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Abstract. Photospheric Doppler images for both stellar components
of the double-lined spectroscopic binary V824 Ara reveal surface tem-
perature inhomogeneities of up to 1800 K on both stars. The absolute
brightness and the mass of the two stars suggest that they are very close
to the main sequence — but not yet on the ZAMS - if an inclination of
the orbital plane (and rotational axes) of 52° is adopted as suggested
by the Doppler imaging. Since both stars are active, we solve for the
inclinations of the rotation axes of both stellar components separately
and emphasize that it can be used to test coplanarity predictions from
binary star-formation theories. We find that the spin inclinations for the
individual components of V824 Ara agree to within their uncertainties.

1. Introduction

Doppler imaging of rapidly-rotating stars is a powerful technique to resolve their
surface temperature inhomogeneities, also known as starspots. Periodic varia-
tions in the spectral line profiles during a star’s rotation are numerically inverted
into a spherical stellar surface temperature with the help of tomographic algo-
rithms. The technique is nowadays applied to a large variety of rotating stars
ranging from single G-type bright giants to binary M dwarfs in close binaries.
A recent summary of Doppler images was given in Strassmeier (2000) and is
available on the web (www.astro.univie.ac.at/~kgs/DI/summary/). Out of the
47 stars in this sample 20 were in close binaries, almost all of the RS CVn or
BY-Dra type. Seven weak-lined T Tauri’s (WTTS) and three classical T Tauri’s
are also included. However, only one WTTS binary has been mapped so far:
the double-lined G5 (IV) + K0 (IV-V) star V824 Ara = HD 155555 (Hatzes &
Kirster 1999, Strassmeier & Rice 2000).

2. The Idea

If we are able to separate the spectra of both components of a double-lined
young binary system, we may apply the Doppler imaging technique to both
stars separately and determine their respective inclinations of the rotational
axis independently from each other. This, in turn, may allow the detection of
a deviation from coplanarity, a quantity that is otherwise not observable. So
far, V824 Ara is the only double-lined young binary that fulfills the stringent

305

https://doi.org/10.1017/50074180900225357 Published online by Cambridge University Press


https://doi.org/10.1017/S0074180900225357

306 K. G. Strassmeier

90

M +000 k M ssoo K
W as20k 1 W 4120k
2 } 4
¥ ' | H 410k | B sas0k
! - w |
{ | [ 4ss0 % ) H | [ 400 x
s H | 5 {
81 8 . —
| i A v | [) sos0x

{ (7 se80K

! 5600 K

Latitude [deg]
Latitude [deg]

o

] s400 K

-30

s
2 |
T

o 45 80 185 180 225 270 315 960 ° 45 90 185 180 2285 270 315 360
Longitude [deg) Longitude [deg]

-80

Figure 1. A comparison of an artificial input map (left) and the
reconstruction. The S/N was adopted to be 3000:1 in order to separate
the inclination effect from other internal errors like uncertain damping
constants, microturbulence effects, continuum-setting errors etc.. Even
in the presence of a large number of possible errors, the maps can be
reconstructed amazingly reliable.

requirements for Doppler imaging (spottedness, rapid rotation, relatively bright,
medium inclination, no binary interactions)

Before a comparison with theory is made I emphasize to be aware of the
following shortcomings of this idea:

e The age of a field star/binary is notoriously uncertain.

e The inclination angle from Doppler imaging is only good to within, say,
+10°.

In the following section we will explore these two concerns in more detail
before we go on to map the components of V824 Ara.

3. Testing the Inclination Sensitivity of Doppler Imaging

In this test, we adopt an artificial star with an arbitrary inclination but use a
different inclination in the reconstruction of its surface spot distribution. We first
solve the forward problem, i.e. create the “data” from the input star with known
parameters, add some random noise and specific external errors like straylight,
continuum offsets etc. (see Rice & Strassmeier 2000), and then invert the “data”
to create a Doppler image. The latter can then be compared with the original
input map (Fig. 1). We run our line-profile inversion code TEMPMAP (see Rice
1996) on artificial data with high S/N ratio and in steps of 5° from i = 5°
to ¢ = 85°. Fig. 2 demonstrates that the correct inclination (¢ = 60°) can be
recovered _]ust from the change of the x? as a function of i. The width of the
minimum in Fig. 2 allows the reconstruction of inclination values of +2.5° of
the nominal value for a width of 1-0 of the minimum x? and thus verifies the
principle usefullness of this method.

Hatzes et al. (1996) had noticed that low-inclination active stars had a more
pronounced flat-bottomed line-profile shape compared to high-inclination stars.
This is understandable when a star has spots at or near the rotational pole
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because the Doppler span over which flux is missig due to the cool spots gets
wider the lower the inclination. Our simulations fully confirm Hatzes’ conclu-
sions. The line-profile shape is thus an indicator for the inclination of the stellar
rotation axis and the quality of our fits to real data with limited S/N ratio and
with numerous external errors, e.g. in the flat field, is such that we can achieve
an inclination to within +£10-15°.
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Figure 2. Reconstruction of the artificial spot distribution in Fig. 1
with inclination angles between 5° and 85°. The vertical axis is x2. A
clear minimum near the correct inclination is obtained.

From its high lithium abundance of nearly the primordial value, Pasquini
et al. (1991) suggested that the binary is part of the young disk population.
There is also a nearby M-star companion (LDS 587B) 33" away. With this
visual companion showing also very high levels of activity and also high lithium
abundance (Martin & Brandner 1995) it seems likely that the V824 Ara +
LDS587B system is indeed pre-main sequence.

Further constraints come from the parallax measurement by the Hipparcos
satellite that revised the distance of V824 Ara to 31.44+0.8 pc and thus My =
+4.34+0.05 mag. Together with the components’ magnitude difference of 0787
measured from the equivalent-width ratio in the CORAVEL bandpass (Pasquini
et al. 1991), one finds the individual components’ absolute magnitudes to be
My (G5) = +4™73 and My (KO0) = +5™60. The propagated error from the
parallax and the brightness difference results in an uncertainty of just £0™05
for both components, but assumes no error for the apparent brightness adopted.
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Both components’ relatively high luminosities of 1.07 and 0.54 Lg (obtained
with the bolometric corrections from Flower 1996), together with their high
lithium abundances, then suggests them to be in the process of arriving on the
ZAMS rather than leaving it.
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Figure 3.  The position of V824 Ara S1+S2 in the H-R diagram. The
solid lines are the pre-main-sequence tracks of D’Antona & Mazzitelli
(1997) for masses of 0.9, 1.0, 1.1, 1.2, and 1.3 solar masses. The dotted
lines are isochrones for 10, 20, and 30 Myr. The suggested age of
V824 Ara is thus approximately 18 Myr.

Fig. 3 shows the position of the two stellar components in the H-R diagram
with respect to the pre-main-sequence tracks from D’Antona & Mazzitelli (1997).
The formal comparison in Fig. 3 gives masses of 1.12 Mg and 0.99 Mg for
the primary and secondary, respectively. However, as warned several times by
D’Antona & Mazzitelli, such a straightforward comparison may not be conclusive
because of the remaining theoretical uncertainties from the Deuterium-burning
process and the convection treatment. At the moment though, the low error
level for the V824 Ara observations — due to the precise orbit and the Hipparcos
parallax — are not in agreement with the star being already off the ZAMS. The
isochrone that fits both stars best suggests an age of =18 Myr for V824 Ara
(Fig. 3).
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Figure 4. Doppler image of the primary of V824 Ara in May 1996.
A spherical projection style at eight phases in steps of 45° (08125) is
adopted. A dummy in the lower right corners shows the surface grid.

4. The Case of V824 Ara

4.1. Individual Doppler Maps

Fig. 4 and 5 show our Doppler images of both components of V824 Ara. These
maps were derived with an inclination of 52° and vsini of 36.84+1 kms~! and
33.741.5 kms™! for the primary and secondary component, respectively, as well
as micro- and macroturbulences of 2.0 kms™! with solar abundances.

The range of surface temperatures on the primary is 3400-6000 K with an
average (surface-integrated) value of 4900 K while the secondary shows a range
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Figure 5. Doppler image of the secondary of V824 Ara. Otherwise
as in Fig. 4.

of 3300-6000 K and an average of 4550 K. The most significant feature on the
primary is a complex equatorial region covering the longitudes between £ = 270°
and about £ =~ 360°. Qur primary-star maps also recover a cool and slightly
asymmetric polar spot with a temperature difference of approximately 1700 K
relative to the adopted “unspotted” photosphere of 5400 K. The secondary star
does not show a full polar cap-like spot but instead has a cool, very high-latitude
spot.

The spots seem to group near 270° on the primary and 90° on the sec-
ondary, i.e. exactly the opposite distribution than that of the two polar spots
seen by Hatzes & Kiirster (1999) in 1990. However, we fully confirm the finding
by Hatzes & Kiirster (1999) that the low-latitude spots on both V824 Ara com-
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Figure 6.  The misfit between the data and the predicted profiles (x?2)
as a function of stellar inclination. The full line is for the primary, the
dashed line for the secondary. The most likely values are indicated with
a vertical dotted line, and the range of possible values is shown as hor-
izontal bars. Note that the ranges significantly overlap, which suggests
that the inclinations are very likely identical for both components.

ponents are preferentially located on the anti-facing hemispheres. This suggests
that the spots on V824 Ara tend to be located preferentially along the apsidal
line.

4.2. The Spin Inclinations of the Binary Components

We now repeat the analysis in Sect. 3.1 but instead of artificial data we use our
data for V824 Ara. Images are computed in steps of 5° from 5° to 85° and the
results are shown in Fig. 6. The figure shows the x? distribution from the fits
from the Doppler images of both components. Both distributions show a flat
minimum of width ~20° at about the same inclination range, 42°-62° for the
primary and 48°-68° for the secondary component. The formal values are found
from a low-order polynomial fit to the x? curves and are 52° for the primary
and 58° for the secondary. The quality and sampling of the present data limit
the precision to which the inclination can be determined. We do not regard the
formal difference of 6° as significant. Therefore, we conclude that the rotation
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axes of the two components are aligned and perpendicular with respect to the
orbital plane and adopt 52° as the most likely inclination.

5. Discussion and Summary

For main-sequence and post-main-sequence binaries, it has been already ar-
gued that the asynchronuously rotating active components of the RS CVn- and
BY Dra binaries may be a direct cause of a misalignment of their rotational
axes (e.g. Glebocki & Stawikowski 1997). Imprecise vsini measurements and
very uncertain stellar radii for giants and subgiants, however, still prevent a
verification of this suggestion.

We have shown that — under favorable circumstances — the Doppler imaging
technique can be used to determine precise inclination angles for individual stars
in a non-eclipsing close binary. Our application to the components of the 18-
Myr young close binary V824 Ara showed that their rotation axis are most likely
coaligned and perpendicular to the orbital plane.
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