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Large algebraic theories

with small algebras

Jan Reiterman

The aim of the paper is to study the interrelation between

several natural smallness conditions on an algebraic theory with

a proper class of operations. The conditions concern the

existence of sets of data determining algebras, homomorphisms,

subalgebras, and congruences.

I. Introduction and results

Let us consider an algebraic theory (ft, E) where ft is a (possibly

proper) class of finitary or infinitary operation symbols (shortly,

operations) and £ is a class of equations. Denote 0 the clone of

(ft, E) ; thus ft is the class of all operations obtained by transfinite

recursion from the basic ones (those from ft ) and the trivial ones

(projections) by means of composition of the form o)(a).; i € n) where u

is n-ary and the w.'s and the result have the same arity. Of course,
Is

two operations from ft are regarded to be equal if their equality is

derivable from E . If the class of all n-ary operations in ft is a set

for every set n then the theory is said to be varietal C4].

Algebraic theories involving a proper class of operations were

considered for the first time by triple theorists in order to include some

categories of algebraic nature; see [5] for references and historical

remarks. It turned out that triples (equivalently, varietal theories) do

not include the theory of complete lattices and the theory of complete

boolean algebras [/], [2]. That is why Linton [4] considered also non-
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varietal theories.

However, the notion of an algebraic theory seems to be too general.

Indeed, the "large" theories have been introduced to describe algebraic

categories whose objects are small by which we mean that each of them is

described by a set of data. For instance, a complete lattice on a set X

is described by means of two X-ary operations sup and inf . We suggest

that only those algebraic theories are reasonable for which the algebras

are small.

Without any restriction on the character of data describing an

algebra, the requirement in question is as follows:

LEG: the conglomerate of all (ft, £")-algebras is equipotent with

a proper class.

(LEG for legitimacy: the number of (ft, £)-algebras does not, in contrary

to a general case, exceed the cardinality of the universum we work in.)

Another, perhaps more natural condition is

FIB: for every set X , algebras whose underlying set is X are

determined by a set of operations in the sense: there is a

set U(X) c ft such that for any two (ft, tf)-algebras

A = [X, {</}) , B = [X, {uS}) we have A = B if and only

if to = a) for every w 6 £l(x) .

(FIB for "small fibred": we shall show that (ft, E) satisfies FIB if

and only if for every set X , algebras whose underlying set is X form a

set; see II.6.) A simple example (III.1*) shows that the obvious

implication FIB °* LEG can not be reversed.

Unfortunately, we are not able to give an intrinsic characterization

of theories with LEG and FIB respectively. However, in [6], a

condition on an algebraic theory has been discovered which ensures FIB

and which is fulfilled by various non-varietal theories of nature (for

example, by complete lattices and complete boolean algebras). It is, as we

shall prove, actually stronger than FIB .

An algebraic theory (ft, E) is locally small based if

LSB: ft is generated by fi' c ft where ft' = U ft1 (ft' being
n
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the class of a l l rc-ary operations in ft1 ) such that

(i) each ft' is a set

( i i ) for every 0) € ft1 and every f : m -*• n , bif* € ft' ;

here uf* (a^; i € n] = a)(x^j. ) ; j € m) .

Further conditions concerning selection of homomorphisms, subalgebras,

and congruences are as follows. In each of them, the existence of a set

Q{X) e f t is required for every set X such that

HOM: a mapping f : X •*• Y is a homomorphism from

A = [X, {(/}) to B = [Y, {(/}) i f and only if i t is

compatible with a l l operations u) £ ti(X) ;

SUB: the set X carries a subalgebra of an algebra

B = [y, {wS}) (where X c Y ) if and only if i t is closed

in B under a l l operations to € ft(X) ;

CON: an equivalence on X is a congruence on an algebra

A = [X, {u }J if and only if i t is a congruence with

respect to a l l operations u € ft(X) .

THEOREM, LSB =* SUB "^ HOM =» FIB =» CON , FIB =» LEG . None of the

implications SUB1* LSB, FIB =» HOM, CON =» FIB, LEG * CON, CON =* LEG, is valid.

I I . Proofs

II-.1. Let A = [X, {w }) be an (ft, ^ -a lgebra . Then a l l </ with

u € ft are determined by X-ary operations from ft by

whenever w is w-ary and a. (. X .

11.2. A mapping f : X •*• Y is a homomorphism from an (ft, E)-algebra

A= [x, {to4}) toon (ft, E)-algebra B= [Y, {W5}) if and only if it is

compatible with all X-ary operations from ft .

Proof. Let a> £ ft be rc-ary and l e t a ( f . If / i s compatible
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with X-ary operations then /co (a) = /(coa*)A [l ) = (coot*) (/) = coS(fa) .

So f is compatible with co , too.

11.3. A set X <= y carries a subalgebra of B = [i, {co }) if and

only if X is closed in B under all X-ary operations from U .

Proof. If co € fi , a € f1 , and j : X •*• Y i s the inclusion, then

co (jot) = (coa*) (j) € X i f X i s closed in B under X-ary operations.

11.4. An equivalence ~ on a set X is a congruence on an (fl, E)-

algebra A = [x, {co }) if and only if it is a congruence with respect to

all Xx X-ary operations from Q .

Proof. Let co € Q be n-ary, l e t a, g € X71 , a(t) ~ &(t) for a l l
A A — —

t € n . We have to prove co (a) ~ co (B) . Define a, 3 : X x X •*• X as
follows: a{x, y) = a(*) , I (x , y) = g(t) i f (x, y) = ( a ( t ) , B(t)) for
some t , a(a:, y) = 3(x, j/) = at otherwise, where x € ̂T is arbitrary

but fixed. Define y : n ->• X x X by y(t) = (a(t), 8U)) . Then

a = ay , B = I Y , and so cô Ca) = (usr*)A(a) , /(B) = (WY*) 4(I) , coy*
is X x X-ary, and a(t) ~ &{t) for every t . Thus if ~ is a

congruence with respect to all X x X-ary operations, then

(utf*)A(a) ~ (iar*)A(§) ; that is u/(cO ~ co4(B) .

11.5. In each of the conditions FIB, SUB, HOM, CON , we may assume

that J2(X) c fi(-i') whenever card X £ card ^ ; in particular, that fl(X)

depends on card X only.

Indeed, for every set X , f2(X) can be replaced by J2(n) where

n = card X and so by U Sl(m) where m runs through all cardinals less
m

than or equal to n .

11.6. A theory (ft, E) satisfies FIB if and only if for every set

X i (^, E)-algebras whose underlying set is X form a set.

Proof. Necessity: Obvious.

Sufficiency: Let ^ be the class of a l l X-ary operations in £1 .

For co, O € fl^. and for every algebra A the underlying set of which is X ,
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A A —
put (i) ~4 a if and only if to = a . Then ^y/~/ is a set- A s t ne

algebras A in question form a set, also fiy/~ is a set where ~ is the

intersection of all ~, . So there exists a set £l(X) c Q such that for

every to € Q~ there is 0 € Q(X) such that a) ~ a ; that is, to = a

for all 4 in question. Now FIB follows by II.1.

II -7. L S B ̂ SUB is proved in [6]. FIB =» LEG is obvious.

11.8. SUB °* FIB follows by the observation that for A = [x, {</}) ,

B = [X, {to }) , we have A = B if and only if the diagonal in X * X

carries a subalgebra of A x B .

11.9. FIB " CON .

Proof. We use II.6 and proceed quite analogously as in the proof of

II.6 to obtain a set ti(X) of X x X-ary operations such that for each

A A
X x X-ery operation to there is a € Sl(X) such that u = a for all

algebras with underlying set X . Then we apply II.k.

11.10. SUB =* HOM .

Proof. Suppose SUB . Then also FIB and CON by II.8 and II.9.

Suppose II.5 and put

= acm(x) u asm(x) u

where ^cc f f lW stands for fi(X) of CON and so on. Let f, X, J, A, B

be as in HOM . Let / be compatible with all u £ £l(X) . Then the

equivalence "x ~ y if and only on f(x) = f(y) " is a congruence with

respect to all u> € Sl(X) . As tt(X) D Q (X) , ~ is a congruence on 4

and / is a homomorphism from J4 to some algebra A' = [f(X), {to })

A' B

where U) is a restriction of to for every to € il(x) . It follows alsc

that f(X) is closed in B under all aj € fi(X) . As

fltf) => ngUB(*) 3 nsuB(f(*)) , f(X) carries a subalgebra B' of B. We
41 B'

have to = a) for all to € £}(#) , and so A' = B' .because

Q(X) => ftFIB(*) => fiFIB(/(^)) . Thus / is a homomorphism from A to B .
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I I . 1 1 . HOM =* SUB .

Proof. Write Si as SI = U SI where ex runs through ordinals, each
a

SI i s a s e t , a n d fi c fi w h e n e v e r a s f . L e t E c o n s i s t o f a l l
01 u p u

equations between operations derived from SI which hold in every [SI, E)-

algebra. Suppose (SI, E) does not fulfil SUB . Then there exists a set

f A 1
X such that for every o there is an (SI, £)-algebra A = \Y , {u a}\

such that X is closed in A under all SI -operations - and thus
a a

carries an [SI , E ]-algebra B - but X does not carry a subalgebra of

A . As for every ct , all [Si , E')-algebras whose underlying set is X

form a set, we can, using induction, redefine the family {A } in such a

B B&
way that B extends B whenever a 5 3 (in the sense that u = w

for all OJ € SI ) . Then there is an (SI, S)-algebra B which extends all

B . Now, suppose HOM . Then we may assume that Sl(X) of HOM equals

some SI . But the inclusion X •*• Y is not a homomorphism from B to

•4 although it is compatible with all SI -operations, a contradiction.

I I I . Counterexamples

11 I.I. SUB T LSB . The simplest counterexample is provided by a non-

LSB theory which degenerates in the sense that it has only trivial models.

For instance, the theory in [3, p. 558] works. But our ambition is to

present a counterexample which admits no degeneration: if u, a € SI and

A A
0) = a for every algebra A then a) = o . Put

SI = {a-; i € Ord} u {*, 0} , a. unary, * binary, 0 nullary,

E : a. (x) * a. (x) = a. (x) for i < j , x*x = 0*x = 0.
v 0 3

(a) Let us prove SUB . Let X be a set and k an ordinal whose

cofinal is bigger than card X* . Put Sl(X) = {a. ; i < k] u {*, 0} . Let

B = [Y9 {oj }) . Let X <r Y be closed under a l l U(X)-operations in B .
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Then there exists a cofinal set X in k such that a./X = a.IX for

i, j € K where IX means the restriction to X . Let i, j € K and

x (. X . Then cu(x) = <x|(x) * cu(x) = ou(x) * ou(x) = 0B . Thus, if

s > k , then a (x) = a .(x) * a (x) = 0 * a (x) = 0 and so X is closed
s j s s

in B under all operations.

(b) The theory does not degenerate. Indeed, let to, a 6 ft and let

A A
(0 = a for every algebra A . There exists an ordinal k such that

to, a € ft .where ft is the clone of (ft , E ) where

ft = {a.; i < k} u {*, o} , and E consists of equations between ft -
1 "V i. 1

operations which can be derived from E . Let A be the (ft,, E J-free

algebra over n where n is the arity of u), O . The point is that A

can be made an (ft, #)-algebra by putting a.(x) = 0 for i 2 k and for

A A
every x . Thus (0 = a and so the equation u = a can be derived

within (ft , E) .

(c) The theory is not LSB . Indeed, consider algebras

A. = (3, {a }) u {* , 0 } where 3 runs through cardinals and for every

3 and x, y 6 3 ,

A& A
a. (a;) = x + i + 1 for i < 3 , a. (x) = 0 otherwise,

x * y = max(x, y) if 0 # x + y ,

x * x = 0 * x = 0 = Cr

Then a. # a. for i < j < 3 and so a. t a. for i ? j . It follows

that the theory is non-varietal and we can use the following:

LEMMA. LSB + bounded ^varietal.

Proof. Bounded means that arities of all u) € ft are less than k

for some cardinal k . Let ft' = U ft' be as in LSB . For every 6 € ftJ
n n *

and every mapping t : k •* k choose a € ft with at* = 6 (if any).
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Collect these a to obtain a set ft.!1 . Let n "be a se t , card n > k ,

and l e t U) € ft^ . Then u) = Qf* for some / : k •+ n and 3 € ft , 3

fc-ary. Write / a s f = mt with t : k •*• k and with m : k -*• n

in jec t ive ; choose r :»-»•& with rm = 1, . Then

3i* = &t*m*r* = wr* € ft' . By the definition of ft£ , &t* = at* for some

a € ft£ . Thus to = &t*m* = ot*m* . This proves that the set U ft! u fti"
v<k

generates Q , too. Hence the theory is varietal.

III.2. FIB f SUB . Let us consider the theory

ft = {*, 0} u {a.,; i, k ordinals, k a regular cardinal i < k) ,

* binary, 0 nullary, each a.-, unary,

E : a. A x ) * ex., (x) = a . A x ) w h e n e v e r i < Q , x * x = x * 0 = 0 .

(a) Let us prove FIB . Let X be a set and & a regular

cardinal, kQ > card X* . Put ftU) = {*, 0} u {a^; i < k < kQ] . Let 4

be an algebra with underlying set X and let k be a regular cardinal,

fc - k . Then there is a cofinal set Kck such that i, j (. K implies

a., = a., . For any s < k choose i, j € K with s < i < j . Then

(b) Let us disprove SUB . Let X = 3 , 3 a cardinal. Suppose

tha t there exis ts a set U(X) as in SUB . We may assume that

fi(#) = {*, 0} u {a., ; i < k < kQ} for some k > 6 . Let

4 = \0' 1* ' ° 1 u la-ife| ' w n e r e x * y = min(x, y) for x t y ,

A A A • A
x * x = 0 = 0 , a.Ax) = x + i for fe = k , a., (x) = 0 otherwise.

Then X = 3 i s closed in A under a l l fl(X)-operations but not under

a., , a contradiction.

I I I . 3 . COH t LEG (and so CON f FIB ) i s c lear : l e t ft consist of
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a proper class of nullary symbols and E'• = 0 .

111.4. LEG f CON (and so LEG f FIB ) . Put

fl = {a.; i € Ord} , each a. unary,

E : a.a.(a;) = a (x) where m = max(i> j) .

If A is an algebra, then there is a cofinal class K of ordinals such

A A
that i, j (• K implies a. = a. . Then also for i < k < j with

"i- 0

A A A A A A
i, j € K we have a,(x) = CX.OL(X) = a.ou(x) = a.(x) . Thus there is an

A A
ordinal s = s(A) such that a. = a for all i > s . It follows easily

"V S

that the theory satisfies LEG .

To disprove CON , consider X = 3 (= {0, 1, 2}) and suppose that

there exists a set tt(X) as in CON. We may assume tt{X) = {a.; i < k]

• {<})for some k . Put A = \x, {oT.}\ where a.(l) = 2 for i > k and

a.(x) = x otherwise. Then the equivalence ~ where 0 ~ 1 but 0 ^ 2

is a congruence with respect to all Sl(X)-operations but not with respect

to CL , a contradiction.
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