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Abstract. We consider a linear integrodifferential equation of second order in a
Hilbert space and show that the solution tends to zero polynomially if the decay of the
convolution kernel is polynomial. Both polynomials are of the same order.
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1. Introduction. In this paper, we investigate the following integrodifferential
equation

ü(t) = −Au(t) +
∫ t

0
g(t − s)Au(s) ds + f (t),

u(0) = x, u̇(0) = y (1)

in a Hilbert space H. We generalize the result by Rivera and Gomez [1] on polynomial
decay of the solutions. As in [1], A : D(A) → H is a self-adjoint operator. Our
assumptions on g are as follows:

(g1) g(t) ∈ C3([0,+∞)), g(t) > 0 for all t ≥ 0.
(g2) There exists c0 > 0 such that −c0g(t) ≤ g′(t) for all t ≥ 0.
(g3) There exist c1 > 0 and p > 1 such that g′(t) ≤ −c1g1+ 1

p (t) for all t ≥ 0.
(g4) There exists c2 > 0 such that |g′′(t)| ≤ c2g(t) for all t ≥ 0.
(g5) G := ∫ ∞

0 g(τ )dτ < 1.
It follows from (g3) and continuity of g in 0 that g(t) ≤ C(1 + t)−p for some C > 0.

Unlike Rivera and Gomez, we do not need p > 2 and our assumption (g2) is also weak.
In fact, in [1] one assumes −c0g(t)1+ 1

p ≤ g′(t) which means that the behaviour of g in
+∞ is exactly the same as t−p. This excludes kernels like g(s) = (1 + t)−p ln(1 + t). In
our case, the decay of g is anything between polynomial and exponential.

Throughout this paper, c and C are general positive constants independent of t;
their values vary from expression to expression.

2. Main result. We introduce an energy functional and formulate the main result.
Define

E(t, v) := 1
2

(‖vt‖2 + (1 − G(t))
∥∥A1/2v

∥∥2 + g ◦ A1/2v
)
,
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where

(g ◦ k)(t) :=
∫ t

0
g(t − s)‖k(s) − k(t)‖2 ds

and

G(t) :=
∫ t

0
g(s) ds.

THEOREM 2.1. Let g satisfy (g1)–(g5) and A be a self-adjoint operator (such that
D(Ar) ↪→ D(As) is compact for r > s). Let x ∈ D(A), y ∈ D(A1/2) and f ∈ C1(�+, H)
such that

‖f (t)‖2 ≤ cf

(1 + t)p

for a positive constant cf . Then there exists CE > 0 such that the solution u of (1) satisfies

E(t, u) ≤ CEE(0, u)
1

(1 + t)p
. (2)

First of all, according to [2], there exists a global solution u ∈ C2(�+, H) ∩
C1(�+, D(A1/2)) ∩ C(�+, D(A)) of (1) whenever x ∈ D(A), y ∈ D(A1/2). From now
on, u is the solution of (1). Let us start proving Theorem 2.1. The following lemmas
will be helpful.

LEMMA 2.2. Denote

w(t) := u(t) − (g ∗ u)(t). (3)

Then there exist K, k > 0, such that the following estimates hold for all t ∈ �+ (the values
of k and K in different lines may be different).

‖w‖2 ≤ K(‖u‖2 + g ◦ u),

‖wt‖2 ≤ K(‖ut‖2 + g(t)‖u‖2 + g ◦ u),∥∥A1/2w
∥∥2 ≤ K

(∥∥A1/2u
∥∥2 + g ◦ A1/2u

)
,

‖wt‖2 ≥ k‖ut‖2 − K(g(t)‖u‖2 + g ◦ u),∥∥A1/2w
∥∥2 ≥ k

(
(1 − G(t))

∥∥A1/2u
∥∥2) − Kg ◦ A1/2u.

Proof. To prove the first estimate we multiply (3) by w

‖w(t)‖2 = (u(t), w(t)) − ((g ∗ u)(t), w(t)). (4)

For every c > 0 there exists C > 0 such that

(u, w) ≤ C‖u‖2 + c‖w‖2 (5)

and∣∣∣∣
∫ t

0
g(t − s)(u(s), w(t)) ds

∣∣∣∣ ≤
∣∣∣∣
∫ t

0
g(t − s)(u(s) − u(t), w(t)) ds

∣∣∣∣
+

∣∣∣∣
∫ t

0
g(t − s)(u(t), w(t)) ds

∣∣∣∣
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≤
∫ t

0
g(t − s)(C‖u(s) − u(t)‖2 + c‖w(t)‖2) ds

+
∫ t

0
g(t − s)(C‖u(t)‖2 + c‖w(t)‖2) ds

≤ C(g ◦ u)(t) + cG(t)‖w(t)‖2 + CG(t)‖u(t)‖2 + cG(t)‖w(t)‖2.

Inserting these estimates into (4) we obtain (G(t) < 1 by (g5))

(1 − 3c)‖w(t)‖2 ≤ 2C‖u(t)‖2 + C(g ◦ u)(t).

Taking c small enough we have proved the first estimate with K := 2C/(1 − 3c).
To show the second estimate, we multiply the derivative of (3) by wt

‖wt(t)‖2 = (ut(t), wt(t)) − (∂t(g ∗ u)(t), wt(t)). (6)

The first term on the right-hand side is estimated as in (5) and the second term can be
rewritten as

g(0)(u(t), wt(t)) +
∫ t

0
g′(t − s)(u(s) − u(t), wt(t)) ds +

∫ t

0
g′(t − s)(u(t), wt(t)) ds

= g(t)(u(t), wt(t)) +
∫ t

0
g′(t − s)(u(s) − u(t), wt(t)) ds.

According to (g2), the integral term can be estimated by

c0(C(g ◦ u)(t) + cG(t)‖w(t)‖2).

Inserting the estimates into (6) we obtain

(1 − c − g(t)c − c0c)‖wt‖2 ≤ C‖ut(t)‖2 + Cg(t)‖u(t)‖2 + c0Cg ◦ u(t),

and taking c small enough we obtain the second estimate with K := C(1 + c0)/(1 −
c − cg(0) − cc0) (g is decreasing).

By the same technique we obtain the other three estimates. The third estimate
follows by applying A to (3) and multiplying by w. To show the fourth and fifth
estimates we differentiate (3), resp. apply A to (3), and then multiply by ut, resp. u. In
this proof we have applied assumptions (g1), (g2) and (g5). �

It is not important in Lemma 2.2 that u is the solution of (1). In fact, the estimates
hold for all u ∈ C(�+, D(A)) ∩ C1(�+, D(A1/2)) and the constants are independent
of u.

Define Ẽ by

Ẽ(t) :=
(

‖wt‖2 + ∥∥A1/2w
∥∥2 + g(0)(w,wt) + g(0)

2
‖w‖2

)
.

It follows from Lemma 2.2, Cauchy–Schwarz inequality and ‖u‖ ≤ ‖A1/2u‖ that

c
(‖ut‖2 + ∥∥A1/2u

∥∥2) − C
(
g ◦ A1/2u + ‖u‖2 + g ◦ u

)
≤ Ẽ(t) ≤ C

(‖ut‖2 + ∥∥A1/2u
∥∥2 + g ◦ A1/2u

)
(7)
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for some c, C > 0. Moreover, the derivatives of E(t, u) and Ẽ(t) satisfy the following
estimates.

LEMMA 2.3. It holds that

d
dt

E(t, u) = −1
2

g(t)
∥∥A1/2u

∥∥2 + 1
2

g′ ◦ A1/2u + (f, ut) (8)

and for every δ > 0 small enough there exists Cδ > 0 such that

d
dt

Ẽ(t, u) ≤ −
(

g(0)
2

− δ

) (‖wt‖2 + ∥∥A1/2w
∥∥2)

+ Cδ(g(t)‖u‖2 + g ◦ u) +
(

f, wt + g(0)
2

w

)
. (9)

Both parts of this lemma are proved in [1]. The equality (8) follows from
multiplicating (1) by ut and some computation; the inequality (9) can be proved in
the same way as Lemma 3.2 in [1]. Assumptions (g1), (g2), (g4) and (g5) are applied.

LEMMA 2.4. Let p > 1 and q ≥ 0. Assume that g(t) ≤ C1(1 + t)−p and ‖k2(t)‖ ≤
C2(1 + t)−q for some C1, C2 > 0 and all t ≥ 0. If 0 ≤ q ≤ 1, then for every 1 > r >

(1 − q)/p there exists K > 0 such that

g ◦ k ≤ K
(
g1+ 1

p ◦ k
) (1−r)p

1+(1−r)p for all t ≥ 0.

If q > 1, then there exists K > 0 such that

g ◦ k ≤ K
(
g1+ 1

p ◦ k
) p

1+p for all t ≥ 0.

Proof. By Hölder inequality we have for 1 < a < +∞

(g ◦ k)(t) =
∫ t

0
g

1+ 1
p

a (t − s)‖k(s) − k(t)‖ 1
a g(t − s)1− 1+ 1

p
a (t − s)‖k(s) − k(t)‖1− 1

a ds

≤
(∫ t

0

(
g

1+ 1
p

a (t − s)‖k(s) − k(t)‖ 2
a

)a

ds
) 1

a

×
(∫ t

0

(
g1− 1+ 1

p
a (t − s)‖k(s) − k(t)‖2− 2

a

) a
a−1

ds

)1− 1
a

=
(∫ t

0
g1+ 1

p (t − s)‖k(s) − k(t)‖2
) 1

a
(∫ t

0
g

a−1− 1
p

a−1 (t − s)‖k(s) − k(t)‖2 ds
)1− 1

a

.

(10)

Here the first integral on the right-hand side is exactly g1+ 1
p ◦ k, so it remains to show

that the second integral is bounded by a constant independent of t for an appro-
priate a.

Denote

r :=
a − 1 − 1

p

a − 1
.
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Then r ∈ (−∞, 1). Since ‖k(s) − k(t)‖2 ≤ 2(‖k(s)‖2 + ‖k(t)‖2), we can split the last
integral in (10) into sum of two terms.

2
∫ t

0
gr(t − s)‖k(s)‖2 ds + 2

∫ t

0
gra − 1(t − s)‖k(t)‖2 ds. (11)

Let 0 < q ≤ 1. Then the first term in (11) is estimated as follows.∫ t

0
gr(t − s)‖k(s)‖2 ds

≤ Cr
1C2

∫ t

0
(1 + t − s)−pr(1 + s)−q ds

≤ Cr
1C2

(∫ t

0
((1 + s)−q)

1+ε
q ds

) q
1+ε

(∫ t

0
((1 + t − s)−pr)

1+ε
1+ε−q ds

)1− q
1+ε

≤ C,

provided

pr
1 + ε

1 + ε − q
> 1, i.e., r >

1 − q
p

since ε > 0 is arbitrary. For the second term in (11), it holds∫ t

0
gr(t − s)‖k(t)‖2 ds ≤ C1C2(1 + t)−q

∫ t

0
(1 + t − s)−pr ds ≤ C(1 + t)−q−pr+1.

This is bounded if

1 − q − pr ≤ 0, i.e., r ≥ 1 − q
p

.

Hence, if 1 > r > (1 − q)/p we have

g ◦ k ≤ K
(
g1+ 1

p ◦ k
) 1

a = K
(
g1+ 1

p ◦ k
) (1−r)p

1+(1−r)p .

If q = 0, then the first term in (11) can be estimated in the same way as the second
term. If q > 1, then the second integral in (10) is estimated by

2g(0)
(∫ t

0
‖k(s)‖2 ds + t‖k(t)‖2

)
≤ 2g(0)C̃(1 + t)1−q ≤ K,

provided a ≥ 1 + 1
p . The assertion for q > 1 follows. �

LEMMA 2.5. Let p > 1 and k > 0 such that ‖f (t)‖2 ≤ k(1 + t)−p−1 and g ≤ k(1 +
t)−p. Let 1 ≥ q ≥ 0 such that ‖A1/2u(t)‖2 ≤ k(1 + t)−q. Then ‖A1/2u(t)‖ ≤ K(1 + t)−q̃ for
some K > 0 and q̃ = q + ε, where ε > 0 is small enough, depending on p but independent
of q.

Proof. By the previous Lemma we have

g ◦ A1/2u(t) ≤ C
(
g1+ 1

p ◦ A1/2u(t)
) (1−r)p

1+(1−r)p (12)

for all 1 > r > (1 − q)/p. Take L(t) := νE(t, u) + Ẽ(t) for ν > 0 large enough. The
following estimate follows from Lemma 2.3 by applying Cauchy–Schwarz inequality
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to the terms containing f , assumption (g3) to the term containing g′ and Lemma 2.2
to the terms containing w.

d
dt

L(t) ≤ ν

(
−1

2
g(t)

∥∥A1/2u(t)
∥∥2 − 1

2
g1+ 1

p ◦ A1/2u(t)
)

− C
(
(1 − G(t))

∥∥A1/2u(t)
∥∥2

.

+ (1 − δ)‖ut‖2) + g(t)‖u(t)‖2 + Cδ

(
g ◦ u + g ◦ A1/2u

) + νCδ‖f ‖2.

Here 0 < δ < 1 and C, Cδ > 0. By ‖u(t)‖ ≤ c‖A1/2u(t)‖ and (12) we obtain for ν large
enough

d
dt

L(t) ≤ −C
(
(1 − G(t))

∥∥A1/2u(t)
∥∥2 + ‖ut‖2) − C

(
g ◦ A1/2u(t)

) 1+(1−r)p
(1−r)p + νCδ‖f ‖2

≤ −C
(
(1 − G(t))

∥∥A1/2u(t)
∥∥2 + ‖ut‖2 + g ◦ A1/2u(t)

) 1+(1−r)p
(1−r)p + νCδ‖f ‖2.

Since Ẽ(t) ≤ cE(t, u), we obtain

d
dt

L(t) ≤ −C(L(t))
1+(1−r)p

(1−r)p + νCδ‖f ‖2.

Hence,

L(t) ≤ CL(0)(1 + t)(1−r)p and also
∥∥A1/2u(t)

∥∥2 ≤ CL(0)(1 + t)(1−r)p. (13)

Let 0 < ε̃ < 1 − 1/p. Set r := (1 − q)/p + ε̃ and q̃ := (1 − r)p. Then 1 > r > (1 − q)/p
and q̃ = q + (p − 1 − ε̃p) > q. We have proved the assertion with q̃ = q + ε, where
ε = p − 1 − ε̃p > 0 is independent of q. �

LEMMA 2.6. There exists C > 0 such that ‖A1/2u(t)‖ ≤ C for all t ≥ 0.

Proof. According to Theorem 5.1 in [2], the solution v of the homogeneous
equation

ü(t) = −Au(t) −
∫ t

0
g(t − s)Au(s) ds,

u(0) = x, u̇(0) = y,

satisfies v, v̇ ∈ L2(�+, X). Integrating (1) we obtain

u̇(t) = −
∫ t

0
G̃(t − s)Au(s) ds + F(t) + y,

where G̃(·) is the primitive function of g with G(0) = 1 and F(t) := ∫ t
0 f (s) ds. It follows

that the solution of the inhomogeneous equation is given by

u(t) := v(t) +
∫ t

0
(F(t − s) + y)v(s) ds.

Hence,

u̇(t) = v̇(t) + (F(0) + y)v(t) +
∫ t

0
f (t − s)v(s).
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Since v, v̇ ∈ L2 and f ∈ L1, we obtain that u̇ ∈ L2. Now it follows from (8) that

E(t, u) ≤ E(0, u) +
∫ t

0
‖f (s)‖ · ‖u̇(s)‖ ds ≤ E(0, u) + ‖f ‖2‖u̇‖2.

Hence, ‖A1/2u‖2 is bounded. �
We will finish the proof of Theorem 2.1. Since ‖A1/2u(t)‖ is bounded, i.e.,

assumptions of Lemma 2.5 hold, we obtain∥∥A1/2u(t)
∥∥ ≤ c(1 + t)−q

for some q > 1 by applying Lemma 2.5 finitely many times. Then by Lemma 2.4 we
obtain (12) with r = 0 and the proof of Lemma 2.5 yields (see (13))

L(t) ≤ CL(0)(1 + t)p.

Estimating Ẽ according to (7), we obtain νE(t, u) + Ẽ(t) ≥ (ν − C)E(t, u). Hence, (2)
holds.
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