CORRIGENDUM: LIMITING CASES OF BOARDMAN'S FIVE HALVES THEOREM

MICHAEL C. CRABB ${ }^{1}$ AND PEDRO L. Q. PERGHER ${ }^{2}$
${ }^{1}$ Department of Mathematics, University of Aberdeen, Aberdeen AB24 3UE, UK (m.crabb@abdn.ac.uk)
${ }^{2}$ Departamento de Matemática, Universidade Federal de São Carlos, Caixa Postal 676, São Carlos, SP 13565-905, Brazil (pergher@dm.ufscar.br)

(Received 15 April 2015)

Published in Proceedings of the Edinburgh Mathematical Society 56(3) (2013), 723-732.

Abstract We rectify two omissions in the list of generators and include a brief discussion of the localization theorem of Kosniowski and Stong.

```
Keywords: localization theorem; five halves theorem; involution; fixed-point data; equivariant
    cobordism class; Stiefel-Whitney class
2 0 1 0 ~ M a t h e m a t i c s ~ s u b j e c t ~ c l a s s i f i c a t i o n : ~ P r i m a r y ~ 5 7 R 8 5
    Secondary 57R75
```


1. Corrections

We are grateful to J. M. Boardman (private communication, published as [2]) for pointing out two omissions in the list of generators given in [3].

The cases in which $c=2$ in the main Theorems 1.2 and 3.4 should be corrected as follows.

Theorem 1.2 (p. 724) should read

$$
c=2: \quad 2 \text { if } k=1, \quad 9 \text { if } k=2, \quad 13 \text { if } k=3, \quad 14 \text { if } k \geqslant 4
$$

Theorem 3.4 (p. 730) should read

$$
\begin{array}{ll}
c=2: \quad \text { if } k \geqslant 1, & b^{k-1} \cdot x_{3}^{(2)}, b^{k-1} \cdot \gamma\left(x_{2}^{(1)}\right), \\
& \text { and, if } k \geqslant 2, \quad b^{k-2} \cdot\left(x_{4}^{(2)}\right)^{2}, b^{k-2} \cdot\left(y_{4}^{(2)}\right)^{2}, b^{k-2} \cdot \gamma\left(x_{3}^{(2)}\right) \cdot x_{4}^{(2)}, \\
& b^{k-2} \cdot x_{6}^{(3)} \cdot x_{2}^{(1)}, b^{k-2} \cdot \gamma^{3}\left(x_{5}^{(4)}\right), b^{k-2} \cdot x_{8}^{(4)}, b^{k-2} \cdot \gamma\left(x_{7}^{(4)}\right), \\
& \text { and, if } k \geqslant 3, \quad b^{k-3} \cdot \gamma^{2}\left(x_{7}^{(4)}\right) \cdot x_{4}^{(2)}, b^{k-3} \cdot \gamma^{2}\left(x_{7}^{(4)}\right) \cdot y_{4}^{(2)}, b^{k-3} \cdot \gamma^{2}\left(x_{11}^{(6)}\right), \\
& b^{k-3} \cdot x_{2}^{(1)} \cdot z_{11}^{(5)}, \\
& \text { and, if } k \geqslant 4, \quad b^{k-4} \cdot\left(\gamma^{2}\left(x_{7}^{(4)}\right)\right)^{2} .
\end{array}
$$

These require the following corrections to the text on p. 729. To the list of exclusions when $c=2$ must be added, if $k \geqslant 3,\left(\left(6,2_{k-3}\right), \omega_{\emptyset}\right)$. Also, in the paragraph below the list, the dimension of the group $\left(\mathcal{N}_{3}^{\mathbb{Z}_{2}}\right)^{(2)}$ should be corrected to $\operatorname{dim}\left(\mathcal{N}_{3}^{\mathbb{Z}_{2}}\right)^{(2)}=2$.

We note too that the exceptional case in which $c=3$ and $n=2 k-1$ should read $\omega=\left(2_{k-1}\right), \omega^{\prime}=(1)$.

2. The localization theorem

We take this opportunity to place the result of Kosniowski and Stong [4] that provided the basic input into [3] in the context of what is now standard localization theory.

Cohomology with \mathbb{Z}_{2}-coefficients will be denoted by H^{*}. For a \mathbb{Z}_{2}-space M we write $H_{\mathbb{Z}_{2}}^{*}(M)=H^{*}\left(E \mathbb{Z}_{2} \times_{\mathbb{Z}_{2}} M\right)$ for the equivariant Borel cohomology and let $t \in H_{\mathbb{Z}_{2}}^{1}(*)$ be the generator, that is, the Euler class of the universal real line bundle over $B \mathbb{Z}_{2}$. We have a restriction map $i^{*}: H_{\mathbb{Z}_{2}}^{*}(M) \rightarrow H^{*}(M)$. If \mathbb{Z}_{2} acts trivially on M, then $H_{\mathbb{Z}_{2}}^{*}(M)=$ $H^{*}(M) \otimes \mathbb{Z}_{2}[t]$.

Using the notation and terminology of [3], we can state the localization theorem for \mathbb{Z}_{2}-Borel cohomology as follows.

Lemma 2.1. Consider an m-dimensional \mathbb{Z}_{2}-manifold M with fixed-point data $\left(F^{j}, \eta_{j}\right), j=0, \ldots, m$. Suppose that $u \in H_{\mathbb{Z}_{2}}^{m}(M)$. Then

$$
i^{*}(u)[M]=\sum_{j=0}^{m}\left(e\left(\eta_{j}\right)^{-1} u^{(j)}\right)\left[F^{j}\right] \in \mathbb{Z}_{2}
$$

where $u^{(j)} \in H_{\mathbb{Z}_{2}}^{m}\left(F^{j}\right)$ is the restriction of u to F^{j} and $e\left(\eta_{j}\right) \in H_{\mathbb{Z}_{2}}^{m-j}\left(F^{j}\right)$ is the equivariant Euler class of η_{j}.

More explicitly, the equivariant Euler class $e\left(\eta_{j}\right)$ and its inverse can be written as

$$
\begin{aligned}
e\left(\eta_{j}\right) & =t^{m-j}+w_{1}\left(\eta_{j}\right) t^{m-j-1}+\cdots+w_{m-j}\left(\eta_{j}\right) \in H^{*}\left(F^{j}\right) \otimes \mathbb{Z}_{2}[t] \\
e\left(\eta_{j}\right)^{-1} & =t^{j-m}\left(1+w_{1}\left(-\eta_{j}\right) t^{-1}+\cdots+w_{j}\left(-\eta_{j}\right) t^{-j}\right) \in H^{*}\left(F^{j}\right) \otimes \mathbb{Z}_{2}\left[t, t^{-1}\right] .
\end{aligned}
$$

The class $u^{(j)}$ may be expanded as $u_{m}^{(j)}+u_{m-1}^{(j)} t+\cdots+u_{0}^{(j)} t^{m}$, where $u_{i}^{(j)} \in H^{i}\left(F^{j}\right)$, so that

$$
\left(e\left(\eta_{j}\right)^{-1} u^{(j)}\right)\left[F^{j}\right]=\sum_{i=0}^{j}\left(w_{j-i}\left(-\eta_{j}\right) u_{i}^{(j)}\right)\left[F^{j}\right] \in \mathbb{Z}_{2}
$$

The result of Kosniowski and Stong [3, Proposition 2.5] is proved, when $f\left(X_{1}, \ldots, X_{m}\right)$ is homogeneous of degree $d \leqslant m$, by taking $u=t^{m-d} v$, where v is obtained by substituting in $f\left(X_{1}, \ldots, X_{m}\right)$ the r th Stiefel-Whitney class of $E \mathbb{Z}_{2} \times_{\mathbb{Z}_{2}} T M$ for the r th elementary symmetric function in the X_{i}.

Proof. This may be proved by following the argument given by Atiyah and Segal in [1, Theorem 2.12] to establish the corresponding result for K-theory.

References

1. M. F. Atiyah and G. B. Segal, The index of elliptic operators: II, Annals Math. $\mathbf{8 7}$ (1968), 531-545.
2. J. M. Boardman, Math. Rev. (2014), MR3109755.
3. M. C. Crabb and P. L. Q. Pergher, Limiting cases of Boardman's five halves theorem, Proc. Edinb. Math. Soc. 56(3) (2013), 723-732.
4. C. Kosniowski and R. E. Stong, Involutions and characteristic numbers, Topology $\mathbf{1 7}$ (1978), 309-330.
