{n+2}, \cdots\right]
$$

and

$$
V_{n}=\left[0 ; c_{n}, c_{n-1}, \cdots, c_{1}\right]
$$

From g we build a two dimensional map \mathcal{T} defined on $\Omega=([0,1) \backslash \mathbf{Q}) \times[0,1]$ by

$$
\mathcal{T}(x, y)=\left(g x, \frac{1}{\lfloor 1 / x\rfloor+y}\right)
$$

Then for each natural number n

$$
\mathcal{T}^{n}(x, y)=\left(g^{n} x,\left[0 ; c_{n}, c_{n-1}, \cdots, c_{2}, c_{1}+y\right]\right)
$$

and in particular for non-negative n

$$
T^{n}(x, 0)=\left(T_{n}(x), V_{n}(x)\right)
$$

Let β denote the σ-algebra of Borel sets in Ω and η the measure on Ω defined for A in β by

$$
\eta(A)=\frac{1}{(\log 2)} \int_{A} \frac{d x y}{(1+x y)^{2}}
$$

We have the following theorem [7].
Theorem 3.1. The dynamical system ($\Omega, \beta, \eta, \mathcal{T}$) is weak mixing.

4. BASIC THEORY OF THE OPTIMAL CONTINUED FRACTION EXPANSION

Let x be an irrational real number and suppose it lies in the interval ($c_{0}-1 / 2$, $\left.c_{0}-1 / 2\right)$ for some integer c_{0} and put $t_{0}=x-c_{0}, \varepsilon_{1}(x)=\operatorname{sgn}\left(t_{0}\right)$ and

$$
\begin{equation*}
p_{1}=1, p_{0}=c_{0}, q_{1}=0, q_{0}=1 \tag{4.1}
\end{equation*}
$$

and $v_{0}=0$. Suppose $t_{i}, p_{i}, q_{i}, c_{i}, v_{i}$ and ε_{i+1} have been defined for $i \leqslant k$ and some positive integer k. Then define $t_{k+1}, p_{k+1}, q_{k+1}, c_{k+1}, v_{k+1}$ and ε_{k+2} inductively as follows. Let

$$
\begin{gathered}
c_{k+1}=\left\lfloor\left|t_{k}\right|^{-1}+\frac{\left\lfloor\left|t_{k}\right|^{-1}\right\rfloor+\varepsilon_{k+1} v_{k}}{2\left(\left\lfloor\left|t_{k}\right|^{-1}\right\rfloor+\varepsilon_{k+1} v_{k+1}\right)+1}\right\rfloor \\
t_{k+1}=\left|t_{k}\right|^{-1}-c_{k+1} \\
\varepsilon_{k+2}=\operatorname{sgn}\left(t_{k+1}\right)
\end{gathered}
$$

$$
\begin{equation*}
p_{k+1}=c_{k+1} p_{k}+\varepsilon_{k+1} p_{k-1} ; q_{k+1}=c_{k+1} q_{k}+\varepsilon_{k+1} q_{k-1} \tag{4.2}
\end{equation*}
$$

and $v_{k+1}=q_{k} / q_{k+1}$. Now the optimal continued fraction expansion of x is

$$
x=\left[c_{0} ; \varepsilon_{1} c_{1}, \varepsilon_{2} c_{2}, \cdots\right]
$$

One straight forwardly verifies that

$$
t_{k}=\left[0 ; \varepsilon_{k+1} c_{k+1}, \varepsilon_{k+2} c_{k+2}, \cdots\right]
$$

and

$$
v_{k}=\left[0 ; c_{k}, \varepsilon_{k} c_{k-1}, \cdots, \varepsilon_{2} c_{1}\right]
$$

The sequence $\left(p_{k} / q_{k}\right)_{k=-1}^{\infty}$ are the convergents and as we said in the introduction are a subsequence of the sequence of regular convergents $\left(P_{n} / Q_{n}\right)_{n=-1}^{\infty}$ and if we define the function $n: \mathbf{N} \rightarrow \mathbf{N}$ by $p_{k} / q_{k}=P_{n(k)} / Q_{n(k)}$ then $n(k+1)=n(k)+1$ if and only if $\varepsilon_{k+2}=1$ and $n(k+1)=n(k)+2$ otherwise, once we have set $n(0)=0$ for $x>0$ and $n(0)=1$ otherwise. Define $\Gamma \subset \Omega$ by

$$
\Gamma=\left\{(T, V) \in \Omega: V<\min \left(T, \frac{2 T-1}{1-T}\right)\right\}
$$

and put $H=\Omega \backslash \Gamma$. We have the following lemma [2].
Lemma 4.1. Suppose x is irrational and n a natural number. The following are equivalent:
(i) the regular continued fraction convergent P_{n} / Q_{n} is not an optimal continued fraction convergent;
(ii) $c_{n+1}=1, \theta_{n-1}<\theta_{n}$ and $\theta_{n}>\theta_{n+1}$; and
(iii) $\left(T_{n}, V_{n}\right)$ is in Γ.

We now define the map $U: H \rightarrow H$, by

$$
U(T, V)= \begin{cases}\mathcal{T}(T, V) & \text { if } \mathcal{T}(T, V) \notin H \\ \mathcal{T}^{2}(T, V) & \text { if } \mathcal{T}(T, V) \notin H\end{cases}
$$

It is convenient to write $g=(1-\sqrt{5}) / 2$ and $G=(1+\sqrt{5}) / 2$ henceforth. Let β_{H} denote the σ-algebra of Borel subsets of H and μ_{H} the probability measure on H with density $(\log G)^{-1}(1+x y)^{-2}$. In [8] it is shown that the dynamical system $\left(H, \beta_{H}, \mu_{H}, U\right)$, which is in fact the system induced on H by \mathcal{T}, is exact and hence weak mixing. It is possible to describe a dynamical system explicitly which is isomorphic to $\left(H, \beta_{H}, \mu_{H}, U\right)$ and which is not described indirectly as an induced system. We do this as follows. Let $\Delta \subset(-1,1) \times(-1,1)$ be defined by

$$
\Delta=\left\{(y, v) \in(-1,1) \times(-1,1): v \leqslant \min \left(\frac{2 t+1}{t+1}, \frac{t+1}{t+2}\right) ; v \geqslant \max \left(0, \frac{2 t-1}{1-t}\right)\right\}
$$

Define a map W from Δ to itself by

$$
W(t, v)=\left(|t|^{-1}-\beta(t, v), \frac{1}{\beta(t, v)+\operatorname{sgn}(t) v}\right)
$$

where

$$
\beta(t, v)=\left\lfloor|t|^{-1}+\frac{\left\lfloor\left|t_{k}\right|^{-1}\right\rfloor+\operatorname{sgn}(t) v}{2\left(\left\lfloor\left|t_{k}\right|^{-1}\right\rfloor+\operatorname{sgn}(t) v\right)+1}\right\rfloor
$$

Also define a measure μ_{Δ} on Δ by setting its Radon Nikodym derivative relative to two dimensional Lebesgue measure to be $(\log G)^{-1}(1+x y)^{-2}$. Finally note that if x is in $(-1 / 2,1 / 2)$ then $W^{k}(x, 0)=\left(t_{k}, v_{k}\right)$ for all positive integers k. The dynamical system $\left(\Delta, \beta_{\Delta}, \mu_{\Delta}, W\right)$, where β_{Δ} is the σ-algebra of Borel sets on Δ, is Bernoulli [8] and hence weak mixing.

5. Statistical properties of the sequence $\left(\theta_{n}(x)\right)_{n=1}^{\infty}$

We have the following theorem from which all the other results of this paper may be derived.

Theorem 5.1. Suppose $\left(t_{k}, v_{k}\right)_{k=1}^{\infty}$ is as defined in Section 4. Then if $\mathbf{k}=$ $\left(k_{n}\right)_{n=1}^{\infty}$ is good for each element A of β_{H} we have

$$
\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^{N} \chi_{A}\left(t_{k_{n}}, v_{k_{n}}\right)=\frac{1}{\log G} \int_{A} \frac{d t d v}{(1+t v)^{2}}
$$

almost everywhere with respect to Lebesgue measure.
Proof: Note that for all y such that (x, y) is in Δ we have

$$
\lim _{n \rightarrow \infty}\left(W^{n}(x, y)\right)-\left(W^{n}(x, 0)\right)=0
$$

and that $W^{n}(x, 0)=\left(t_{n}, v_{n}\right)$. Then Theorem 5.1 is an immediate consequence of Theorem 2.1.

We now consider applications of this theorem. Let

$$
\Pi=\left\{(w, z) \in \mathbf{R} \times \mathbf{R}: w>0, z>0,4 w^{2}+z^{2}<1, w^{2}+4 z^{2}<1\right\}
$$

Theorem 5.2. Suppose A is a Borel subset of the set Π. If $\mathbf{k}=\left(k_{n}\right)_{n=1}^{\infty}$ is good we have

$$
\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^{N} \chi_{A}\left(\theta_{k_{n}-1}(x), \theta_{k_{n}}(x)\right)=\int_{A \cap \Pi}\left(\frac{1}{\sqrt{1-4 w t}}+\frac{1}{\sqrt{1+4 w t}}\right) d w d z
$$

almost everywhere with respect to Lebesgue measure.
Proof: Let ψ denote the two to one map from Δ to Π defined by

$$
\psi(t, v)=\left(\frac{v}{1+t v}, \frac{\varepsilon(t) t}{1+t v}\right)
$$

where $\varepsilon(t)$ denotes the sign of t. We note that $\psi\left(t_{k}, v_{k}\right)=\left(\theta_{k-1}, \theta_{k}\right)$ for each natural number k. To see this note that from a standard fact from the elementary theory of continued fractions we have

$$
\begin{equation*}
x=\frac{p_{k}+t_{k} p_{k-1}}{q_{k}+t_{k} q_{k-1}} \tag{5.1}
\end{equation*}
$$

and so

$$
\begin{equation*}
\theta_{k}=\frac{\varepsilon_{k-1} t_{k}}{1+t_{k} v_{k}} \tag{5.2}
\end{equation*}
$$

Set

$$
\Delta_{-1}=\{(t, v) \in \Delta: \varepsilon(t)=-1\}
$$

and

$$
\Delta_{1}=\{(t, v) \in \Delta: \varepsilon(t)=1\}
$$

Also let $\psi_{-1}=\psi_{\mid \Delta_{-1}}$ and $\psi_{1}=\psi_{\mid \Delta_{1}}$. These maps are then continuously differentiable bijective maps from Δ_{-1} (respestively Δ_{1}) to Π. Using the coordinate change formula for measures, the image measure for

$$
\mu(A)=\frac{1}{\log G} \iint_{A \cap \Pi} \frac{d t d w}{(1+t v)^{2}}
$$

under both maps ψ_{-1} and ψ_{1} is given by

$$
\left(\psi_{-1} \mu\right)(B)=\left(\psi_{1} \mu\right)(B)=\frac{1}{\log G} \iint_{B \cap \Pi}\left(\frac{1+x y}{1-x y}\right) d x d y
$$

Since by (5.1) and (5.2) if $\varepsilon\left(t_{k}\right)=\varepsilon_{k+1}=1$ then

$$
\left(\frac{1-t_{k} v_{k}}{1+t_{k} v_{k}}\right)^{2}=1-4 \theta_{k-1} \theta_{k}
$$

and if $\varepsilon\left(t_{k}\right)=\varepsilon_{k+1}=-1$ then

$$
\left(\frac{1-t_{k} v_{k}}{1+t_{l} v_{k}}\right)^{2}=1+4 \theta_{k-1} \theta_{k}
$$

and hence the image of μ under ψ is given by

$$
(\psi \mu)(A)=\int_{A \cap \Pi}\left(\frac{1}{\sqrt{1-4 w t}}+\frac{1}{\sqrt{1+4 w t}}\right) d w d t
$$

The result now follows from Theorem 5.1.
In [2] it is shown that for each irrational x we have $0<\theta_{k-1}+\theta_{k}<2 / \sqrt{5}$. Let

$$
h(z)=\left\{\begin{array}{l}
(\log \sqrt{1+z}-\log \sqrt{1-z}+\arctan z) / \log G \\
\left(\log \left(\frac{5 \sqrt{5-4 z^{2}}-5 z}{\sqrt{5-4 z^{2}}+z}\right)+2 \arctan \left(\frac{2 \sqrt{5-4 z^{2}}-3 z}{5 \sqrt{1+z^{2}}}\right)\right) / 2 \log G \\
\text { if } z \in[0,1 / 2]
\end{array}\right.
$$

Theorem 5.3. Let h be as just above. If $\mathbf{k}=\left(k_{n}\right)_{n=1}^{\infty}$ is good

$$
\lim _{N \rightarrow \infty} \frac{1}{N}\left|\left\{1 \leqslant n \leqslant N: \theta_{k_{n}-1}(x)+\theta_{k_{n}}(x)<a\right\}\right|=\int_{0}^{a} h(t) d t
$$

almost everywhere with respect to Lebesgue measure.
Proof: The result follows immediately by applying Theorem 5.2 to the function $w+t=$ const.

In [2] it is shown that for each irrational x we have $0 \leqslant\left|\theta_{n-1}-\theta_{n}\right| \leqslant 1 / 2$ for each natural number k. Let

$$
j(z)=\frac{1}{\log G}\left(\log \left(\frac{5 \sqrt{5-4 z^{2}}-5 z}{1+z}\right)-\arctan z+\arcsin \left(\frac{2 \sqrt{5-4 z^{2}}-3 z}{\sqrt{1+z^{2}}}\right)\right)
$$

We have the following theorem.
Theorem 5.4. Let j be as defined just above. If $\mathbf{k}=\left(k_{n}\right)_{n=1}^{\infty}$ is good and a is in $[0,1 / 2)$, we have

$$
\lim _{N \rightarrow \infty} \frac{1}{N}\left|\left\{1 \leqslant n \leqslant N:\left|\theta_{k_{n}-1}(x)-\theta_{k_{n}}(x)\right|<a\right\}\right|=\int_{0}^{a} j(t) d t
$$

almost everywhere with respect to Lebesgue measure.
Proof: The proof of this result is an immediate consequence of Theorem 5.2 and the appropriate choice of A.

In [2] it is shown that for irrational $x, \theta_{k}(x)$ is in $(0,1 / 2)$. Let

$$
k(z)= \begin{cases}\frac{1}{\log G} & \text { if } z \in(0,1 / \sqrt{5}) \\ \frac{1}{\log G} \frac{\sqrt{1-4 z^{2}}}{z} & \text { if } z \in[1 / \sqrt{5}, 1 / 2)\end{cases}
$$

We have the following result:

Theorem 5.5. Suppose k is defined as just above. If $\mathbf{k}=\left(k_{n}\right)_{n=1}^{\infty}$ is good and a is in $[0,1 / 2)$, we have

$$
\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^{N} \chi_{A}\left(\theta_{k_{n}}(x)\right)=\int_{A \cap(0,1 / 2)} d(z) d z
$$

almost everywhere with respect to Lebesgue measure.
Proof: Apply Theorem 5.2 with $w<z$.
Also calculating the first moment of k we have:
ThEOREM 5.6. If $\mathrm{k}=\left(k_{n}\right)_{n=1}^{\infty}$ is good then

$$
\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^{N} \theta_{k_{n}}(x)=\frac{1}{4 \log G} \arctan \frac{1}{2}
$$

almost everywhere with respect to Lebesgue measure.

References

[1] W. Bosma, 'Optimal continued fractions', Indag. Math. 49 (1987), 353-379.
[2] W. Bosma and C. Kraaikamp, 'Metrical theory for optimal continued fractions', J. Number Theory 34 (1990), 251-270.
[3] J. Bourgain, 'On the maximal ergodic theorem for certain subsets of the integers', Israel. J. Math. 61 (1988), 39-72.
[4] J. Bourgain, 'Pointwise ergodic theorems for arithmetic sets', Inst. Hautes Études Sci. Publ. Math. 69 (1989), 5-45.
[5] I.P. Cornfeld, S.V. Formin and Ya. G. Sinai, Ergodic theory (Springer-Verlag, Berlin, Heidelberg, New York, 1982).
[6] G.H. Hardy and E. Wright, An introduction to number theory (Oxford University Press, New York, 1979).
[7] S. Ito, H. Nakada and S. Tanaka, 'On the invariant measure for the transformation associated with some real continued fractions', Keio Engineering Reports 30 (1981), 61-69.
[8] C. Kraaikramp, 'Maximal S-expansions are Bernoulli shifts', Bull. Soc. Math. France (to appear).
[9] B. Minnigerode, 'Über eine neue Methode die Pellsche Gleichung auf zielösen', Nachr. Göttingen (1873).
[10] H. Minkowski, 'Über die Annäherung an eine reelle Grösse durch rationale Zahlen', Math. Ann. 54 (1901), 91-124.
[11] R. Nair, 'On the metrical theory of continued fractions', Proc. Amer. Math. Soc. 120 (1994).
[12] R. Nair, 'On Polynomials in primes and J. Bourgains's circle method approach to ergodic theorems II', Studia Math. 105 (1993), 207-233.
[13] O. Perron, Die Lehre von der Kettenbrüche, Band 1, 3Auft (B-G Teubner, Stuttgart, 1954).
[14] G.J. Rieger, 'Mischung und Ergodizität bei Kettenbrüche nach nächsten Ganzen', J. Reine Angew. Math. 310 (1979), 171-181.
[15] G.J. Rieger, 'Über die Länge von Kettenbtrüchen mit ungeraden Teilnennern', Abh. Braunschweig. Wiss. Ges. 32 (1981), 61-69.
[16] G. Rhin, 'Sur la répartition modulo 1 de suites $f(p)$ ', Acta. Arith. 23 (1973), 217-248.
[17] P. Walters, An introduction to ergodic theory, Graduate Texts in Mathematics 79 (Springer Verlag, Berlin, Heidelberg, New York, 1982).
[18] H. Weyl, 'Über die Gleichvertilung von Zahlen mod. Eins', Math. Ann. 77 (1916), 313-361.

Department of Pure Mathematics
University of Liverpool
PO Box 147
Liverpool L69 3BX
United Kingdom

