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1. Corrections

We are grateful to J. M. Boardman (private communication, published as [2]) for pointing
out two omissions in the list of generators given in [3].

The cases in which c = 2 in the main Theorems 1.2 and 3.4 should be corrected as
follows.

Theorem 1.2 (p. 724) should read

c = 2: 2 if k = 1, 9 if k = 2, 13 if k = 3, 14 if k � 4.

Theorem 3.4 (p. 730) should read

c = 2: if k � 1, bk−1 · x
(2)
3 , bk−1 · γ(x(1)

2 ),

and, if k � 2, bk−2 · (x(2)
4 )2, bk−2 · (y(2)

4 )2, bk−2 · γ(x(2)
3 ) · x

(2)
4 ,

bk−2 · x
(3)
6 · x

(1)
2 , bk−2 · γ3(x(4)

5 ), bk−2 · x
(4)
8 , bk−2 · γ(x(4)

7 ),

and, if k � 3, bk−3 · γ2(x(4)
7 ) · x

(2)
4 , bk−3 · γ2(x(4)

7 ) · y
(2)
4 , bk−3 · γ2(x(6)

11 ),

bk−3 · x
(1)
2 · z

(5)
11 ,

and, if k � 4, bk−4 · (γ2(x(4)
7 ))2.
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These require the following corrections to the text on p. 729. To the list of exclusions
when c = 2 must be added, if k � 3, ((6, 2k−3), ω∅). Also, in the paragraph below the
list, the dimension of the group (N Z2

3 )(2) should be corrected to dim(N Z2
3 )(2) = 2.

We note too that the exceptional case in which c = 3 and n = 2k − 1 should read
ω = (2k−1), ω′ = (1).

2. The localization theorem

We take this opportunity to place the result of Kosniowski and Stong [4] that provided
the basic input into [3] in the context of what is now standard localization theory.

Cohomology with Z2-coefficients will be denoted by H∗. For a Z2-space M we write
H∗

Z2
(M) = H∗(EZ2 ×Z2 M) for the equivariant Borel cohomology and let t ∈ H1

Z2
(∗)

be the generator, that is, the Euler class of the universal real line bundle over BZ2. We
have a restriction map i∗ : H∗

Z2
(M) → H∗(M). If Z2 acts trivially on M , then H∗

Z2
(M) =

H∗(M) ⊗ Z2[t].
Using the notation and terminology of [3], we can state the localization theorem for

Z2-Borel cohomology as follows.

Lemma 2.1. Consider an m-dimensional Z2-manifold M with fixed-point data
(F j , ηj), j = 0, . . . , m. Suppose that u ∈ Hm

Z2
(M). Then

i∗(u)[M ] =
m∑

j=0

(e(ηj)−1u(j))[F j ] ∈ Z2,

where u(j) ∈ Hm
Z2

(F j) is the restriction of u to F j and e(ηj) ∈ Hm−j
Z2

(F j) is the equiv-
ariant Euler class of ηj .

More explicitly, the equivariant Euler class e(ηj) and its inverse can be written as

e(ηj) = tm−j + w1(ηj)tm−j−1 + · · · + wm−j(ηj) ∈ H∗(F j) ⊗ Z2[t],

e(ηj)−1 = tj−m(1 + w1(−ηj)t−1 + · · · + wj(−ηj)t−j) ∈ H∗(F j) ⊗ Z2[t, t−1].

The class u(j) may be expanded as u
(j)
m + u

(j)
m−1t + · · · + u

(j)
0 tm, where u

(j)
i ∈ Hi(F j), so

that

(e(ηj)−1u(j))[F j ] =
j∑

i=0

(wj−i(−ηj)u
(j)
i )[F j ] ∈ Z2.

The result of Kosniowski and Stong [3, Proposition 2.5] is proved, when f(X1, . . . , Xm)
is homogeneous of degree d � m, by taking u = tm−dv, where v is obtained by substitut-
ing in f(X1, . . . , Xm) the rth Stiefel–Whitney class of EZ2×Z2TM for the rth elementary
symmetric function in the Xi.

Proof. This may be proved by following the argument given by Atiyah and Segal
in [1, Theorem 2.12] to establish the corresponding result for K-theory. �
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