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Abstract. We use Arkhipov’s twisting functors to show that the universal
enveloping algebra of a semi-simple complex finite-dimensional Lie algebra surjects
onto the space of ad-finite endomorphisms of the simple highest weight module L(λ),
whose highest weight is associated (in the natural way) with a subset of simple roots
and a simple root in this subset. This is a new step towards a complete answer to a
classical question of Kostant. We also show how one can use the twisting functors to
reprove the classical results related to this question.
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1. Introduction and notation. Let g be a complex semi-simple finite-dimensional
Lie algebra with a fixed triangular decomposition, g = n− ⊕ h ⊕ n+, and U(g) be
its universal enveloping algebra. Then for every two g-modules M and N the space
Hom�(M, N) can be viewed as a U(g)-bimodule in the natural way. This bimodule then
also becomes a g-module under the adjoint action. The bimodule Hom�(M, N) has a
sub-bimodule, usually denoted by L (M, N) (see for example [14, Kapitel 6]), which
consists of all elements, on which the adjoint action of U(g) is locally finite. Since U(g)
itself consists of locally finite elements under the adjoint action, it naturally maps to
L (M, M) for every g-module M, and the kernel of this map is the annihilator Ann(M)
of M in U(g). The classical problem of Kostant (see for example [16]) is formulated in
the following way.

For which simple g-modules M is the natural injection

U(g)/Ann(M) ↪→ L (M, M)

surjective?

The complete answer to this problem is not known even for simple highest weight
modules. However, it is known that there are simple highest weight modules for which
the answer is negative (see for example [16, 9.5]). There is also a classical class of
simple highest weight modules, for which the answer is positive. It consists of all simple
highest weight modules, whose highest weights are obtained from the antidominant
one by applying the longest element of some parabolic subgroup of the Weyl group;
see [11, 16, 14].

In the present paper we propose an approach to this problem that uses Arkhipov’s
twisting functors (see [2]) and is based on the properties of these functors obtained in
[3]. In [18] it was shown that Arkhipov’s functors are adjoint to Joseph’s completion
functors (see [15]), which suggests a close connection to Kostant’s problem. We base
our arguments mostly on the results of [3] and also use some results from [17, 18, 22].
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The main properties of the twisting functors that we use are the combinatorics of
their action on Verma modules and the fact that they define a self-equivalence of the
bounded derived category Db(O) of the BGG-category O. All this can be found in [3].

Let R be the root system of g with basis B that corresponds to the triangular
decomposition above. Further let W denote the Weyl group of g with identity element
e. We denote by < the Bruhat order on W . Then W acts on h∗ both in the natural
way (i.e. λ �→ w(λ) for λ ∈ h∗ and w ∈ W ) and via the dot action defined as follows:
w · λ = w(λ + ρ) − ρ, λ ∈ h∗, w ∈ W , where ρ is the half of the sum of all positive
roots. For α ∈ R denote by sα the corresponding reflection and for a reflection s ∈ W
we let αs ∈ R be such that s = sαs . Fix some Weyl-Chevalley basis in g, say

{Xα : α ∈ R} ∪ {Hβ : β ∈ B},
and define Hα, α ∈ R, in the usual way.

For λ ∈ h∗ the set Rλ = {α ∈ R : λ(Hα) ∈ �} is a root system and the triangular
decomposition of g induces a uniquely defined basis Bλ of Rλ. Let Wλ be the Weyl
group of Rλ. We call λ relatively dominant provided that λ is a dominant element in
{w · λ : w ∈ Wλ} and regular provided that the stabilizer of λ in Wλ with respect to
the dot action is trivial.

Throughout the paper we fix a relatively dominant and regular λ ∈ h∗.

For w ∈ Wλ we denote by �(w) the Verma module with the highest weight w · λ,
and by L(w) the unique simple quotient of �(w); see [8, Chapter 7]. For S ⊂ Bλ we
denote by W S

λ the subgroup of Wλ, generated by sα, α ∈ S. Denote by wS
λ the longest

element in W S
λ (in particular, w

Bλ

λ is the longest element in Wλ). The main result of the
present paper is the following statement.

THEOREM 1. Let S ⊂ Bλ, α ∈ S, and set w = sαwS
λw

Bλ

λ . Then the canonical inclusion

U(g)/Ann(L(w)) ↪→ L (L(w), L(w))

is surjective.

The paper is organized as follows. In Section 2 we collect all necessary preliminaries
on the category O and Arkhipov’s twisting functors. In Section 3 we show how one can
apply the twisting functors to obtain the classical results related to Kostant’s problem.
In principle if one takes into account the relation between the twisting functors and
Joseph’s completion functors, obtained in [18], our approach here is rather similar to
the original approach. However, here it is formulated in a shorter way. In Section 4 we
prove Theorem 1 in the case S = Bλ. This is then used in Section 5 to prove Theorem 1
in the general case. In Section 6 we present an application of Theorem 1 and answer
Kostant’s question for some simple α-stratified modules.

2. Preliminaries about the category O. Let O denote the BGG-category O,
associated with the triangular decomposition of g, fixed above. See [5]. Let � : O → O
be the classical duality on O; that is a contravariant exact involutive equivalence,
preserving the isomorphism classes of simple module; see [13, Section 5]. Let Oλ

denote the indecomposable block of O, whose simple modules have the form L(w),
w ∈ Wλ. Denote further by P(w) the indecomposable projective cover of L(w) (see
[5]) and by θw the indecomposable projective functor on Oλ, uniquely determined by
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the property θw�(e) ∼= P(w); see [4, I.3]. Then {θw : w ∈ Wλ} are exactly the direct
summands of the composition of V⊗− followed by the projection from O to Oλ, if we
let V run through all the finite-dimensional g-modules.

For w ∈ Wλ set ∇(w) = �(w)� and denote by Fλ(�) the full subcategory of Oλ,
which consists of all modules, having a filtration, whose subquotients are isomorphic
to Verma modules. Set Fλ(∇) = Fλ(�)�.

Let Db(Oλ) denote the bounded derived category of Oλ. For a right or a left exact
functor F on Oλ we denote by LF and RF the corresponding left and right derived
functors respectively. For i ≥ 0 we denote by LiF and RiF the corresponding i-th
cohomology functors. We denote by [1] the shifting functor on Db(Oλ) such that for
every complex X • ∈ Db(Oλ) and for all i ∈ � we have X [1]i = X i+1. We consider Oλ as
a subcategory of Db(Oλ) via the classical embedding in degree zero.

Via the equivalence from [23] for w ∈ Wλ we can define on Oλ Arkhipov’s twisting
functor Tw. See [2, 3, 18]. Denote by Gw its right adjoint (which is isomorphic, by [18,
Corollary 6], to the corresponding Joseph’s completion functor from [15], and to the
functor �Tw�, see [3, Theorem 4.1]). In this paper we shall use the following properties
of Tw. (The functor Gw has dual properties.)

(I) For every w, x ∈ Wλ we have Twθx ∼= θxTw. See [3, Theorem 3.2].
(II) For every w, x ∈ Wλ and i > 0 we haveLiTw�(x) = 0. See [3, Theorem 2.2].

(III) For every w ∈ Wλ the functor LTw is an autoequivalence of Db(Oλ) with
inverse functor RGw−1 . See [3, Corollary 4.2].

(IV) For every w ∈ Wλ and every reduced decomposition, w = s1 . . . sk, we have
Tw

∼= Ts1 · · · · · Tsk . See [3, Lemma 2.1] and [18, Corollary 11].
(V) For every x ∈ Wλ and every simple reflection s ∈ Wλ such that sx > x we

have Ts�(x) ∼= �(sx). See [1, Lemma 6.2].
(VI) For every x ∈ Wλ and every simple reflection s ∈ Wλ we have

Ts∇(x) ∼=
{∇(x) (x < sx),

∇(sx) (x > sx).

See [3, Theorem 2.3].
(VII) For every x ∈ Wλ and every simple reflection s ∈ Wλ we have that TsL(x) =

0 if and only if sx < x. See [3, Section 6].
(VIII) For every simple reflection s ∈ Wλ and for every M ∈ Oλ the module

L1Ts(M) is the largest s-finite submodule of M. See [22, Theorem 1] and
[17, Proposition 6].

3. The classical results. We start with some preparation, during which we use the
twisting functors to obtain several classical results related to Kostant’s problem. We
base our approach on two classical statements. The first one, which can be found in
[14, 6.8], is a very abstract property of L (M, N).

PROPOSITION 2. Let M, N be g-modules and V be a finite-dimensional g-module.
Then there are canonical isomorphisms

Homg(V,L (M, N)) ∼= Homg(M ⊗ V, N) ∼= Homg(M, N ⊗ V∗), (1)

where L (M, N) is considered as a g-module under the adjoint action.
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The second statement is the classical positive answer to Kostant’s problem for
projective Verma modules. In [14, 6.9] it is shown that Proposition 3 holds.

PROPOSITION 3. For every submodule M ⊂ �(e) the canonical inclusion

U(g)/Ann(�(e)/M) ↪→ L (�(e)/M,�(e)/M)

is surjective, in particular, the canonical inclusion

U(g)/Ann(�(e)) ↪→ L (�(e),�(e))

is surjective.

Using the twisting functors we obtain the following result.

COROLLARY 4. ([16, Corollary 6.4], [14, 7.25]) For every w ∈ Wλ the canonical
inclusion

U(g)/Ann(�(w)) ↪→ L (�(w),�(w))

is surjective.

Proof. We have the obvious map L (�(w),�(w)) → L (�(e),�(e)) induced by
the inclusion �(w) ⊂ �(e). Since Ann(�(w)) = Ann(�(e)) by [8, Theorem 8.4.4], it
is enough to show that for every simple finite-dimensional g-module V we have the
equality

dim Homg(V,L (�(w),�(w))) = dim Homg(V,L (�(e),�(e))).

For this we compute

Homg(V,L (�(w),�(w))) = (1)
Homg(�(w),�(w) ⊗ V∗) = (IV) and (V)
Homg(Tw�(e), Tw(�(e)) ⊗ V∗) = (I)
Homg(Tw�(e), Tw(�(e) ⊗ V∗)) =
HomDb(Oλ)(Tw�(e), Tw(�(e) ⊗ V∗)) = (II)
HomDb(Oλ)(LTw�(e),LTw(�(e) ⊗ V∗)) = (III)
HomDb(Oλ)(�(e),�(e) ⊗ V∗) =
Homg(�(e),�(e) ⊗ V∗) = (1)
Homg(V,L (�(e),�(e))).

This completes the proof. �
PROPOSITION 5. Let w ∈ Wλ and

0 → X → �(w) → Y → 0 (2)

be a short exact sequence such that for every finite-dimensional g-module V we have

Ext1
O(�(w), X ⊗ V ) = 0. (3)

Then the canonical inclusion

U(g)/Ann(Y ) ↪→ L (Y, Y )

is surjective.
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Proof. Applying Homg(�(w), − ⊗ V ) to (2) and using (3) yields the short exact
sequence

0 → Homg(�(w), X ⊗ V ) → Homg(�(w),�(w) ⊗ V ) →
→ Homg(�(w), Y ⊗ V ) → 0,

which implies that L (�(w),�(w)) surjects onto L (�(w), Y ), where the vector space
L (Y, Y ) is a subspace. Since U(g) surjects onto L (�(w),�(w)), by Corollary 4, the
statement follows. �

Now we can prove the classical result of Gabber and Joseph.

THEOREM 6. ([11, Theorem 4.4], [14, 7.32]) Let S ⊂ Bλ and w = wS
λw

Bλ

λ . Then the
canonical inclusion

U(g)/Ann(L(w)) ↪→ L (L(w), L(w))

is surjective.

Proof. Let V be a finite-dimensional g-module. Consider the short exact sequence

0 → K(w) → �(w) → L(w) → 0, (4)

where K(w) is just the kernel of the canonical projection from �(w) to L(w). Then we
have

Ext1
O(�(w), K(w) ⊗ V ) =

HomDb(O)(�(w), K(w) ⊗ V [1]) = (duals of (IV) and (V)
HomDb(O)

(
GwS

λ
�

(
w

Bλ

λ

)
, K(w) ⊗ V [1]

) = (− ⊗ V is exact
and preserves projectives)

HomDb(O)
(
V∗ ⊗ GwS

λ
�

(
w

Bλ

λ

)
, K(w)[1]

) = (dual of (I))
HomDb(O)

(
GwS

λ

(
V∗ ⊗ �

(
w

Bλ

λ

))
, K(w)[1]

) = (�(wBλ

λ ) = ∇(wBλ

λ ))
HomDb(O)

(
GwS

λ

(
V∗ ⊗ ∇(

w
Bλ

λ

))
, K(w)[1]

) = (dual of (II))
HomDb(O)

(
RGwS

λ

(
V∗ ⊗ ∇(

w
Bλ

λ

))
, K(w)[1]

) = (III)
HomDb(O)

(
V∗ ⊗ ∇(

w
Bλ

λ

)
,LTwS

λ
K(w)[1]

)
.

Let us calculate LTwS
λ
K(w). Because of our choice of wS

λ we can use Proposition 11,
which will be proved in Section 5 (alternatively one can use [11, Section 2]), and [6]
to get that the module K(w) admits a BGG-type resolution, which has the following
form:

0 → Xk → Xk−1 → · · · → X1 → X0 → K(w) → 0,

where every Xi is a direct sum of some �(xw
Bλ

λ ) with x ∈ W S
λ , x = wS

λ . Let X • denote
the corresponding complex in Db(Oλ). Using (II) we have

LTwS
λ
K(w) = LTwS

λ
X • = TwS

λ
X •.
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Now for every x ∈ W S
λ , x = wS

λ , let y ∈ W S
λ be such that yx−1 = wS

λ . Then, using (IV),
(V) and (VI), we have

TwS
λ
�

(
xw

Bλ

λ

) = TyTx−1�
(
xw

Bλ

λ

) = Ty�
(
w

Bλ

λ

) = Ty∇
(
w

Bλ

λ

) = ∇(
yw

Bλ

λ

)
.

This implies that TwS
λ
X • is a complex of dual Verma modules in Oλ. At the same

time the module ∇(wBλ

λ ) ⊗ V∗ ∼= �(wBλ

λ ) ⊗ V∗ is a tilting module in Oλ. Hence, by [12,
Chap. III, Lemma 2.1], the space

HomDb(O)
(∇(

w
Bλ

λ

) ⊗ V∗,LTwS
λ
K(w)[1]

)

can be computed already in the homotopy category, where it is obviously zero, since
the only non-zero component of the first complex is in degree zero and the above
computation shows that the zero component of the second complex is zero. Hence we
obtain

Ext1
O(�(w), K(w) ⊗ V ) = 0. (5)

The statement of our theorem now follows by applying Proposition 5 to the short exact
sequence (4). �

4. Proof of Theorem 1: the case S = Bλ. In this section we prove Theorem 1 in
the case S = Bλ. Throughout the section we fix α ∈ Bλ and set s = sα.

PROPOSITION 7. The canonical inclusion U(g)/Ann(L(s)) ↪→ L (L(s), L(s)) is
surjective.

To prove this statement we shall need several lemmas.

LEMMA 8. Let w ∈ Wλ be such that Homg(L(s), θwL(s)) = 0. Then w = s or w = e.

Proof. Assume that w = e, s. Let

0 → L(s) → X → L(e) → 0 (6)

be a non-split short exact sequence, which exists because of the Kazhdan-Lusztig
theorem. (See for example [19, Theorem 1].) Then θwL(e) = 0, since w = e, and hence
θwX = θwL(s). However, since (6) is non-split, X is a homomorphic image of �(e), and
hence θwX is a homomorphic image of θw�(e) = P(w). In particular, θwX is either zero
or has simple top L(w). On the other hand θwL(s) is self-dual and thus θwX = θwL(s)
is either zero or has simple socle L(w). In each of these two cases we have the equality
Homg(L(s), θwL(s)) = 0 since w = s. This completes the proof. �

The above result naturally motivates the following question.

QUESTION. Let S ⊂ Bλ and w ∈ Wλ be such that the vector space
Homg

(
L

(
wS

λ

)
, θwL

(
wS

λ

))
is non-zero. Does this imply that w ∈ W S

λ ?

Recall that a g-module, M, is called s-finite provided that it is locally finite over the
sl2-subalgebra of g, which corresponds to s. The module L(w) is s-finite if and only if
w is the minimal coset representative of some coset from {e, s}\Wλ, that is if and only
if sw > w.
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Define F(s) as the minimal submodule of the radical Rad(�(s)) of �(s) such that
the quotient Rad(�(s))/F(s) is s-finite and consider the short exact sequence

0 → F(s) → �(s) → N(s) → 0, (7)

where N(s) is the cokernel. Our next step is to prove the following result.

LEMMA 9. The canonical inclusion U(g)/Ann(N(s)) ↪→ L (N(s), N(s)) is surjective.

Proof. For every w ∈ Wλ we have

Ext1
O(�(s), θwF(s)) =

HomDb(O)(�(s), θwF(s)[1]) = (V)
HomDb(O)(Ts�(e), θwF(s)[1]) = (properties of θw)
HomDb(O)

(
θw−1Ts�(e), F(s)[1]

) = (I)
HomDb(O)

(
Tsθw−1�(e), F(s)[1]

) =
HomDb(O)(TsP(w−1), F(s)[1]) = (II)
HomDb(O)(LTsP(w−1), F(s)[1]) = (III)
HomDb(O)(P(w−1),RGsF(s)[1]) = (P(w−1) is projective)
Homg(P(w−1),R1GsF(s)) = (dual of (VIII).
0.

The statement now follows from Corollary 4 and Proposition 5. �
Consider now the short exact sequence

0 → X(s) → N(s)
p′

−→ L(s) → 0. (8)

LEMMA 10. For every finite-dimensional g-module V the sequence (8) induces the
following isomorphism:

Homg(N(s), N(s) ⊗ V ) ∼= Homg(L(s), L(s) ⊗ V ).

Proof. Let 0 = f ∈ Homg(N(s), N(s) ⊗ V ). Since N(s) has simple top, f cannot
annihilate it. Consider the map (p′ ⊗ id) ◦ f ∈ Homg(N(s), L(s) ⊗ V ). Since the kernel
of the projection N(s) ⊗ V

p′⊗id
� L(s) ⊗ V is s-finite and the top of N(s) is not, we have

(p′ ⊗ id) ◦ f = 0. On the other hand, since the socle of L(s) ⊗ V consists exclusively
of s-infinite modules, the map (p′ ⊗ id) ◦ f must annihilate X(s) and hence it factors
through L(s). This implies that (8) induces the following inclusion:

Homg(N(s), N(s) ⊗ V ) ↪→ Homg(L(s), L(s) ⊗ V ).

To complete the proof we now have to compare the dimensions. Thus it is enough to
show that, for every w ∈ Wλ, we have

dim Homg(N(s), θwN(s)) = dim Homg(L(s), θwL(s)).

This is obvious for w = e since both spaces are one-dimensional in this case. For w = s
we have non-zero adjunction morphisms in both spaces; moreover, the module θsL(s)
has simple socle. This implies that

dim Homg(N(s), θsN(s)) = dim Homg(L(s), θsL(s)) = 1.
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For w = s, e, Lemma 8 implies that dim Homg(L(s), θwL(s)) = 0. The statement
follows. �

Now we are ready to prove Proposition 7.

Proof of Proposition 7. Since X(s) is s-finite and L(s) is simple and s-infinite, we have
L (X(s), L(s)) = 0 by Proposition 2, which implies that (8) induces the isomorphism
L (L(s), L(s)) ∼= L (N(s), L(s)).

Since X(s) is s-finite and the top of N(s) is simple and s-infinite, we have
L (N(s), X(s)) = 0 by Proposition 2, which implies that (8) induces the inclusion
L (N(s), N(s)) ↪→ L (N(s), L(s)). However, Lemma 10 and Proposition 2 show that
this inclusion is in fact an isomorphism. Since U(g) surjects onto L (N(s), N(s)), by
Corollary 4, it follows that (8) induces a surjection of U(g) onto L (L(s), L(s)). This
completes the proof. �

5. Proof of Theorem 1: the general case. In this Section we prove Theorem 1 in
the general case. Our approach is similar to the one we use in Section 4. However, it
requires more delicate arguments in several places. Moreover, in some places we shall
use the reduction to the case considered in Section 4. Set s = sα, where α ∈ S, and
recall the notation w = wS

λw
Bλ

λ , w = sw.
Using the equivalence from [23] we can assume that λ is integral. Let a = a(S)

denote the semi-simple Lie subalgebra of g, generated by X±α, α ∈ S. If M is a weight
g-module with the weight-space decomposition M = ⊕µ∈h∗Mµ, and ν ∈ h∗, then the
subspace

Mν
a = ⊕µ∈ν+�SMµ

is stable under the action of a and hence is an a-submodule of M. This induces a
functor, which we shall denote by Rν , from the category of all weight g-modules to the
category of all weight a-modules, that sends M to Mν

a. Let Oa denote the category
O for the algebra a. From the PBW theorem it follows that for every w ∈ Wλ and
every ν ∈ h∗ the module Rν�(w) has a finite Verma flag as an a-module. In particular,
Rν�(w) ∈ Oa. From this one easily deduces that Rν maps O to Oa.

Let h⊥ be the orthogonal complement to a ∩ h in h with respect to the Killing
form. Let ξ be the restriction of w · λ to h⊥. Define the parabolic induction functor
Indg

a in the following way: for M ∈ Oa let h⊥ act on M via ξ , and let XαM = 0 for all
positive roots α ∈ R such that Xα ∈ a. In this way we can regard M as a module over
the parabolic subalgebra p = a + h + n+ of g. We set

Indg
a(M) = U(g) ⊗U(p) M,

which obviously defines a functor from Oa to O. From the PBW theorem it follows
that this functor sends Verma modules to Verma modules. Let ζ be the restriction of
w · λ to a ∩ h. Note that ζ is regular and dominant for a.

Finally, denote by C the full subcategory of Oλ, that consists of all modules M,
whose composition factors all have the form L(y), y ∈ W S

λ w
Bλ

λ .

PROPOSITION 11. Indg
a and Rw·λ induce mutually inverse equivalences between Oa

ζ

and C.
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Proof. The classical adjunction between the restriction and induction implies that
(Indg

a, R
w·λ) is an adjoint pair of functors, which gives us the natural maps

Indg
a R

w·λ → IdC, and IdOa
ζ

→ Rw·λ Indg
a.

These maps are obviously isomorphisms on Verma modules, and then by induction
one shows that they are isomorphisms on simple modules. The statement follows. �

As in Section 4 we define F(w) as the minimal submodule of the radical Rad(�(w))
of �(w) such that the quotient Rad(�(w))/F(w) is s-finite and consider the short exact
sequence

0 → F(w) → �(w) → N(w) → 0, (9)

where N(w) is the cokernel.

PROPOSITION 12. The canonical inclusion

U(g)/Ann(N(w)) ↪→ L (N(w), N(w))

is surjective.

Proof. Let w ∈ Wλ. Using the same arguments as in the proof of Lemma 9 we
obtain

Ext1
O(�(w), θwF(w)) = Ext1

O(θw−1�(w), GsF(w)).

Let us prove that the last space is zero. For this we shall need the following statement.

LEMMA 13. All simple subquotients of GsF(w) are of the form L(x), x ∈ W S
λ w

Bλ

λ .

Proof. From the definition of W S
λ and w

Bλ

λ for z ∈ W we have z > w
Bλ

λ implies that
z ∈ W S

λ w
Bλ

λ . In particular, from the BGG Theorem ([8, Theorem 7.6.23]) it follows that
all composition subquotients of �(z), z ∈ W S

λ w
Bλ

λ , are of the form L(y), y ∈ W S
λ w

Bλ

λ .
Therefore, all composition subquotients of F(w) are of this form since w ∈ W S

λ w
Bλ

λ and
F(w) ⊂ �(w).

Using the left exactness of Gs it is enough to prove that for every y ∈ W S
λ w

Bλ

λ all
simple subquotients of GsL(y) are of the form L(x), x ∈ W S

λ w
Bλ

λ . By (VII), we can even
assume sy < y. Note that we automatically have sy ∈ W S

λ w
Bλ

λ provided that y ∈ W S
λ w

Bλ

λ

since α ∈ S. Applying Gs to the short exact sequence

0 → K(y) → �(y) → L(y) → 0

and using the dual of (VI) we obtain the following exact sequence:

0 → GsK(y) → Gs�(y) (∼= �(sy)) → GsL(y) → L1GsK(y).

From the first paragraph of the proof we have that all simple subquotients of �(sy) and
�(y) have the necessary form as sy, y ∈ W S

λ w
Bλ

λ . From the dual of (VIII) it follows that
all simple subquotients of L1GsK(y) have the necessary form as well. The statement
follows. �

We have θw−1�(w) ∈ Fλ(�). Let Q1 = ⊕x∈Wλ\W S
λ w

Bλ
λ

P(x) and consider the trace Z
(i.e. the sum of the images of all homomorphism) of Q1 in θw−1�(w). The module
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θw−1�(w) has a Verma flag, say

0 = M0 ⊂ M1 ⊂ · · · ⊂ Ml = θw−1�(w). (10)

Assume that for i ∈ {1, . . . , l} we have Mi/Mi−1
∼= �(y) and Mi+1/Mi ∼= �(x) for some

y ∈ W S
λ w

Bλ

λ and x ∈ W S
λ w

Bλ

λ . Then y ≤ x, and hence

Ext1
O(�(x),�(y)) = 0.

This means that we can substitute Mi in (10) by some other submodule M′
i of Mi+1,

which contains Mi−1, and such that M′
i/Mi−1

∼= �(x) and Mi+1/M′
i
∼= �(y). Applying

this procedure inductively, we can rearrange (10) such that the following condition is
satisfied. There exists l′ ∈ {1, . . . , l} such that for every i ≤ l′ there exists x ∈ W S

λ w
Bλ

λ

such that Mi/Mi−1
∼= �(x), and for every i > l′ there exists y ∈ W S

λ w
Bλ

λ such that
Mi/Mi−1

∼= �(y). From the definition of the trace it follows immediately that Z = Ml′ .
In particular, all modules in the short exact sequence

0 → Z → θw−1�(w) → Coker → 0

have Verma flags. Since for every x ∈ Wλ\W S
λ w

Bλ

λ and y ∈ W S
λ w

Bλ

λ we have y ≤ x, for
all such x and y we obtain

Ext1
O(�(x), L(y)) = 0,

which, because of Lemma 13, yields

Ext1
O(Z, GsF(w)) = 0.

Now let us consider the module Coker ∈ C. We claim that Rw·λCoker is a projective
module in the category Oa

ζ . Indeed, the module �(w) is obtained by the parabolic
induction from some projective Verma a-module. Since the adjoint action of a on U(g)
is locally finite, it follows that Rν(�(w)) is projective in Oa

ζ for every ν ∈ h∗. Further,
for every finite-dimensional g-module V we have

Rw·λ(V ⊗ �(w)) = ⊕(ν1,ν2)R
ν1 V ⊗ Rν2�(w),

where the sum is taken over all pairs (ν1, ν2) ∈ h∗ × h∗ with different h⊥-restrictions
of ν1 such that ν1 + ν2 = w · λ. In particular, Rw·λ(V ⊗ �(w)) is projective in Oa

ζ . The
inductive construction of the Verma flag in [5] implies that

Rw·λ(Coker) = R0V ⊗ Rw·λ�(w),

which is also projective in Oa
ζ . In particular, the first extension between Rw·λ(Coker)

and all simple a-modules in Oa
ζ vanishes and hence from Proposition 11 we derive

Ext1
O(Coker, L(y)) = 0,

for all y ∈ W S
λ w

Bλ

λ . Therefore, using Lemma 13 we get

Ext1
O(Coker, GsF(w)) = 0.

https://doi.org/10.1017/S0017089505002776 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089505002776


KOSTANT’S PROBLEM 559

Thus

Ext1
O
(
θw−1�(w), GsF(w)

) = 0

and the statement of the proposition follows from Corollary 4 and Proposition 5. �
Consider now the short exact sequence

0 → X(w) → N(w)
p̂−→ L(w) → 0. (11)

LEMMA 14. For every finite-dimensional g-module V the sequence (11) induces the
isomorphism

Homg(N(w), N(w) ⊗ V ) ∼= Homg(L(w), L(w) ⊗ V ).

Proof. The same arguments as in Lemma 10 show that (11) induces the inclusion

Homg(N(w), N(w) ⊗ V ) ↪→ Homg(L(w), L(w) ⊗ V ).

Let f ∈ Homg(L(w), L(w) ⊗ V ). We should like to lift f to an element in the space
Homg(N(w), N(w) ⊗ V ). For this we consider the auxiliary module TsL(w).

LEMMA 15. Ext1
O(TsL(w), L(x)) = 0 for each s-finite L(x).

Proof. We have

Ext1
O(TsL(w), L(x)) =

HomDb(O)(TsL(w), L(x)[1]) = (VIII)
HomDb(O)(LTsL(w), L(x)[1]) = (III)
HomDb(O)(L(w),RGsL(x)[1]) = (VII), (VIII)
HomDb(O)(L(w), L(x)) =
Homg(L(w), L(x)) = (w = x)
0.

�
First of all we claim that there is a non-zero map from TsL(w) to N(w). Indeed,

applying Homg(TsL(w), −) to (11) and using Lemma 15 we obtain the surjection

Homg(TsL(w), N(w)) � Homg(TsL(w), L(w)).

Using this surjection we can lift the canonical projection p̃ : TsL(w) � L(w) to obtain
the short exact sequence

0 → Ker → TsL(w)
q−→ N(w) → 0. (12)

Applying Homg(TsL(w), − ⊗ V ) to (11) and using Lemma 15 we obtain the
surjection

Homg(TsL(w), N(w) ⊗ V ) � Homg(TsL(w), L(w) ⊗ V ).

In particular, we can lift the map f ◦ p̂ ◦ q ∈ Homg(TsL(w), L(w) ⊗ V ) to some map
f ∈ Homg(TsL(w), N(w) ⊗ V ).
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Now recall that TsL(w) ∈ C by Lemma 13 (and the fact that Ts ∼= �Gs�). Applying
Rw·λ and using Proposition 11 and Lemma 10 we obtain that Rw·λ(f ) annihilates the
module Rw·λ(Ker), which implies that f annihilates Ker by Proposition 11. In particular,
f factors through N(w). Since all the modules L(w), N(w), and TsL(w), have the same
simple top, it follows that f = 0 if and only if f = 0. This gives us the injection

Homg(L(w), L(w) ⊗ V ) ↪→ Homg(N(w), N(w) ⊗ V ),

and the statement follows. �
Now we have the same amount of information as at the end of Section 4 and

hence the proof of Theorem 1 can be easily completed in the same way as the proof of
Proposition 7.

Proof of Theorem 1. Mutatis mutandis the proof of Proposition 7. �

6. Application to α-stratified simple modules. For c ∈ � denote by �c
s = �c

αs

Mathieu’s twisting functor from [20, 4.3].

COROLLARY 16. Under the assumptions of Theorem 1 we have that the canonical
injection

U(g)/Ann
(
�c

sL(w)
)

↪→ L
(
�c

sL(w),�c
sL(w)

)
is surjective. Moreover, for every w ∈ Wλ the canonical injection

U(g)/Ann
(
�c

s�(w)
)

↪→ L
(
�c

s�(w),�c
s�(w)

)
is surjective.

Proof. From the definition of �c
s it follows that �c

s preserves Ann(M) and induces
an isomorphism between L (M, M) and L (�c

sM,�c
sM) for any M ∈ O on which

X−α acts injectively. The first statement now follows from Theorem 1 and the second
one from Corollary 4. �

When the modules �c
sL(w) are simple, they are simple αs-stratified modules

considered in [7, 9]. The modules �c
s�(w) are proper standard objects in the parabolic

generalization of O studied in [10]. (See also [21].)
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