H. Yokoi Nagoya Math. J. Vol. 91 (1983), 151-161

ON THE DIOPHANTINE EQUATION $x^2 - py^2 = \pm 4q$ AND THE CLASS NUMBER OF REAL SUBFIELDS OF A CYCLOTOMIC FIELD*)

HIDEO YOKOI

Introduction

Let H(m) denote the class number of the field $K = Q(\zeta_m + \zeta_m^{-1})$, where Q is the rational number field and ζ_m is a primitive *m*-th root of unity for a positive rational integer *m*.

It has been proved by Ankeny, Chowla and Hasse in [2] that if $p = (2nq)^2 + 1$ is a prime, with prime q and integer n > 1, then H(p) > 1. Later, S.-D. Lang proved in [5] that if $p = ((2n + 1)q)^2 + 4$ is a prime, with odd prime q and integer $n \ge 1$, then H(p) > 1.

Both results are based on the fact that the diophantine equation $x^2 - py^2 = \pm 4m$ has no solution (x, y) in integers unless $m \ge nq$ (resp. $m \ge (2n + 1)q$).

In this paper, we shall first consider the diophantine equation $x^2 - py^2 = \pm 4q$ for distinct odd primes p, q, and give a necessary and sufficient condition for its solvability (§ 1). Next, we shall show that for distinct odd primes p, q satisfying $p = ((2n + 1)q)^2 \pm 2$ with integer $n \ge 0$ the diophantine equation $x^2 - py^2 = \pm q$ has no solution (x, y) in integers except for the case p = 7 (n = 0, q = 3) (§2).

Moreover, in Section 3, for a prime p of such type, we shall give a sufficient condition for the class number h(p) of the real quadratic field $Q(\sqrt{p})$ to be greater than 1, and by applying this result to maximal real subfield of a cyclotomic field we shall also give a sufficient condition for H(4p) > 1.

Finally, we shall list up all primes p < 100,000 satisfying $p = ((2n + 1)q)^2$ - 2 with prime $q \equiv 1$ or 3 (mod 4), $(n \ge 0)$, and $p = ((2n + 1)q)^2 + 2$ with prime $q \equiv 1$ or 7 (mod 4), $(n \ge 0)$, for which both h(p) and H(4p) are

^{*)} This research was partially supported by Grant-in-Aid for Scientific Research Project No. 56540017, Ministry of Education, Japan.

greater than 1.

§1. Solvability of the equation $x^2 - py^2 = \pm 4q$

We consider, in this section, the diophantine equation $x^2 - py^2 = \pm 4q$ for distinct odd primes p, q. However, the following fact is noteworthy: When the equation $x^2 - py^2 = \pm q$ has a solution (u, v) in integers, the double of the solution (2u, 2v) is also a solution of the equation $x^2 - py^2$ $= \pm 4q$. Conversely, in the case $p \equiv 1 \pmod{4}$ all the solutions of $x^2 - py^2 = \pm 4q$ can be obtained from the solutions $x^2 - py^2 = \pm q$ in such a way, while in the case $p \equiv 1 \pmod{4}$ not all the solutions can necessarily be found from the solutions of $x^2 - py^2 = \pm q$.

The following fact, which gives a relation between the solvability of the equation $x^2 - py^2 = \pm 4q$ and the class number of the real quadratic field $Q(\sqrt{p})$, is already known¹⁾, but is fundamental in our investigation. Therefore, we state it as a theorem and, for the sake of completeness, add a simple proof:

THEOREM 1. Let p and q be two distinct odd primes. Then, the diophantine equation $x^2 - py^2 = \pm 4q$ has at least one solution (x, y) in integers if and only if the prime q splits completely in the real quadratic field $Q(\sqrt{p})$ into the product of a principal prime ideal q with degree one and its conjugate $q': q = q \cdot q'$, $(q \neq q', Nq = Nq' = q, q = (\omega), q' = (\omega')$ with ω, ω' in $Q(\sqrt{p})$.

Proof. If there exists one solution (u, v) in integers of $x^2 - py^2 = \pm 4q$, then $u^2 - pv^2 = \pm 4q$ implies $u^2 \equiv pv^2 \pmod{q}$. Hence $1 = (pv^2/q) = (p/q)$ holds, and so by the law of decomposition in quadratic fields q splits completely in $Q(\sqrt{p})$. On the other hand, it follows from $\pm q = (u + v\sqrt{p})/2 \cdot (u - v\sqrt{p})/2$ that both

$$q = \left(\frac{u + v\sqrt{p}}{2}\right)$$
 and $q' = \left(\frac{u - v\sqrt{p}}{2}\right)$

are principal ideals in $Q(\sqrt{p})$ and $Nq = q \cdot q' = q$ holds. Therefore q and q' are principal prime ideals in $Q(\sqrt{p})$ with degree one.

Conversely, if q splits completely in $Q(\sqrt{p})$ into the product of two principal prime ideals q, q' with degree one, then there exist two rational

¹⁾ Cf. e. q. [2], [3] etc.

integers u, v such that both $\omega = (u + v\sqrt{p})/2$ and $\omega' = (u - v\sqrt{p})/2$ are integers in $Q(\sqrt{p})$ and $q = (\omega)$, $q' = (\omega')$. Hence

$$q=\mathfrak{q}\cdot\mathfrak{q}'=N\mathfrak{q}=|N(\omega)|=\left|rac{u^2-pv^2}{4}
ight|$$

implies $u^2 - pv^2 = \pm 4q$. Therefore $x^2 - py^2 = \pm 4q$ has the solution (u, v) in integers, which completes the proof of Theorem 1.

For example, let p and q be two odd primes satisfying $p = 4q^2 + 1$ or $p = q^2 + 4$. Then, the equation $x^2 - py^2 = \pm 4q$ has a solution $(2q \pm 1, 1)$ or $(q \pm 2, 1)$ in integers respectively. On the other hand, the prime q splits completely in $Q(\sqrt{p})$ such as

$$q=\mathfrak{q}\cdot\mathfrak{q}'; \hspace{0.2cm}\mathfrak{q}=\Bigl(rac{2q\pm1+\sqrt{p}}{2}\Bigr), \hspace{0.2cm}\mathfrak{q}'=\Bigl(rac{2q\pm1-\sqrt{p}}{2}\Bigr)$$

or

$$\mathfrak{q}=\Big(rac{q\pm 2+\sqrt{p}}{2}\Big),\quad \mathfrak{q}'=\Big(rac{q\pm 2-\sqrt{p}}{2}\Big)$$

respectively.

From Theorem 1 we deduce easily:

COROLLARY. Let p and q be two odd primes satisfying $p = (nq)^2 + r^2$ for natural numbers n, r. Then, the class number h(p) of the real quadratic field $Q(\sqrt{p})$ is not equal to one i.e. h(p) > 1 if $x^2 - py^2 = \pm 4q$ has no solution (x, y) in integers.

Proof. Since the condition $p = (nq)^2 + r^2$ implies immediately (p/q) = 1, prime q splits completely in $Q(\sqrt{p})$. Hence, if we suppose h(p) = 1, then it follows from Theorem 1 that $x^2 - py^2 = \pm 4q$ has at least one solution (x, y) in integers. This is a contradiction. Therefore h(p) = 1 is impossible, which proves the assertion of Corollary.

§ 2. Solvability of the equation $x^2 - py^2 = \pm q$ for $p = ((2n + 1)q)^2 \pm 2$

After Ankeny-Chowla-Hasse and S.-D. Lang, H. Takeuchi proved in [6] that if both 12m + 7 and $p = (3(8m + 5))^2 - 2$ are primes or both 12m + 11 and $p = (3(8m + 7))^2 - 2$ are primes with an integer $m \ge 0$, then the equation $x^2 - py^2 = \pm 3$ has no solution (x, y) in integers.

Here, we prove more generally:

THEOREM 2. Let p and q be two odd primes satisfying $p = ((2n + 1)q)^2$

HIDEO YOKOI

 ± 2 with an integer $n \ge 0$, Then, the diophantine equation $x^2 - py^2 = \pm q$ has at least one solution (x, y) in integers if and only if p = 7 and q = 3(n = 0) i.e. only the equation $x^2 - 7y^2 = -3$ has a solution in integers, for example (x, y) = (2, 1).

Proof. (1) Let p and q be two odd primes satisfying $p = ((2n + 1)q)^2 - 2$ with an integer $n \ge 0$, and put l = (2n + 1)q.

Assume first that $x^2 - py^2 = q$ has at least one solution in integers, and let (u, v) (u > 0, v > 0) be the least such positive integral solution: $u^2 - pv^2 = q$.

In the case $q > 2v^2$, where $q = u^2 - pv^2 = u^2 - l^2v^2 + 2v^2$ implies easily $(u - lv)(u + lv) = q - 2v^2 > 0$, both a = u - lv > 0 and b = u + lv > 0 are positive rational integers, and l = (b - a)/2v, $q = ab + 2v^2$ holds. On the other hand, since $a \ge 1$, $b \ge 1$ and (a - 1)(b + 1) = ab + a - b - 1, we know $ab - 1 \ge b - a$. Therefore

$$egin{aligned} 0 &\leq 2nq = l-q = rac{b-a}{2v} - ab - 2v^2 = rac{1}{2v}\left(b-a-2vab-4v^3
ight) \ &\leq rac{1}{2v}(ab-1-2vab-4v^3) = rac{-1}{2v}((4v^3+1)+(2v-1)ab) < 0\,. \end{aligned}$$

It is clear that this is a contradiction.

In the case $q < 2v^2$, the norm form $1 = N\varepsilon = N((l^2 - 1) + l\sqrt{l^2 - 2})$ of the fundamental unit²) $\varepsilon = (l^2 - 1) + l\sqrt{l^2 - 2}$ of $Q(\sqrt{p})$ multiplied by the norm form $q = N(u - v\sqrt{l^2 - 2})$ of $u^2 - pv^2 = q$ yields

$$egin{aligned} q &= N[\{(l^2-1)u - lv(l^2-2)\} + \{lu - (l^2-1)v\}\sqrt{l^2-2}] \ &= \{(l^2-1)u - lv(l^2-2)\}^2 - (l^2-2)\{lu - (l^2-1)v\}^2 \,. \end{aligned}$$

Because of the minimal choice of v, we have $|lu - (l^2 - 1)v| \ge v$. Here, if $lu - (l^2 - 1)v \ge v$ i.e. $u \ge lv$, we have

$$q = u^2 - (l^2 - 2) v^2 \geq l^2 v^2 - (l^2 - 2) v^2 = 2 v^2$$
 ,

which contradicts $q < 2v^2$. If $(l^2 - 1)v - lu \ge v$ i.e. $(l^2 - 2)v \ge lu$, we have

$$l^2q \,=\, l^2u^2 \,-\, l^2(l^2 \,-\, 2)v^2 \leq (l^2 \,-\, 2)^2v^2 \,-\, l^2(l^2 \,-\, 2)v^2 \,=\, -2(l^2 \,-\, 2)v^2 < 0 \,,$$

which is also a contradiction.

2) Cf. [1], [3].

Therefore, it is impossible that for the prime $p = ((2n + 1)q)^2 - 2$ the equation $x^2 - py^2 = q$ has a solution in integers.

Next, assume that $x^2 - py^2 = -q$ has at least one solution in integers, and let (u, v) (u > 0, v > 0) be the least such positive integral solution: $u^2 - pv^2 = -q$.

In the case q = 3, v = 1, where $-3 = -q = u^2 - pv^2 = u^2 - l^2 + 2$ implies (l - u) (l + u) = 5, we have l - u = 1, l + u = 5, and so l = 3, u = 2, p = 7 is only one possible case as asserted in the Theorem.

In the case q = 3, $v \ge 2$ or q > 3, $v \ge q$, the norm form of the fundamental unit ε of $Q(\sqrt{p})$ multiplied by the norm form $-q = N(u - v\sqrt{l^2 - 2})$ of the equation $u^2 - pv^2 = -q$, together with the minimal choice of v, yields $|lu - (l^2 - 1)v| \ge v$. Here, if $lu - (l^2 - 1)v \ge v$, we have -q = $u^2 - (l^2 - 2)v^2 \ge l^2v^2 - (l^2 - 2)v^2 = 2v^2 > 0$, which is a contradiction. If $(l^2 - 1)v - lu \ge v$, we have

$$-l^2q=l^2u^2-l^2(l^2-2)v^2\leq (l^2-2)^2v^2-l^2(l^2-2)v^2=-2(l^2-2)v^2$$
 ,

and hence $l^2q \ge 2(l^2 - 2)v^2$. Therefore, in the case of q = 3 and $v \ge 2$, $3l^2 \ge 2(l^2 - 2)v^2 \ge 8(l^2 - 2)$ implies $16 \ge 5l^2 \ge 45$, which is a contradiction. In the case of $v \ge q > 3$, $l^2v \ge l^2q \ge 2l^2v^2 - 4v^2$ implies $4v^2 \ge (2v^2 - v)l^2 \ge v(2v - 1)q^2$, and hence $q^2 \le 4v/(2v - 1) = 2 + 2/(2v - 1) < 2 + 2/5 < 3$ holds. This is also a contradiction.

In the case q > 3, v < q, where $-q = u^2 - pv^2 = u^2 - l^2v^2 + 2v^2$ implies $(lv - u) (lv + u) = q + 2v^2 > 0$, both a = lv - u > 0 and b = lv + u > 0 are positive rational integers, and l = (a + b)/2v, $q = ab - 2v^2$. On the other hand, since $a \ge 1$, $b \ge 1$ and (a - 1)(b - 1) = ab - (a + b) + 1, we know $ab + 1 \ge a + b$. Therefore

$$egin{aligned} 0 &\leq 2nq = l-q = rac{a+b}{2v} - ab + 2v^2 = rac{1}{2v}(a+b-2vab+4v^3) \ &\leq rac{1}{2v}(ab+1-2vab+4v^3) = rac{1}{2v}((4v^3+1)-(2v-1)ab) \end{aligned}$$

implies $4v^3 + 1 \ge (2v - 1)ab$, and so $ab \le (4v^3 + 1)/(2v - 1)$. Hence

$$q=ab-2v^2\leq rac{4v^3+1}{2v-1}-2v^2=rac{2v^2+1}{2v-1}=v+rac{v+1}{2v-1}\,.$$

Here, if v = 1 or 2, then $q \le v + (v + 1)/(2v - 1) = 3$, which is a contradiction. If $v \ge 3$, then 0 < (v + 1)/(2v - 1) < 1 implies $q \le v + (v + 1)/(2v - 1) < v + 1$, which contradicts q > v.

Therefore, it is impossible except for the case of p = 7, q = 3 (n = 0) that for $p = ((2n + 1)q)^2 - 2$ the equation $x^2 - py^2 = -q$ has a solution in integers.

(2) Let p and q be two odd primes satisfying $p = ((2n + 1)q)^2 + 2$ with an integer $n \ge 0$, and put l = (2n + 1)q.

Assume first that $x^2 - py^2 = q$ has at least one solution in integers, and let (u, v) (u > 0, v > 0) be the least such positive integral solution: $u^2 - pv^2 = q$.

In the case q > v, where $q = u^2 - l^2v^2 - 2v^2$ implies $(u - lv)(u + lv) = q + 2v^2 > 0$, both a = u - lv > 0 and b = u + lv > 0 are positive rational integers, and l = (b - a)/2v, $q = ab - 2v^2$ holds. Hence, we get

$$egin{aligned} 0 &\leq 2nq = l-q = rac{b-a}{2v} - (ab-2v^2) = rac{1}{2v}(b-a-2vab+4v^3) \ &\leq rac{1}{2v}(ab-1-2vab+4v^3) = rac{1}{2v}((4v^3-1)-(2v-1)ab)\,, \end{aligned}$$

and so $ab \leq (4v^3 - 1)/(2v - 1)$. Therefore, we get

$$q = ab - 2v^2 \leq rac{4v^3 - 1}{2v - 1} - 2v^2 = rac{2v^2 - 1}{2v - 1} = v + rac{v - 1}{2v - 1} < v + 1 \,.$$

This, however, contradicts q > v.

In the case $q \leq v$, the norm form $1 = N\varepsilon = N((l^2 + 1) + l\sqrt{l^2 + 2})$ of the fundamental unit³⁾ $\varepsilon = (l^2 + 1) + l\sqrt{l^2 + 2}$ of $Q(\sqrt{p})$ multiplied by the norm form $q = N(u - v\sqrt{l^2 + 2})$ of the equation $u^2 - pv^2 = q$, yields

$$q = \{u(l^2 + 1) - lv(l^2 + 2)\}^2 - (l^2 + 2)\{lu - (l^2 + 1)v\}^2$$

Because of the minimum choice of v, we have $|lu - (l^2 + 1)v| \ge v$. Here, if $lu - (l^2 + 1)v \ge v$, we have

$$l^2q = l^2u^2 - l^2(l^2+2)v^2 \geq (l^2+2)^2v^2 - l^2(l^2+2)v^2 = 2(l^2+2)v^2 \geq 2(l^2+2)q^2$$
 ,

and hence $q \leq l^2/2(l^2 + 2) < 1/2$. This is a contradiction. If $(l^2 + 1)v - lu \geq v$, we have $q = u^2 - (l^2 + 2)v^2 \leq l^2v^2 - (l^2 + 2)v^2 = -2v^2 < 0$. This is also a contradiction.

Assume next that $x^2 - py^2 = -q$ has at least one solution in integers, and let (u, v) (u > 0, v > 0) be the least such positive integral solution: $u^2 - pv^2 = -q$.

In the case $q > 2v^2$, where $-q = u^2 - l^2v^2 - 2v^2$ implies $(lv - u)(lv + u) = q - 2v^2 > 0$, both a = lv - u > 0 and b = lv + u > 0 are positive rational integers, and l = (a + b)/2v, $q = ab + 2v^2$ holds. Hence, we get

$$egin{aligned} 0 &\leq l-q = rac{a+b}{2v} - (ab+2v^2) = rac{1}{2v}(a+b-2vab-4v^3) \ &\leq rac{1}{2v}(ab+1-2vab-4v^3) = rac{-1}{2v}((2v-1)ab+(4v^3-1)) < 0 \ . \end{aligned}$$

This is a contradiction.

In the case $q < 2v^2$, the norm form of the fundamental unit ε of $Q(\sqrt{p})$ multiplied by the norm form $-q = N(u - v\sqrt{l^2 + 2})$ of the equation $u^2 - pv^2 = -q$, together with the minimal choice of v, yields $|lu - (l^2 + 1)v| \ge v$. Here, if $lu - (l^2 + 1)v \ge v$, we have

$$-l^2q=l^2u^2-l^2(l^2+2)v^2\geq (l^2+2)^2v^2-l^2(l^2+2)v^2=2(l^2+2)v^2=2pv^2>0$$
 ,

which is a contradiction. If $(l^2 + 1)v - lu \ge v$, we have

$$-q = u^2 - (l^2 + 2) v^2 \leq l^2 v^2 - (l^2 + 2) v^2 = -2 v^2 \,,$$

which contradicts $q < 2v^2$.

Therefore, it is impossible that for $p = ((2n + 1)q)^2 + 2$ the equation $x^2 - py^2 = \pm q$ has a solution in integers.

§ 3. The class number of real subfields of a cyclotomic field

In this section, we shall consider the class number h(p) of the real quadratic subfield $Q(\sqrt{p})$ and the class number H(4p) of the maximal real subfield $Q(\zeta_{4p} + \zeta_{4p}^{-1})$ of the cyclotomic field $Q(\zeta_{4p})$:

$$oldsymbol{Q} \subset oldsymbol{Q}(\sqrt{\,p\,}) \subset oldsymbol{Q}(\zeta_{{}_4p}+\zeta_{{}_4p}^{-1}) \subset oldsymbol{Q}(\zeta_{{}_4p})\,.$$

From Theorems 1 and 2, we obtain first:

THEOREM 3. (1) If $p = ((2n + 1)q)^2 - 2$ is a prime, where q is an odd prime satisfying $q \equiv 1$ or 3 (mod 8) and $n \ge 0$ is an integer, then the class number h(p) of the real quadratic field $Q(\sqrt{p})$ is not equal to one except for the case of p = 7 (n = 0, q = 3).

(2) If $p = ((2n + 1)q)^2 + 2$ is a prime, where q is an odd prime satisfying $q \equiv 1$ or 7 (mod 8) and $n \geq 0$ is an integer, then the class number h(p) of the real quadratic field $Q(\sqrt{p})$ is not equal to one i.e. h(p) > 1.

Proof. (1) It is evident that a prime $p = ((2n + 1)q)^2 - 2$ with an integer $n \ge 0$ and an odd prime q satisfies (p/q) = (-2/q), and so by the law of decomposition in quadratic fields, the prime q splits in $Q(\sqrt{p})$ completely if and only if (-2/q) = 1 i.e. $q \equiv 1$ or 3 (mod 8). Hence, moreover if h(p) = 1 is true, then by the Theorem 1 the equation $x^2 - py^2 = \pm q$ has at least one solution in integers x, y. This, however, contradicts the Theorem 2 except for the case of p = 7 (n = 0, q = 3). Therefore h(p) = 1 is impossible except for the case of p = 7 (n = 0, q = 3).

(2) Since a prime $p = ((2n + 1)q)^2 + 2$ with an integer $n \ge 0$ and an odd prime q satisfies (p/q) = (2/q), by the law of decomposition in quadratic fields implies that the prime q splits in $Q(\sqrt{p})$ completely if and only if (2/q) = 1 i.e. $q \equiv 1$ or 7 (mod 8). Hence, moreover if h(p) = 1is true, then by the Theorem 1 $x^2 - py^2 = \pm q$ has at least one solution in integers x, y. However, this contracts the Theorem 2. Therefore h(p) = 1is impossible, which proves the assertion of Theorem 3.

In order to prove Theorem 5, we need the following theorem⁴:

THEOREM 4. For a positive integer m, let ζ_m be a primitive m-th root of unity and denote by H(m), h(m) the class number of the field $K = Q(\zeta_m + \zeta_m^{-1})$, $Q(\sqrt{m})$ respectively. If a prime p satisfies $p \equiv 3 \pmod{4}$, then h(p) | H(4p) holds.

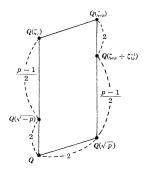
Proof. For a prime $p \equiv 3 \pmod{4}$, we first know that the real quadratic field $Q(\sqrt{p})$ and the imaginary quadratic field $Q(\sqrt{-p})$ are imbedded respectively in the real cyclotomic field $K = Q(\zeta_{4p} + \zeta_{4p}^{-1})$ and the imaginary cyclotomic field $Q(\zeta_p)$ by means of the Gauss sum

$$\sqrt{\,d\,} = \sum\limits_{a ext{ mod } |d|} \Bigl(rac{d}{a}\Bigr) \zeta^a_{|d|}$$
 ,

where d is the discriminant of a quadratic field $Q(\sqrt{d})$ and (d/a) means the Kronecker symbol.

Next, we shall show $Q(\zeta_p) \cap Q(\sqrt{p}) = Q$ and $Q(\zeta_{4p}) = Q(\sqrt{p}) \cdot Q(\zeta_p)$. If we suppose $Q(\zeta_p) \cap Q(\sqrt{p}) \neq Q$, namely $Q(\sqrt{p}) \subset Q(\zeta_p)$, then $Q(\sqrt{p}) \subset Q(\zeta_p + \zeta_p^{-1})$ follows. This, however, contradicts $p \equiv 3 \pmod{4}$, which shows $Q(\zeta_p) \cap Q(\sqrt{p}) = Q$. Moreover, this assertion implies the following

⁴⁾ This theorem was already stated by Yamaguchi in [4], with an incomplete proof, for any positive integer p satisfying $\varphi(p) > 4$. But, the theorem is not true in such a general form.



relation between degrees:

$$[\mathbf{Q}(\sqrt{p}) \cdot \mathbf{Q}(\zeta_p): \mathbf{Q}] = [\mathbf{Q}(\sqrt{p}): \mathbf{Q}] [\mathbf{Q}(\zeta_p): \mathbf{Q}] = 2(p-1).$$

On the other hand, since $[Q(\zeta_{4p}): Q] = 2(p-1)$ and $Q(\zeta_{4p}) \supset Q(\sqrt{p}) \cdot Q(\zeta_p)$, the assertion $Q(\zeta_{4p}) = Q(\sqrt{p}) \cdot Q(\zeta_p)$ is also true.

Furthermore, we can prove that no abelian unramified extension of $Q(\sqrt{p})$ is contained in $Q(\zeta_{ip} + \zeta_{ip}^{-1})$. For, if we suppose that there exists an abelian unramified extension field L of $Q(\sqrt{p})$ contained in $Q(\zeta_{ip} + \zeta_{ip}^{-1})$, then we have $n = [L: Q(\sqrt{p})] > 2$ because $[Q(\zeta_{ip} + \zeta_{ip}^{-1}): Q(\sqrt{p})] = (p-1)/2$ is odd. Hence, the ramification index e(p) of p in $Q(\zeta_{ip})/Q$, which is a divisor of 2(p-1)/n, is less than p-1 i.e. e(p) < p-1. However, since p is completely ramified in $Q(\zeta_p)/Q$, e(p) is not less than p-1 i.e. e(p) $\geq p-1$. This is a contradiction, which proves our assertion.

Finally, from this assertion, it follows immediately by Hasse-Chevalley's theorem⁵⁾ that the assertion of Theorem 4 h(p)|H(4p) is true.

THEOREM 5. (1) If $p = ((2n + 1)q)^2 - 2$ is a prime, where q is an odd prime satisfying $q \equiv 1$ or 3 (mod 8) and $n \geq 0$ is an integer, then the class number H(4p) of $Q(\zeta_{4p} + \zeta_{4p}^{-1})$ is greater than one except for the case of p = 7 (n = 0, q = 3).

(2) If $p = ((2n + 1)q)^2 + 2$ is a prime, where q is an odd prime satisfying $q \equiv 1$ or 7 (mod 8) and $n \geq 0$ is an integer, then the class number H(4p) of $Q(\zeta_{4p} + \zeta_{4p}^{-1})$ is greater than one: H(4p) > 1.

Proof. Since $p = ((2n + 1)q)^2 \pm 2 \equiv 3 \pmod{4}$, the assertion of the Theorem H(4p) > 1 follows immediately from Theorem 3 and 4.

Finally, we give the values of all primes p less than 10⁵ satisfying

5) Cf. [2].

HIDEO YOKOI

the conditions in Theorem 3 and the class number h(p) of the corresponding real quadratic fields $Q(\sqrt{p})^{6}$.

 p	п	q	h(p)	p	n	q	h(p)
7#	0	3	1#	357	0	19	3
79	1	3	3	1,087*	1	11	7
223	2	3	3	1,847	0	43	3
439	3	3	5	3,023	2	11	3
727	4	3	5	5,927	3	11	5
1,087	5	3	7	7,919	0	89	7
3,967	10	3	5	11,447	0	107	7
4,759	11	3	13	14,159	3	17	9
5,623	12	3	9	14,639	5	11	17
8,647	15	3	13	17,159	0	131	15
13,687	19	3	21	19,319	0	139	11
18,223	22	3	17	31,327*	1	59	27
31,327	29	3	27	42,023	2	41	15
33,487	30	3	19	44,519	0	211	11
53,359	38	3	37	53,359*	10	11	37
56,167	39	3	27	54.287	0	233	15
71,287	44	3	19	61,007	6	19	15
74,527	45	3	23	64,007	11	11	11
77,839	46	3	37	66,047	0	257	13
81,223	47	3	33	71,287*	1	89	19
91,807	50	3	45	81,223*	7	19	33
95,479	51	3	33	90,599	3	43	19
 99,223	52	3	29	97,967	0	313	25
			p = ((2n + 1))	$(+1)q)^2 + 2$			
 p	n	q	h(p)	p	n	q	h(p)
 443	1	7	3	56,171	1	79	11

 $p = ((2n + 1)q)^2 - 2$

 	,		1		1 7		
47,963	1	73	9				
21,611	10	7	15	95,483	1	103	11
15,131	1	41	15	74,531	19	7	17

65,027

7

17

21

indicates only one exceptional case with class number h(p) = 1.

* indicates that the prime has appeared in the case of q=3

9

6) For this purpose we referred to Wada's table of class numbers of real quadratic fields in [7].

7

11,027

DIOPHANTINE EQUATION

References

- G. Degert, Über die Bestimmung der Grundeinheit gewisser reell-quadratischer Zahlkörper, Abh. Math. Sem. Univ. Hamburg, 22 (1958), 92-97.
- [2] N. C. Ankeny, S. Chowla and H. Hasse, On the class-number of the maximal real subfield of a cyclotomic field, J. reine angew. Math., 217 (1965), 217-220.
- [3] H. Hasse, Über mehrklassige, aber eingeschlechtige reell-quadratische Zahlkörper, Elemente der Mathematik, 20 (1965), 49-72.
- [4] I. Yamaguchi, On the class-number of the maximal real subfield of a cyclotomic field, J. reine angew. Math., 272 (1975), 217-220.
- [5] S.-D. Lang, Note on the class-number of the maximal real subfield of a cyclotomic field, J. reine angew. Math., 290 (1977), 70-72.
- [6] H. Takeuchi, On the class-number of the maximal real subfield of a cyclotomic field, Canadian J. Math., 33 (1981), 55-58.
- [7] H. Wada, A table of ideal class numbers of real quadratic fields, Kökyūroku in Math., No. 10 (1981), Sophia Univ., Tokyo.

Department of Mathematics College of General Education Nagoya University Chikusa-ku, Nagoya 464 Japan