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Large algebraic theories

with small algebras

Jan Reiterman

The aim of the paper is to study the interrelation between
several natural smallness conditions on an algebraic theory with
a proper class of operations. The conditions concern the
existence of sets of data determining algebras, homomorphisms,

subalgebras, and congruences.

I. Introduction and results

Let us consider an algebraic theory (Q, E) where Q is a (possibly
proper) class of finitary or infinitary operation symbols (shortly,
operations) and E is a class of equations. Denote @ the clone of
(R, E) ; thus £ is the class of all operations obtained by transfinite
recursion from the basic ones (those from Q ) and the trivial ones

(projections) by means of composition of the form w[mi; i € n) vhere w
is #n-ary and the wi's and the result have the same arity. Of course,

two operations from Q are regarded to be equal if their equality is
derivable from & . If the class of all n-ary cperations in 5 is a set

for every set 7n +then the theory is said to be varietal [4].

Algebraic theories involving a proper class of operations were
considered for the first time by triple theorists in order to include some
categories of algebraic nature; see [5] for references and historical
remarks. It turned out that triples (equivalently, varietal theories) do
not include the theory of complete lattices and the theory of complete
boolean algebras [1], [2]. That is why Linton [4] considered also non-
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varietal theories.

However, the notion of an algebraic theory seems to be too general.
Indeed, the "large" theories have been introduced to describe algebraic
categories whose objects are small by which we mean that each of them is
described by a set of data. For instance, a complete lattice on a set X
is described by means of two X-ary operations sup and inf . We suggest
that only those algebraic theories are reasonable for which the algebras

are small.

Without any restriction on the character of data describing an

algebra, the requirement in question is as follows:

LEG: the conglomerate of all (Q, E)-algebras is equipotent with

a proper class.

(LEG for legitimacy: the number of (Q, E)-algebras does not, in contrary
to a general case, exceed the cardinality of the universum we work in.]

Another, perhaps more natural condition is

FIB: for every set X , algebras whose underlying set is X are
determined by a set of operations in the sense: there is a

set Q(X) € © such that for any two (Q, E)-algebras

4= (x, {wA}) , B=(x, {wB}) we have 4 = B 1if and only

if wA = wB for every w € Q(X)

(FIB for "small fibred": we shall show that (Q, E) satisfies FIB if
and only if for every set X , algebras whose underlying set is X form a
set; see II.6.) A simple example (ITI.k) shows that the obvious

implication FIB ® LEG can not be reversed.

Unfortunately, we are not able to give an intrinsic characterization
of theories with LEG and FIB respectively. However, in [6], a
condition on an algebraic theory has been discovered which ensures FIB
and which is fulfilled by various non-varietal theories of nature (for
example, by complete lattices and complete boolean algebras). It is, as we

shall prove, actually stronger than FIB .

An algebraic theory (Q, E) 1is locally small based if

LSB: § is generated by ' < Q where ' =U Q; (Qé being
n
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the class of all n-ary operations in Q' ) such that

(i) each Qr; is a set
(ii) for every w € Q”'I and every f:m->n , wf* € Qr; ;
. y = e y E

here uf*(z,; i €n) m[xf(J), J €m)

Further conditions concerning selection of homomorphisms, subalgebras,
and congruences are as follows. In each of them, the existence of a set

Q(X) € § is required for every set X such that
HOM: a mapping f : X * Y is a homomorphism from

4= (x, {o") to B= (¥, {«®]) if and only if it is
compatible with all operations w € Q(X) ;

SUB: the set X carries a subalgebra of an algebra

B
B = (Y, {u) }) (where X < Y ) if and only if it is closed
in B under all operations w € QX) ;

CON: an equivalence on X 1is a congruence on an algebra

A
A= (X, {w }) if and only if it is a congruence with
respect to all operations w € Q(X)

THEOREM, 1SB = SUB “ HOM = FIB = CON , FIB = LEG . Nome of the
implications SUB=LSB, FIB=HOM, CON=FIB, LEG=CON, CON<®LEG, is valid.

II. Proofs

A
ILT, Let 4= (x, {«'}) be an (R, E)-algebra. Then all & with

w € ¥ are determined by &X-ary operations from § by

1S

Fla) = ()t (1)

whenever w is n-ary and o € .
11.2. 4 mapping f : X+ Y is a homomorphism from an (R, E)-algebra

A
A= ([t () toan (2, B)-algebra B= (7, {uB})) if and onty if it is
compatible with all X-ary operations from Q .

Proof. Let w € 2 be n-ary and let a € X' . If f is compatible
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with X-ary operations then fwA(a) = f(ula*)A (lX) = (uxx*)B(f) = wB(fa) .

So f 1is compatible with w , too.

I1.3. A get Xc Y carries a subalgebra of B = [Y, {wB}] if and
only if X is closed in B under all X-ary operations from § .

Proof. If w €9, o €X' , and § : X+ Y is the inclusion, then
wB(ja) = (wOL*)B(j) € X if X is closed in B under X-ary operations.
I1.4. An equivalence ~ onm a set X 1ig a congruence on an (Q, E)-

algebra A = [X, {mA}) if and only i1f it 18 a congruence with respect to
all X x X-ary operations from § .

Proof, Let ® € Q be n-ary, let a, B € X*, a(t) ~B(t) for all

t € n . We have to prove wA(a) ~ wA(B) . Define o, B : X X X+ X as
follows: o(x, y) = a(t) , B(x, y) = B(t) ir (=x, y) = (a(t), B(¢)) for

some t , alx, y) = Blz, y) = z, otherwise, where z, € X is arbitrary

but fixed. Define y : nm+> X x X by v(¢) = {a(t), B(£)) . Then
a=ay, B=By,adso «(a)= ()@ , B = (B, wy
is X X X-ary, and o(t) ~ B(t) for every t . Thus if ~ is a

congruence with respect to all X X X-ary operations, then
A,— A — A A
(wy*) (o) ~ (wy*) (B) ; that is w (&) ~w (B) .

I1.5. 1In each of the conditions FIB, SUB, HOM, CON , we may assume
that §(X) < Q(Y) whenever card X < card Y ; in particular, that Q(X)

depends on card X only.

Indeed, for every set X , Q(X) can be replaced by (n) where

n =card X and so by U Q(m) where m runs through all cardinals less
m

than or equal to n

11.6. A theory (R, E) satisfies FIB if and only if for every set
X, (R, E)-algebras whose underlying set is X form a set.
Proof. WNecessity: Obvious.

Sufficiency: Let §X be the class of all X-ary operations in .

For w, 0 € QX and for every algebra A the underlying set of which is X ,
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A A =
put w~, 6 if and only if w =0 . Then QX/NA is a set. As the
algebras A in question form a set, also EX/N is a set where ~ 1is the

intersection of all ~4 - So there exists a set (X) c Q such that for

every w € §X there is o € Q(X) such that w~ o ; that is, mA = GA

for all A in question. Now FIB follows by II.l.

11.7, 1SB ®SUB is proved in [6]. FIB = LEG is obvious.

I1.8. SUB = FIB follows by the observation that for 4 = (X, {w?}) ,

B= (x, {wB}) , we have A = B if and only if the diagonal in X x X

carries a subalgebra of A x B .
I1.9. FIB = coN .

Proof. We use II.6 and proceed quite analogously as in the proof of
II.6 to obtain a set Q(X) of X x X-ary operations such that for each

. A
X x X-ary operation w there is o € Q(X) such that w = A for a1l

algebras with underlying set X . Then we apply II.4.
IT1.10. suB = HOM .

Proof, Suppose SUB . Then also FIB and CON by II.8 and II.9.
Suppose II.5 and put

UX) = Q N(}() v QSUB(X) uQ

co (x)

FIB

where Qco (X) stands for Q(X) of CON and so on. Let f, X, ¥, A, B

N
be as in HOM . Let f be compatible with all w € Q(X) . Then the
equivalence "xr ~y if and only on f(x) = f(y) " is a congruence with

respect to all w € Q(X) . As Q(X)>Q, (X) , ~ is a congruence on 4

CON
. Al
and f is a homomorphism from A4 to some algebra A' = (f(X), {w })
!
B
where w is a restriction of w for every w € X) . It follows alsc

that f(X) is closed in B under all w € Q{X) . As

QX)) 2 QSUB(X) =) QSUB()“(X)) , flX) carries a subalgebra B of B . We
A' B

have w = w for all w € Q(X) ,and so A' = B' , because

QX)) o QFIB(X) o) QFIB[f(X)) . Thus f 1is a homomorphism from 4 to B .
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IT.11. HOM = SUB .

Proof. Write  as Q =1U Qa wvhere a runs through ordinals, each
a

Qa is a set, and Qa (o QB whenever o < B . Let Ea consist of all
equations between operations derived from Qa which hold in every (9, E)-
algebra. Suppose (2, E) does not fulfil SUB . Then there exists a set
X such that for every a there is an (Q, E)-algebra Aa = [Ya’ {wAa}]
such that X is closed in Aa under all Qa—operations - and thus

carries an (Q

2 Ea) -algebra Ba - but X does not carry a subalgebra of

Aa . As for every o , all (Q

- E'a) -algebras whose underlying set is X

form a set, we can, using induction, redefine the family {Aa} in such a

Ba BB

way that BB extends Ba whenever a = f8 (in the sense that w = = w
for all w € Qa) . Then there is an (f, E)-algebra B which extends all
Ba . Now, suppose HOM . Then we may assume that Q(X) of HOM equals
some Qa . But the inclusion X -+ Ya is not a homomorphism from B to

Aa although it is compatible with all Qa-operations, a contradiction.

I11. Counterexamples

I1I1.1. SUB? ISB . The simplest counterexample is provided by a non-
LSB theory which degenerates in the sense that it has only trivial models.
For instance, the theory in [3, p. 558] works. But our ambition is to

present a counterexample which admits no degeneration: if w, o € Q and

A A
w =0 for every algebra A then w =0 . Put

Q= {ai; i € ora} v {*, 0} , @, unary, * binary, O nullary,
E . a; (z) * aj(x) = qj(x) for 1 <j , x*xx =0%*z2=0.

(a) Let us prove SUB . Let X be a set and k an ordinal whose

cofinal is bigger than card X* . Put Qx) = {ai; 2 <k}u {*, 0} . Let

B
B=(Y,{w}) . Let X< Y be closed under all Q(X)-operations in B .
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o B B
Then there exists a cofinal set X in k such that ai/X = aj/X for

i, J € K where /X means the restriction to X . Let <, j € X and

B B

B B B B .
x € X . Then aj(x) = ai(x) * aj(x) = ai(x) * ai(:c) =0~ . Thus, if

B
s >k , then af(x) = a?(x) * af(:c) = OB * af(x) =0 and so X 1is closed
in B under all operations.
(b) The theory does not degenerate. Indeed, let w, 0 € £ and let

mA OA for every algebra A . There exists an ordinal k such that

w, 0 € Ql » Where Ql is the clone of [Ql, El) where

Ql = {ai; 2 < k} u {*, 0} ,and El consists of equations between ﬁi-
operations which can be derived from L . Let A be the (Ql, El]-free
algebra over n where n is the arity of w, 6 . The point is that 4

can be made an (R, E)-algebra by putting ai(x) =0 for % =k and for

A A
every £ . Thus W =0 and so the equation w = 0 can be derived

within (Ql, El)

(¢) The theory is not LSB . Indeed, consider algebras

A
A A
AB = (B, {a B}) v {*#", 0"} where B runs through cardinals and for every
B and x,y €8 ,

A

A
ais(x) =z +1+1 for 1 <B, aie(x) = 0 otherwise,
A :
z % y =max(x, y) if 0#x#y,
x A x =0 A xr=0= OA
e, ‘8
Then o # aj for 71 < j < B and so o # aj for 4 # 4 . It follows

that the theory is non-varietal and we can use the following:
LEMMA. 1SB + bounded = varietal.

Proof. Bounded means that arities of all w € 2 are less than k

for some cardinal k . Let ' =U Qé be as in ILSB . For every § ¢ Qi
n

and every mapping t : k >k choose o € Q with ot* = § (if any).
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Collect these O to obtain a set Q;(' . Let n beaset, card n >k,

and let w € Qé . Then w= Bff for some f: k—+n and B €EQ , B
k-ary. Write f as f=mt with t : k+k and with m: k +n

injective; choose » : m > k with rm= 1, - Then
Bt* = Btimirt = wrt € Qé . By the definition of ! , Bt* = gt* for some
o € Q;{' . Thus w = Bt*m* = ot*m* . This proves that the set U Qz’ v Q;(’

i<k

generates £ , too. Hence the theory is varietal.
I111.2, FIB 7 SUB . Let us consider the theory

2=1{* 0} v {a ©, k ordinals, k a regular cardinal % < k} ,

ik

* binary, 0 nullary, each aik unary,
. . * . = . L < 7 = = .
E ;oo (2) Oth(x) azk(x) whenever 2 < j , x *x=x *0=0

(a) Let us prove FIB . Let X be a set and ko a regular

cardinal, ko > card X¥ . Put Q(x) = {*, 0} v {aik;

be an algebra with underlying set X and let k be a regular cardinal,

i<k<ko}. Let 4

k = kO . Then there is a cofinal set XK C k such that %, j € X implies
A A .. R . .
o,, = 0. . For any 8 <k choose %, J € K with 8 <7 < j . Then
1k Jk
A A A A
ask(:z:) = onsk(x) * [aik(x) * ajk(x)]
A 4 4 _ 4 A _
= ask(x) * [dik(x) * aik(x)) = aik(x) * 0 = 0“1 .

(b) Let us disprove SUB . Let X =8, B a cardinal. Suppose
that there exists a set Q(X) as in SUB . We may assume that
Q(x) = {*, 0} u {aik; 1 <k < ko} for some ko >R . Let

A= [kos {*Aa OA} v {aﬁk}) , where z ¥ y = min{z, y) for x#y ,

A A A R A

* = = = = = i
x x =0 o, aik(x) x +1 for k ko s aik(x) 0 otherwise.
Then X =B 1is closed in 4 under all Q(X)-operations but not under

o a contradiction.

. b4
Lko

ITI.3. cow ? LEG (and so CON ? FIB ) is clear: let £ consist of
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a proper class of nullary symbols and E=9,.
II1.4, LEG 7? CON (and so LEG # FIB ). Put

Q= {ai; i €0rd} , each @, unary,
E . aiaj(x) = qﬂ(x) where m = max(Z, J) .

If A is an algebra, then there is a cofinal class X of ordinals such

that %2, j € K implies dg = uj . Then also for %© <k < j with

A, AA, . _ AA ., _ A .
i, J € K we have ak(x) = aiak(x) = juk(x) = aj(x) . Thus there is an
, A _ A . .
ordinal s = s(4) such that o, =d forall ¢ >s . It follows easily
that the theory satisfies LEG .
To disprove CON , consider X = 3 (= {0, 1, 2}) and suppose that
there exists a set X) as in CON. We may assume Q(X) = {ai; i < k}

for some k . Put 4 = [X, {aﬁ}] where aﬁ(l) =2 for ©Z >k and

aé(x) = £ otherwise. Then the equivalence ~ where O~ 1 but 0+ 2

is a congruence with respect to all §(X)-operations but not with respect

to ak , a contradiction.
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