FITTING SUBGROUP AND NILPOTENT RESIDUAL OF FIXED POINTS

EMERSON DE MELO[™] and PAVEL SHUMYATSKY

(Received 12 October 2018; accepted 19 October 2018; first published online 26 December 2018)

Abstract

Let q be a prime and let A be an elementary abelian group of order at least q^3 acting by automorphisms on a finite q'-group G. We prove that if $|\gamma_{\infty}(C_G(a))| \leq m$ for any $a \in A^{\#}$, then the order of $\gamma_{\infty}(G)$ is mbounded. If $F(C_G(a))$ has index at most m in $C_G(a)$ for any $a \in A^{\#}$, then the index of $F_2(G)$ is m-bounded.

2010 *Mathematics subject classification*: primary 20D45. *Keywords and phrases*: centraliser, automorphism, nilpotent residual.

1. Introduction

Suppose that a finite group A acts by automorphisms on a finite group G. The action is coprime if the groups A and G have coprime orders. We denote by $C_G(A)$ the set

$$\{g \in G \mid g^a = g \text{ for all } a \in A\},\$$

the centraliser of A in G (the fixed-point subgroup). In what follows, we denote by $A^{\#}$ the set of nontrivial elements of A. It is known that centralisers of coprime automorphisms have a strong influence on the structure of G.

Ward showed that if *A* is an elementary abelian *q*-group of rank at least three and if $C_G(a)$ is nilpotent for any $a \in A^{\#}$, then the group *G* is nilpotent [11]. Later, the second author showed that if, under these hypotheses, $C_G(a)$ is nilpotent of class at most *c* for any $a \in A^{\#}$, then the group *G* is nilpotent with (c, q)-bounded nilpotency class [8]. Throughout the paper, we use the expression ' (a, b, \ldots) -bounded' to abbreviate 'bounded from above in terms of a, b, \ldots only'. Subsequently, the above result was extended to the case where *A* is not necessarily abelian. Namely, it was shown in [3] that if *A* is a finite group of prime exponent *q* and order at least q^3 acting on a finite q'-group *G* in such a manner that $C_G(a)$ is nilpotent of class at most *c* for any $a \in A^{\#}$, then *G* is nilpotent with class bounded solely in terms of *c* and *q*. Many other results illustrating the influence of centralisers of automorphisms on the structure of *G* can be found in [7].

The first author was supported by FEMAT; the second author was supported by FAPDF and CNPq-Brazil. © 2018 Australian Mathematical Publishing Association Inc.

In this article we address the case where A is an elementary abelian q-group of rank at least three and $C_G(a)$ is 'almost' nilpotent for any $a \in A^{\#}$. Recall that the nilpotent residual of a finite group G is the intersection of all terms of the lower central series of G. This will be denoted by $\gamma_{\infty}(G)$. One of the results obtained in [2] is that if A and G are as above and $\gamma_{\infty}(C_G(a))$ has order at most m for any $a \in A^{\#}$, then the order of $\gamma_{\infty}(G)$ is (m, q)-bounded. The purpose of this article is to obtain a better result by showing that the order of $\gamma_{\infty}(G)$ is m-bounded and, in particular, that the order of $\gamma_{\infty}(G)$ can be bounded by a number that is independent of the order of A.

THEOREM 1.1. Let q be a prime and let m be a positive integer. Let A be an elementary abelian group of order at least q^3 acting by automorphisms on a finite q'-group G. Assume that $|\gamma_{\infty}(C_G(a))| \leq m$ for any $a \in A^{\#}$. Then $|\gamma_{\infty}(G)|$ is m-bounded.

Further, suppose that the Fitting subgroup of $C_G(a)$ has index at most m in $C_G(a)$ for any $a \in A^{\#}$. It was shown in [9] that under this assumption the index of the Fitting subgroup of G is (m, q)-bounded. In view of Theorem 1.1, it is natural to conjecture that, in fact, the index of the Fitting subgroup of G can be bounded in terms of m alone. We have not been able to confirm this. Our next result should be regarded as evidence in favour of the conjecture. Recall that the second Fitting subgroup $F_2(G)$ of a finite group G is defined as the inverse image of F(G/F(G)), that is, $F_2(G)/F(G) = F(G/F(G))$. Here F(G) stands for the Fitting subgroup of G.

THEOREM 1.2. Let q be a prime and let m be a positive integer. Let A be an elementary abelian group of order at least q^3 acting by automorphisms on a finite q'-group G. Assume that $F(C_G(a))$ has index at most m in $C_G(a)$ for any $a \in A^{\#}$. Then the index of $F_2(G)$ is m-bounded.

In the next section, we give some lemmas that will be used in the proofs of the above results. Section 3 deals with the proof of Theorem 1.2. In Section 4, we prove Theorem 1.1.

2. Preliminaries

If *A* is a group of automorphisms of a group *G*, the subgroup generated by elements of the form $g^{-1}g^{\alpha}$ with $g \in G$ and $\alpha \in A$ is denoted by [G, A]. The subgroup [G, A] is an *A*-invariant normal subgroup in *G*. Our first lemma is a collection of well-known facts on coprime actions (see, for example, [5]). Throughout the paper, we will use it without explicit references.

LEMMA 2.1. Let A be a group of automorphisms of a finite group G with (|G|, |A|) = 1. Then:

- (i) $G = [G, A]C_G(A);$
- (ii) [G, A, A] = [G, A];
- (iii) A leaves invariant some Sylow p-subgroup of G for each prime $p \in \pi(G)$;
- (iv) $C_{G/N}(A) = C_G(A)N/N$ for any A-invariant normal subgroup N of G;

(v) if A is a noncyclic elementary abelian group and A_1, \ldots, A_s are the maximal subgroups in A, then $G = \langle C_G(A_1), \ldots, C_G(A_s) \rangle$ and, furthermore, if G is nilpotent, then $G = \prod_i C_G(A_i)$.

The following lemma was proved in [10]. The case where the group G is soluble was established in Goldschmidt [4, Lemma 2.1].

LEMMA 2.2. Let G be a finite group acted on by a finite group A such that (|A|, |G|) = 1. Then [G, A] is generated by all nilpotent subgroups T such that T = [T, A].

LEMMA 2.3. Let q be a prime and let A be an elementary abelian group of order at least q^2 acting by automorphisms on a finite q'-group G. Let A_1, \ldots, A_s be the subgroups of index q in A. Then [G, A] is generated by the subgroups $[C_G(A_i), A]$.

PROOF. If *G* is abelian, the result is immediate from Lemma 2.1(v) since the subgroups $C_G(A_i)$ are *A*-invariant. If *G* is nilpotent, the result can be obtained by considering the action of *A* on the abelian group $G/\Phi(G)$. Finally, the general case follows from the nilpotent case and Lemma 2.2.

The following lemma is an application of the three subgroup lemma.

LEMMA 2.4. Let A be a group of automorphisms of a finite group G and let N be a normal subgroup of G contained in $C_G(A)$. Then [[G, A], N] = 1. In particular, if G = [G, A], then $N \leq Z(G)$.

PROOF. Indeed, by the hypotheses, [N, G, A] = [A, N, G] = 1. Thus [G, A, N] = 1 and the lemma follows.

In the next lemma, we will employ the fact that if A is any coprime group of automorphisms of a finite simple group, then A is cyclic (see, for example, [6]). We denote by R(H) the soluble radical of a finite group H, that is, the largest normal soluble subgroup of H.

THEOREM 2.5. Let q be a prime and let m be a positive integer such that m < q. Let A be an elementary abelian group of order q^2 acting on a finite q'-group G in such a way that the index of $R(C_G(a))$ in $C_G(a)$ is at most m for any $a \in A^{\#}$. Then [G, A] is soluble.

PROOF. We argue by contradiction. Choose a counterexample *G* of minimal order. Then G = [G, A] and R(G) = 1. Suppose that *G* contains a proper normal *A*-invariant subgroup *N*. Since [N, A] is subnormal, we conclude that [N, A] = 1 and so $N = C_N(A)$. Then by Lemma 2.4, *N* is central and, in view of R(G) = 1, we have a contradiction.

Hence *G* has no proper normal *A*-invariant subgroups and so $G = S_1 \times \cdots S_l$, where S_i are isomorphic nonabelian simple subgroups transitively permuted by *A*. We will prove that, under these assumptions, *G* has order at most *m*.

If l = 1, then G is a simple group and so $G = C_G(a)$ for some $a \in A^{\#}$. In this case, we conclude that G has order at most m by the hypotheses. Suppose, therefore, that $l \neq 1$ and so l = q, or $l = q^2$.

https://doi.org/10.1017/S0004972718001272 Published online by Cambridge University Press

[3]

In the first case, $G = S \times S^a \times \cdots \times S^{a^{q-1}}$ for some $a \in A$ and there exists $b \in A$ such that $S^b = S$. Here $S = S_1$. We see that $C_G(a)$ is the 'diagonal' of the direct product. In particular, $C_G(a) \cong S$ is a simple group and so $C_G(a)$ is of order at most m. Since m < q and b leaves $C_G(a)$ invariant, we conclude that $C_G(a) \leq C_G(b)$. Combining this with the fact that b stabilises all simple factors, we deduce that b acts trivially on G. It follows that $|G| \leq m$.

Finally, suppose that *G* is a product of q^2 simple factors that are transitively permuted by *A*. For each $a \in A$, we see that $C_G(a)$ is a product of *q* 'diagonal' subgroups. In particular, $C_G(a)$ contains a direct product of *q* nonabelian simple groups. This is a contradiction since $[C_G(a) : R(C_G(a))]$ is at most *m* and m < q.

This proves that *G* has order at most *m*. Then, of course, *A* acts trivially on *G*. We conclude that [G, A] = 1. This is a contradiction and completes the proof.

3. Proof of Theorem 1.2

Assume the hypothesis of Theorem 1.2. Thus, A is an elementary abelian group of order at least q^3 acting on a finite q'-group G in such a manner that $F(C_G(a))$ has index at most m in $C_G(a)$ for any $a \in A^{\#}$. We wish to show that $F_2(G)$ has m-bounded index in G. It is clear that A contains a subgroup of order q^3 . Thus, replacing A by such a subgroup, if necessary, we may assume that A has order q^3 . In what follows, A_1, \ldots, A_s denote the subgroups of index q in A.

It was proved in [9, 2.11] that, under this hypothesis, the subgroup F(G) has (q, m)bounded index in G. Hence, if $q \le m$, the subgroup F(G) (and, consequently, $F_2(G)$) has m-bounded index. We will therefore assume that q > m. In this case, A acts trivially on $C_G(a)/F(C_G(a))$ for any $a \in A^{\#}$. Consequently, $[C_G(a), A] \le F(C_G(a))$ for any $a \in A^{\#}$.

Observe that $\langle [C_G(A_i), A], [C_G(A_j), A] \rangle$ is nilpotent for any $1 \le i, j \le s$. This is because the intersection $A_i \cap A_j$ contains a nontrivial element *a* and the subgroups $[C_G(A_i), A]$ and $[C_G(A_j), A]$ are both contained in the nilpotent subgroup $[C_G(a), A]$.

LEMMA 3.1. The subgroup [G, A] is nilpotent.

PROOF. We argue by contradiction. Suppose *G* is a counterexample of minimal possible order. By Lemma 2.5, the subgroup [G, A] is soluble. Let *V* be a minimal *A*-invariant normal subgroup of *G*. Then *V* is an elementary abelian *p*-group and *G*/*V* is an *r*-group for some primes $p \neq r$. Write G = VH, where *H* is an *A*-invariant Sylow *r*-subgroup such that H = [H, A]. From Lemma 2.3, *H* is generated by the subgroups $[C_H(A_i), A]$. Thus, *H* centralises [V, A] since $[C_V(A_i), A]$ and $[C_H(A_j), A]$ have coprime order for each $1 \leq i, j \leq s$. Hence $[V, A] \leq Z(G)$, and by the minimality we conclude that [V, A] = 1 and $V = C_V(A)$. But then, by Lemma 2.4, $V \leq Z(G)$ since *V* is a normal subgroup and G = [G, A]. This is a contradiction and the lemma is proved.

We can now easily complete the proof of Theorem 1.2. By the above lemma, A acts trivially on the quotient G/F(G). Therefore $G = F(G)C_G(A)$. This shows that $F(C_G(A)) \leq F_2(G)$. Since the index of $F(C_G(A))$ in $C_G(A)$ is at most m, the result follows.

4. Proof of Theorem 1.1

We say that a finite group *G* is metanilpotent if $\gamma_{\infty}(G) \leq F(G)$.

The following elementary lemma will be useful (for the proof, see, for example, [1, Lemma 2.4]).

LEMMA 4.1. Let G be a metanilpotent finite group. Let P be a Sylow p-subgroup of $\gamma_{\infty}(G)$ and let H be a Hall p'-subgroup of G. Then P = [P, H].

Let us now assume the hypothesis of Theorem 1.1. Thus *A* is an elementary abelian group of order at least q^3 acting on a finite q'-group *G* in such a manner that $\gamma_{\infty}(C_G(a))$ has order at most *m* for any $a \in A^{\#}$. We wish to show that $\gamma_{\infty}(G)$ has *m*-bounded order. Replacing *A* by a subgroup, if necessary, we may assume that *A* has order q^3 . Since $\gamma_{\infty}(C_G(a))$ has order at most *m*, we obtain that $F(C_G(a))$ has index at most *m*! (see, for example, [7, 2.4.5]). By [2, Theorem 1.1], $\gamma_{\infty}(G)$ has (q, m)-bounded order. Without loss of generality, we will assume that m! < q. In particular, [*G*, *A*] is nilpotent by Lemma 3.1.

LEMMA 4.2. If G is soluble, then $\gamma_{\infty}(G) = \gamma_{\infty}(C_G(A))$.

PROOF. We will use induction on the Fitting height h of G.

Suppose first that *G* is metanilpotent. Let *P* be a Sylow *p*-subgroup of $\gamma_{\infty}(G)$ and *H* be a Hall *A*-invariant *p'*-subgroup of *G*. By Lemma 4.1, we have $\gamma_{\infty}(G) = [P, H] = P$. It is sufficient to show that $P \leq \gamma_{\infty}(C_G(A))$. Therefore, without loss of generality, we assume that G = PH. With this in mind, observe that $\gamma_{\infty}(C_G(a)) = [C_P(a), C_H(a)]$ for any $a \in A^{\#}$.

We will prove that $P = [C_P(A), C_H(A)]$. Note that *A* acts trivially on $\gamma_{\infty}(C_G(a))$ for any $a \in A^{\#}$ since m < q. Hence $\gamma_{\infty}(C_G(a)) \le C_P(A)$ for any $a \in A^{\#}$. Let $a, b \in A$. We have $[\gamma_{\infty}(C_G(a)), C_H(b)] \le [C_P(A), C_H(b)] \le \gamma_{\infty}(C_G(b))$. Let us show that $P = C_P(A)$.

First, assume that *P* is abelian. Observe that the subgroup $N = \prod_{a \in A^{\#}} \gamma_{\infty}(C_G(a))$ is normal in *G*. Since *N* is *A*-invariant, we obtain that *A* acts on *G/N* in such a way that $C_G(a)$ is nilpotent for any $a \in A^{\#}$. Thus *G/N* is nilpotent by [11]. Therefore $P = \prod_{a \in A^{\#}} \gamma_{\infty}(C_G(a))$. In particular, $P = C_P(A)$.

Now suppose that *P* is not abelian. Consider the action of *A* on $G/\Phi(P)$. By the above, $P/\Phi(P) = C_P(A)\Phi(P)/\Phi(P)$, which implies that $P = C_P(A)$.

Since $P = C_P(A)$ is a normal subgroup of *G*, by Lemma 2.4 we deduce that [H, A] centralises *P*. Therefore $P = [C_P(A), C_H(A)]$ since $H = [H, A]C_H(A)$. This completes the proof for metanilpotent groups.

If *G* is soluble and has Fitting height h > 2, we consider the quotient group $G/\gamma_{\infty}(F_2(G))$, which has Fitting height h - 1. Clearly, $\gamma_{\infty}(F_2(G)) \le \gamma_{\infty}(G)$. Hence, we deduce that $\gamma_{\infty}(G) = \gamma_{\infty}(C_G(A))$.

Recall that, under our assumptions, [G, A] is nilpotent and $C_G(A)$ has a normal nilpotent subgroup of index at most m!. Let R be the soluble radical of G. Since $G = [G, A]C_G(A)$, the index of R in G is at most m!. Lemma 4.2 shows that the order of $\gamma_{\infty}(R)$ is at most m. We pass to the quotient $G/\gamma_{\infty}(R)$ and, without loss of generality,

assume that *R* is nilpotent. If G = R, we have nothing to prove. Therefore assume that R < G and use induction on the index of *R* in *G*. Since $[G, A] \le R$, it follows that each subgroup of *G* containing *R* is *A*-invariant. If *T* is any proper normal subgroup of *G* containing *R*, by induction the order of $\gamma_{\infty}(T)$ is *m*-bounded and the theorem follows. Hence we can assume that G/R is a nonabelian simple group. We know that G/R is isomorphic to a quotient of $C_G(A)$ and so, being simple, G/R has order at most *m*.

As usual, given a set of primes π , we write $O_{\pi}(U)$ to denote the maximal normal π -subgroup of a finite group U. Let $\pi = \pi(m!)$ be the set of primes at most m. Let $N = O_{\pi'}(G)$. Our assumptions imply that G/N is a π -group and $N \leq F(G)$. Thus, by the Schur–Zassenhaus theorem [5, Theorem 6.2.1], the group G has an A-invariant π -subgroup K such that G = NK. Let $K_0 = O_{\pi}(G)$.

Suppose that $K_0 = 1$. Then *G* is a semidirect product of *N* by $K = C_K(A)$. For an automorphism $a \in A^{\#}$, observe that $[C_N(a), K] \leq \gamma_{\infty}(C_G(a))$ since $C_N(a)$ and *K* have coprime order. On the one hand, being a subgroup of $\gamma_{\infty}(C_G(a))$, the subgroup $[C_N(a), K]$ must be a π -group. On the other hand, being a subgroup of *N*, the subgroup $[C_N(a), K]$ must be a π '-group. We conclude that $[C_N(a), K] = 1$ for each $a \in A^{\#}$. Since *N* is a product of all such centralisers $C_N(a)$, it follows that [N, K] = 1. Since $K_0 = 1$ and *K* is a π -group, we deduce that K = 1 and so G = N is a nilpotent group.

In general, K_0 does not have to be trivial. However, considering the quotient G/K_0 and taking into account the above paragraph, we deduce that $G = N \times K$. In particular, $\gamma_{\infty}(G) = \gamma_{\infty}(K)$ and so, without loss of generality, we can assume that *G* is a π -group. It follows that the number of prime divisors of |R| is *m*-bounded and we can use induction on this number. It will be convenient to prove our theorem first under the additional assumption that G = G'.

Suppose that *R* is an *p*-group for some prime $p \in \pi$. Note that if *s* is a prime that is different from *p* and *H* is an *A*-invariant Sylow *s*-subgroup of *G*, then, in view of Lemma 4.2, we have $\gamma_{\infty}(RH) \leq \gamma_{\infty}(C_G(A))$ because *RH* is soluble. We will require the following observation about finite simple groups (for the proof, see, for example, [2, Lemma 3.2]).

LEMMA 4.3. Let D be a nonabelian finite simple group and let p be a prime. There exists a prime s that is different from p such that D is generated by two Sylow s-subgroups.

In view of Lemma 4.3 and the fact that G/R is simple, we deduce that G/R is generated by the image of two Sylow *s*-subgroups H_1 and H_2 , where *s* is a prime that is different from *p*. Both subgroups RH_1 and RH_2 are soluble and *A*-invariant since $[G, A] \leq R$. Therefore both $[R, H_1]$ and $[R, H_2]$ are contained in $\gamma_{\infty}(C_G(A))$.

Let $H = \langle H_1, H_2 \rangle$. Thus G = RH. Since G = G', it is clear that G = [R, H]H and [R, G] = [R, H]. We have $[R, H] = [R, H_1][R, H_2]$ and therefore the order of [R, H] is *m*-bounded. Passing to the quotient G/[R, G], we can assume that R = Z(G). So we are in the situation where G/Z(G) has order at most *m*. By a theorem of Schur, the order of *G'* is *m*-bounded as well (see, for example, [7, 2.4.1]). Taking into account that G = G', we conclude that the order of *G* is *m*-bounded.

Now suppose that $\pi(R) = \{p_1, \ldots, p_t\}$, where $t \ge 2$. For each $i = 1, \ldots, t$, consider the quotient $G/O_{p'_i}(G)$. The above paragraph shows that the order of $G/O_{p'_i}(G)$ is *m*-bounded. Since *t* also is *m*-bounded, the result follows.

Thus, in the case where G = G', the theorem is proved. Let us now deal with the case where $G \neq G'$. Let $G^{(l)}$ be the last term of the derived series of G. The previous paragraph shows that $|G^{(l)}|$ is *m*-bounded. Consequently, $|\gamma_{\infty}(G)|$ is *m*-bounded since $G/G^{(l)}$ is soluble and $G^{(l)} \leq \gamma_{\infty}(G)$. The proof is now complete.

References

- [1] C. Acciarri, P. Shumyatsky and A. Thillaisundaram, 'Conciseness of coprime commutators in finite groups', *Bull. Aust. Math. Soc.* **89** (2014), 252–258.
- [2] E. de Melo, A. S. Lima and P. Shumyatsky, 'Nilpotent residual of fixed points', Arc. Math. 111 (2018), 13–21.
- [3] E. de Melo and P. Shumyatsky, 'Finite groups and their coprime automorphisms', Proc. Amer. Math. Soc. 145 (2017), 3755–3760.
- [4] D. M. Goldschmidt, 'Weakly embedded 2-local subgroups of finite groups', J. Algebra 21 (1972), 341–351.
- [5] D. Gorenstein, Finite Groups (Harper and Row, New York-Evanston-London, 1968).
- [6] R. Guralnick and P. Shumyatsky, 'Derived subgroups of fixed points', *Israel J. Math.* 126 (2001), 345–362.
- [7] E. I. Khukhro, Nilpotent Groups and their Automorphisms (de Gruyter, Berlin-New York, 1993).
- [8] P. Shumyatsky, 'Finite groups and the fixed points of coprime automorphisms', *Proc. Amer. Math. Soc.* 129 (2001), 3479–3484.
- [9] P. Shumyatsky, 'Positive laws in fixed points', Trans. Amer. Math. Soc. 356 (2003), 2081–2091.
- [10] P. Shumyatsky, 'Linear groups with almost right Engel elements', Proc. Edinb. Math. Soc., to appear.
- [11] J. N. Ward, 'On finite groups admitting automorphisms with nilpotent fixed-point', Bull. Aust. Math. Soc. 5 (1971), 281–282.

EMERSON DE MELO, Department of Mathematics, University of Brasília, Brasília-DF 70910-900, Brazil e-mail: emerson@mat.unb.br

PAVEL SHUMYATSKY, Department of Mathematics, University of Brasília, Brasília-DF, 70910-900, Brazil e-mail: pavel@unb.br