Hostname: page-component-8448b6f56d-m8qmq Total loading time: 0 Render date: 2024-04-23T12:28:12.500Z Has data issue: false hasContentIssue false

Self-Assembled Iii-Phospide Quantum Dots Grown by Metalorganic Chemical Vapor Deposition

Published online by Cambridge University Press:  10 February 2011

Jae-Hyun Ryou
Affiliation:
Microelectronics Research Center, The University of Texas at Austin, Austin, TX 78712-1100, dupuis@mail.utexas.edu
Uttiya Chowdhury
Affiliation:
Microelectronics Research Center, The University of Texas at Austin, Austin, TX 78712-1100, dupuis@mail.utexas.edu
Russell D. Dupuis
Affiliation:
Microelectronics Research Center, The University of Texas at Austin, Austin, TX 78712-1100, dupuis@mail.utexas.edu
Chavva V. Reddy
Affiliation:
Division of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138
Venkatesh Narayanamurti
Affiliation:
Division of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138
David T. Mathes
Affiliation:
Department of Materials Science and Engineering, The University of Virginia, Charlottesville, VA 22906
Robert Hull
Affiliation:
Department of Materials Science and Engineering, The University of Virginia, Charlottesville, VA 22906
Get access

Abstract

We report InP self-assembled quantum dots embedded in In0.51Al0.49P grown by metalorganic chemical vapor deposition. Growth parameters are altered to study the InP quantum-dot growth characteristics under various growth conditions. Quantum-dot morphology is characterized using atomic-force microscopy. Also, photoluminescence studies of the light-emitting properties are performed. Direct-bandgap ternary InxAlI−xP (x=˜0.7, ˜0.85) self-assembled quantum dots are also grown and compared with InP quantum dots.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Arakawa, Y. and Sakaki, H., Appl. Phys. Lett 40, 939(1982).Google Scholar
2.Bauer, E., Z Kristallogr. 110, 372(1958).Google Scholar
3.Shoji, H., Nakata, Y., Mukai, K., Sugiyama, Y., Sugawara, M., Yokoyama, N., and Ishikawa, H., IEEE J. Select. Topic. Quantum Electron. 3, 188(1997). “4M. Narihiro, G. Yusa, Y. Nakamura, T. Noda, and H. Sakaki, Appl. Phys. Lett. 70, 105 (1997).Google Scholar
5.Ustinov, V. M., Zhukov, A. E., Egorov, A. Yu., Kovash, A. R., Zaitsev, S. V., Gordeev, N. Yu., Kopchatov, V. I., Ledentosov, N. N., Tsatsul'nikov, A. F., Volovik, B. V., Kop'ev, P. S., Alferov, Zh. I., Ruvimov, S. S., Liliental-Weber, Z., and Bimberg, D., Electron. Lett. 34, 670(1998).Google Scholar
6.Carlsson, N., Junno, T., Montelius, M., Pistol, M. - E., Samuelson, L., and Seifert, W., J. Crysta Growth 191, 347(1998).Google Scholar
7.Li, H., Wang, Z., Liang, J., Xu, B., Wu, J., Gong, Q., Jiang, C., Liu, F., and Zhou, W., J Crysta Growth 187, 564(1998).Google Scholar
8.Huffaker, D. L., Park, G., Zou, Z., 0. Shchekin, B., and Deppe, D. G., Appl. Phys. Lett. 73, 2564(1998).Google Scholar
9.Zhukov, A. E., Ustinov, V. M., Egorov, Yu., Lovsh, A. R., Tsatsul'nikov, A. F., Masimov, M. V., Ledentosov, N. N., Zaitsev, S. V., Gordeev, N. Yu., Kopchatov, V. I., Shemaykov, Y. M., Kop'ev, P. S., Bimberg, D., and Alferov, Zh. I., J. Electron. Mater. 27, 106(1998).Google Scholar