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ON THE DIOPHANTINE EQUATION x2 — Py
2 = ±4q AND

THE CLASS NUMBER OF REAL SUBFIELDS

OF A CYCLOTOMIC FIELD*)

HIDEO YOKOI

Introduction

Let H(m) denote the class number of the field K = Q(ζm + ζ"1)? where
Q is the rational number field and ζm is a primitive m-th root of unity
for a positive rational integer m.

It has been proved by Ankeny, Chowla and Hasse in [2] that if
p = (2nqf + 1 is a prime, with prime q and integer n > 1, then H(p) > 1.
Later, S.-D. Lang proved in [5] that if p = ((2n + l)qf + 4 is a prime,
with odd prime q and integer n > 1, then H(p) > 1.

Both results are based on the fact that the diophantine equation
χ2 — py2 = ±4m has no solution (x, y) in integers unless m> nq (resp.
m > (2n + ϊ)q).

In this paper, we shall first consider the diophantine equation x2 —
py2 =z +4g for distinct odd primes p, q, and give a necessary and suffi-
cient condition for its solvability (§ 1). Next, we shall show that for
distinct odd primes p, q satisfying p = ((2n + ΐ)q)2± 2 with integer n > 0
the diophantine equation x2 — py2 = ± q has no solution (x, y) in inte-
gers except for the case p = 7 (n = 0, q — 3) (§2).

Moreover, in Section 3, for a prime p of such type, we shall give a
sufficient condition for the class number h(p) of the real quadratic field
QW P) to be greater than 1, and by applying this result to maximal real
subfield of a cyclotomic field we shall also give a sufficient condition for
H(4p) > 1.

Finally, we shall list up all primes p < 100,000 satisfying p = ((2n + l)q)2

— 2 with prime q = 1 or 3 (mod 4), (n > 0), and p = ((2n + ΐ)q)2 + 2 with
prime g Ξ l o r 7 (mod 4), (n > 0), for which both h(p) and H(4p) are
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greater than 1.

§ 1. Solvability of the equation x2 — py2 = ±4q

We consider, in this section, the diophantine equation x2 — py2 = ±4q

for distinct odd primes p, q. However, the following fact is noteworthy:

When the equation xL — py2 = ±q has a solution (u, v) in integers, the

double of the solution (2u, 2v) is also a solution of the equation x2 — py2

= ±4q. Conversely, in the case p ^ 1 (mod 4) all the solutions of x2 —

py2 = ±4g can be obtained from the solutions x2 — py2 = ±q in such a

way, while in the case p = 1 (mod 4) not all the solutions can neces-

sarily be found from the solutions of x2 — py2 = ±q.

The following fact, which gives a relation between the solvability

of the equation x2 — py2 = ± 4q and the class number of the real quad-

ratic field Q(Vp), is already knownυ, but is fundamental in our inves-

tigation. Therefore, we state it as a theorem and, for the sake of com-

pleteness, add a simple proof:

THEOREM 1. Let p and q be two distinct odd primes. Then, the di-

ophantine equation x2 — py2 — ±4q has at least one solution (x,y)in in-

tegers if and only if the prime q splits completely in the real quadratic

field Q(Vp) into the product of a principal prime ideal q with degree one

and its conjugate q': q — q q', (q ψ q', Nq = Nq; = g, q = (ω), q' = (ωf) with

ω, ωf in

Proof. If there exists one solution (u, v) in integers of x2 — py2 =

±4q, then u2 — pv2 = ±4q implies u2 = pυ2 (mod q). Hence 1 = (pv2/q)

= (p/q) holds, and so by the law of decomposition in quadratic fields q

splits completely in Q(Vp). On the other hand, it follows from ±q =

(u + vV~p)/2 -{u - υ\/~p)/2 t h a t both

Z . ) and q ' ^

are principal ideals in Q(\/ p) and Nq = q q; — q holds. Therefore q and

q' are principal prime ideals in Q(Vp) with degree one.

Conversely, if q splits completely in Q(V p) into the product of two

principal prime ideals q, q' with degree one, then there exist two rational

1) Cf. e. q. [2], [3] etc.
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integers u, v such that both ω = (u + vVp)/2 and α/ = (w — v*/ p)/2

are integers in Q(Vp) and q = (ω), q' = (α/) Hence

g = q . q ' = JVq

implies w2 — pv2 = ±4g. Therefore x2 — py2 = ±4g has the solution (u, v)

in integers, which completes the proof of Theorem 1.

For example, let p and q be two odd primes satisfying p = 4g2 + 1

or p = qι + 4. Then, the equation x2 — py2 = ± Aq has a solution (2g ±

1, 1) or (q ± 2, 1) in integers respectively. On the other hand, the prime

q splits completely in Q(V p) such as

or

q =

respectively.

From Theorem 1 we deduce easily:

COROLLARY. Let p and, q be two odd primes satisfying p = (nq)2 + r2

for natural numbers n, r. Then, the class number h(p) of the real quad-

ratic field Q(Vp) is not equal to one i.e. h(p) > 1 if x2 — py2 = ±4g has

no solution (x, y) in integers.

Proof. Since the condition p = (nq)2 + r2 implies immediately (p/q)

= 1, prime q splits completely in Q(V p). Hence, if we suppose h(p) = 1,

then it follows from Theorem 1 that x2 — py2 = ± Aq has at least one

solution (x, y) in integers. This is a contradiction. Therefore h(p) = 1

is impossible, which proves the assertion of Corollary.

§ 2. Solvability of the equation x2 — py2 = ±q for p = ((2n + ί)q)2 ± 2

After Ankeny-Chowla-Hasse and S.-D. Lang, H. Takeuchi proved

in [6] that if both 12m + 7 and p — (3(8m + 5))2 — 2 are primes or both

12m + 11 and p = (3(8/n + 7))2 — 2 are primes with an integer m > 0,

then the equation x2 — py2 = ± 3 has no solution (x, y) in integers.

Here, we prove more generally:

THEOREM 2. Let p and q be two odd primes satisfying p = ((2n + l)g)2
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+ 2 with an integer n > 0, Then, the diophantine equation x2 — py2 = ±q

has at least one solution (x, y) in integers if and only if p = 7 and q = 3

(7x == 0) i.e. oπZy the equation x2 — Ίy2 = —3 /ιαs α solution in integers,

for example (x, y) — (2,1).

Proof. (1) Let p and g be two odd primes satisfying p = ((2n +

— 2 with an integer n > 0, and put Z = (2π + l)g.

Assume first that x2 — py2 — q has at least one solution in integers,

and let (u, v) (u > 0, v > 0) be the least such positive integral solution:

u2 — pv2 = q.

In the case q > 2υ2, where q = u2 — pι>2 = u2 — ZV + 2ι;2 implies easily

(w - Zυ)O + Zu) = q - 2u2 > 0, both a = u - lυ > 0 and b = u + Iv > 0

are positive rational integers, and I — (b — a)/2v, q = ab + 2v2 holds. On

the other hand, since a > 1, b > 1 and (α — 1)(6 + 1) = ab + α — b — 1,

we know αί> — 1 > b — a. Therefore

0 < 2nq = I - q - b ~~ - - α6 - 2ι;2 - --. (6 - α - 2uα6 - 4u3)
2υ 2u

A ί 3 + 1) + (2ϋ - ΐ)ab) < 0.
2v

It is clear that this is a contradiction.

In the case q < 2v2, the norm form 1 = Nε == ΛΓ((Z2 - 1) + ZΛ/̂ 2 - 2)

of the fundamental unit 2 ) ε = (Z2 - 1) + UT^2 of Q ( V ^ ) multiplied by

the norm form q — N(u — VΛ/12 — 2) of u2 — pv2 = q yields

q = N[{(12 - ΐ)u - lv(l2 - 2)} + {lu - (I2 - l

= {(Z2 - ϊ)u - lv(l2 - 2)}2 - (Z2 - 2){Za - (Z2 - l)v}2.

Because of the minimal choice of v, we have \lu — (Z2 — ΐ)v\ > υ. Here,

if lu — (I2 — ϊ)v > v i.e. u > lυ, we have

q = u2 - (Z2 - 2)u2 > ZV - (Z2 - 2)u2 = 2u2,

which contradicts q < 2v2. If (Z2 — ΐ)υ — lu > v i.e. (Z2 — 2)v > lu, we

have

l2q = ΐu2 - l\l2 - 2)v2 < {I2 - 2)2u2 - I2(l2 - 2)v2 = -2(Z2 - 2)υ2 < 0 ,

which is also a contradiction.

2) Cf. [1], [3].
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Therefore, it is impossible that for the prime p = ((2n + ί)q)2 — 2

the equation x2 — py2 = q has a solution in integers.

Next, assume that x2 — py2 = — q has at least one solution in inte-

gers, and let (u, υ) (u > 0, v > 0) be the least such positive integral solu-

t ion: u2 — pv2 — — q.

In the- case q = 3, υ = 1, where —3 = — q = u2 — pv2 = u2 — I2 + 2

implies (I — u) (I + u) — 5, we have I — u = 1, I + u = 5, and so I = 3,

u — 2, p — 7 is only one possible case as asserted in the Theorem.

In the case q = 3, v > 2 or g > 3, v > g, the norm form of the funda-

mental unit ε of Q(V p) multiplied by the norm form —q = N(u — vVl2 — 2)

of the equation u2 — pv2 = — q, together with the minimal choice of v,

yields \lu — (I2 — ΐ)υ\ > v. Here, if lu — (I2 — ΐ)v > v, we have —q —

u2 - (I2 - 2)v2 > l2v2 - (I2 - 2)v2 = 2v2 > 0, which is a contradiction. If

(I2 — ί)v — lu > v, we have

-ΐq = ΐu2 - l\l2 - 2)v2 < (I2 - 2)V - l\l2 - 2)υ2 - -2(l2 - 2)υ2,

and hence l2q > 2(Z2 — 2)v2. Therefore, in the case of q = 3 and v > 2,

3/2 > 2(Z2 - 2)y2 > 8(Z2 - 2) implies 16 > 5l2 > 45, which is a contradiction.

In the case of υ > q > 3, Z2ι; > Z2g > 2l2v2 - 4ι;2 implies 4v2 > (2v2 - v)l2

> v(2v - ϊ)q2, and hence q2 < Aυl(2υ - 1) = 2 + 2/(2u - 1 ) < 2 + 2/5 < 3

holds. This is also a contradiction.

In the case q > 3, υ < q, where —q= u2 — pυ2 — u2 — l2v2 + 2v2 im-

plies (Iv — u) (Iv + u) — q + 2u2 > 0, both a = Iv — u> 0 and b = Iv + u

> 0 are positive rational integers, and I = (α + &)/2i>, q = ab — 2v2. On

the other hand, since α > 1, b > 1 and (α — 1)(6 — 1) = ab — (a + b) + 1,

we know α& + 1 > a + b. Therefore

0 < 2nq = I - q = °^±^_ _ ab + 2v* = J _ ( α + b -
2υ 2v

1 - 2υab + 4u3) = ~^-((4v3 + 1) - (2ι; - l)α&)
2L> 2u

implies 4υ3 + 1 > (2u - l)α&, and so αδ < (4L>3 + l)/(2u - 1). Hence

q a b 2 ϋ < 2 * = v + .
~ 2v - 1 2u - 1 2ϋ - 1

Here, if υ = 1 or 2, then # < u + (y + ΐ)/(2v — 1) = 3, which is a contra-

diction. If υ > 3, then 0 < (i; + l)/(2u - 1) < 1 implies q < v + (v + 1)/

(2f — 1) < v + 1, which contradicts q > v.

https://doi.org/10.1017/S0027763000020481 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000020481


156 HIDEO YOKOI

Therefore, it is impossible except for the case of p = 7, q = 3 (n = 0)

that for p = ((2n + ί)q)2 — 2 the equation x2 — py2 = — q has a solution

in integers.

(2) Let p and q be two odd primes satisfying p = ((2n + l)qf + 2

with an integer n > 0, and put Z = (2n + ΐ)q.

Assume first that x2 — py2 = q has at least one solution in integers,

and let (u, v) (u > 0, v > 0) be the least such positive integral solution:

u2 — pv2 = q.

In the case q > v, where q = u2 — l2v2 — 2v2 implies (u — lv)(u + lυ)

= q + 2v2 > 0, both a = u — lυ > 0 and 6 = M + Zi; > 0 are positive ra-

tional integers, and I — (b — α)/2y, q — ab — 2v2 holds. Hence, we get

0 < 2nq = I - q = 6 ~ α - (α& - 2v2) = — ( 6 - α - 2uα6 + 4ι;3)
2ι; 2υ

^ 4ι;3) = -A_((4u3 - 1) - (2v - l ) α δ ) ,
2

< {ab 1 2uα6 + 4ι;)
2υ 2υ

and so ab < (4u3 — l)/(2ϋ — 1). Therefore, we get

This, however, contradicts q > v.

In the case g < υ, the norm form 1 = JVe = N((l2 + 1) + Wl2 + 2) of

the fundamental unit3) ε = (Z2 + 1) + Wl2 + 2 of Q(V~p) multiplied by the

norm form q = N(u — i V/2 + 2) of the equation u2 — pv2 = q, yields

q = {u(l2 + 1) - lυ{l2 + 2)}2 - (Z2 + 2){Zι/ - (Z2 + l)u}2.

Because of the minimum choice of v, we have \lu — (Z2 + ΐ)v\ > v. Here,

if Zw — (Z2 + ί)v > u, we have

Z2g = Z2w2 - Γ(l2 + 2)υ2 > (Z2 + 2)2ι;2 - l\Γ + 2)υ2 = 2(Γ + 2)ι;2 > 2(Z2 + 2)q2,

and hence q < ΐ\2(ΐ + 2) < 1/2. This is a contradiction. If (Z2 + ΐ)υ -

lu > v, we have q = u2 - (I2 + 2)ι;2 < ZV - (Z2 + 2)v2 = -2u 2 < 0. This is

also a contradiction.

Assume next that x2 — pj>2 = — q has at least one solution in integers,

and let (u, v) (u > 0, v > 0) be the least such positive integral solution:

u2 — pv2 = —q.

3) Cf. [1], [3].

https://doi.org/10.1017/S0027763000020481 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000020481


DIOPHANTINE EQUATION 157

In the case q > 2v\ where —q = u2 — ZV — 2v2 implies (Iv — u)(lυ + w)

= g — 2υ2 > 0, both a = Iv — u> 0 and 6 = Zu + u > 0 are positive ra-

tional integers, and I = (a + b)/2v, q = ab + 2v2 holds. Hence, we get

0 < I - q = _?_±A - (ab + 2v2) = — (o + b - 2uα6 -

<< (ab + 1 - 2uα6 - 4u3) = -^λ-((2υ - ΐ)ab + (4u3 - 1))< 0.
2v 2v

This is a contradiction.

In the case q < 2v2, the norm form of the fundamental unit ε of

Q(Vp) multiplied by the norm form —q = N(u — v\ll2 + 2) of the equa-

tion u2 — pv2 = —q, together with the minimal choice of u, yields | lu —

(Γ +ΐ)υ\> v. Here, if lu - (I2 + ϊ)υ > v, we have

-Fq = Pu2 - l\Γ + 2)v2 > (I2 + 2)V - Γ(l2 + 2)υ2 = 2(Γ + 2)υ2 - 2pv2 > 0 ,

which is a contradiction. If (I2 + ί)v — lu > v, we have

which contradicts g < 2ι;2.

Therefore, it is impossible that for p = ((2AI + l)g)2 + 2 the equation

x2 — Py2 = ±q has a solution in integers.

§ 3. The class number of real subfields of a cyclotomic field

In this section, we shall consider the class number h(p) of the real

quadratic subfield Q(Vp) and the class number H(4p) of the maximal

real subfield Q(ζ4p + ζϊp) of the cyclotomic field Q(ζ4p):

Q c Q(VJ) c Q(ζip + ζ-) c Q(ζJ.

From Theorems 1 and 2, we obtain first:

THEOREM 3. (1) If p = ((2n + ΐ)q)2 — 2 is a prime, where q is an

odd prime satisfying q = 1 or 3 (mod 8) and n >0 is an integer, then the

class number h(p) of the real quadratic field Q(Vp) is not equal to one

except for the case of p = 7 (n = 0, q = 3).

(2) If p — ((2n + l)q)2 + 2 is a prime, where q is an odd prime sα-

tisfying q = 1 or 7 (mod 8) and n > 0 is an integer, then the class number

h(p) of the real quadratic field Q(V p) is not equal to one i.e. h(p) > 1.
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Proof. (1) It is evident that a prime p — ((2n + ΐ)qf -— 2 with an

integer n > 0 and an odd prime q satisfies (p/q) = (—2/q), and so by the

law of decomposition in quadratic fields, the prime q splits in Q(V p)

completely if and only if (—2jq) = 1 i.e. q = 1 or 3 (mod 8). Hence,

moreover if h(p) = 1 is true, then by the Theorem 1 the equation x2 —

py1 = ± q has at least one solution in integers x, y. This, however, con-

tradicts the Theorem 2 except for the case of p — 7 (n = 0, q = 3). There-

fore h(p) = 1 is impossible except for the case of p — 7 (n — 0, q = 3).

(2) Since a prime p = ((2n + ί)q)2 + 2 with an integer n > 0 and

an odd prime q satisfies (p/q) = (2/g), by the law of decomposition in

quadratic fields implies that the prime q splits in Q(V p) completely if

and only if (2/q) = 1 i.e. q = 1 or 7 (mod 8). Hence, moreover if h(p) — 1

is true, then by the Theorem I f - py2 = ±q has at least one solution in

integers x, y. However, this contracts the Theorem 2. Therefore h(p) = 1

is impossible, which proves the assertion of Theorem 3.

In order to prove Theorem 5, we need the following theorem4):

THEOREM 4. For a positive integer m, let ζm be a primitive m-th root

of unity and denote by H(m), h(m) the class number of the field K —

Q(ζm + ζm1)* Q(Vm) respectively. If a prime p satisfies p = 3 (mod 4), then

h(p)\H(4p) holds.

Proof. For a prime p = 3 (mod 4), we first know that the real quad-

ratic field Q(Vp) and the imaginary quadratic field Q(V—p) are imbed-

ded respectively in the real cyclotomic field K — Q(ζip + ζΐp) and the

imaginary cyclotomic field Q(ζp) by means of the Gauss sum

Σ
α m o d \d\

where d is the discriminant of a quadratic field Q(V d) and (d/a) means

the Kronecker symbol.

Next, we shall show Q{ζp) Π Q(Vp) = Q and Q(ζ4p) = Q(Vp

If we suppose Q(ζp) Π Q(V/Γ) # Q, namely Q(Vp~) c Q(ζp), then

c: Q(ζP + ζp1) follows. This, however, contradicts p = 3 (mod 4), which

shows Q(ζp) Π Q(V p) = Q. Moreover, this assertion implies the following

4) This theorem was already stated by Yamaguchi in [4], with an incomplete
proof, for any positive integer p satisfying φ(p) > 4. But, the theorem is not true in
such a general form.
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relation between degrees:

: Q] = [QWJy Q][Q(CP): Q] = 2(p - l ) .

On the other hand, since [Q(ζ4p): Q] - 2(p - 1) and Q(ζ4p) 3 Q(V/Γ) - Q(ζp),

the assertion Q(ζ4p) = QW p) Q(ζp) is also true.

Furthermore, we can prove that no abelian unramified extension of

Q(Vp) is contained in Q(ζ4p + ζΐp). For, if we suppose that there exists

an abelian unramified extension field L of Q(V p) contained in Q(ζip + ζφ,

then we have n = [L: Q(Vp)] > 2 because [Q(ζ4p + ζ^1): Q(Vp)] = (p - l)/2

is odd. Hence, the ramification index β(p) of p in Q(ζip)IQ, which is a

divisor of 2(p — ί)/n, is less than p — 1 i.e. e(p) < p — 1. However, since

p is completely ramified in Q(ζp)/Q, e(p) is not less than p — 1 i.e. e(p)

> p — 1. This is a contradiction, which proves our assertion.

Finally, from this assertion, it follows immediately by Hasse-Cheval-

ley's theorem5) that the assertion of Theorem 4 h(p) \ H(4p) is true.

THEOREM 5. (1) If p = ((2n + l)qf — 2 is a prime, where q is an

odd prime satisfying q = 1 or 3 (mod 8) and n > 0 is an integer, then the

class number H(4p) of Q(ζ4p + ζ^) is greater than one except for the case

ofp=Ί(n = 0,q = 3).

(2) If p = ((2n + ΐ)q)2 + 2 is a prime, where q is an odd prime sat-

isfying q = 1 or 7 (mod 8) and n > 0 is an integer, then the class number

H(4p) of Q(ζip + ζlp

ι) is greater than one: H(4p) > 1.

Proof. Since p = ((2n + ΐ)qf ± 2 ΞΞ 3 (mod 4), the assertion of the

Theorem H(4p) > 1 follows immediately from Theorem 3 and 4.

Finally, we give the values of all primes p less than 105 satisfying

5) Cf. [2].
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the conditions in Theorem 3 and the class number h(p) of the corres-

ponding real quadratic fields Q(V p)6).

P

n
79

223

439

727

1,087

3,967

4,759

5,623

8,647

13,687

18,223

31,327

33,487

53,359

56,167

71,287

74,527

77,839

81,223

91,807

95,479

99,223

P

443

11,027

15,131

21,611

47,963

n

0

1

2

3

4

5

10

11

12

15

19

22

29

30

38

39

44

45

46

47

50

51

52

n

1

7

1

10

1

q

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

q

7

7

41

7

73

HP)

1*

3

3

5

5

7

5

13

9

13

21

17

27

19

37

27

19

23

37

33

45

33

29

p = ((2n -

h(p)

3

9

15

15

9

P

357

1,087*

1,847

3,023

5,927

7,919

11,447

14,159

14,639

17,159

19,319

31,327*

42,023

44,519

53,359*

54.287

61,007

64,007

66,047

71,287*

81,223*

! 90,599

: 97,967

t- l)qγ + 2

V

56,171

65,027

74,531

95,483

li

n

0

1

0

2

3

0

0

3

5

0

0

1

2

0

10

0

6

11

0

1

7

3

0

n

1

7

19

1

q

19

11

43

11

11

89

107

17

11

131

139

59

41

211

11

233

19

11

257

89

19

43

313

79

17

7

103

HP)

3

7

3

3

5

7

7

9

17

15

11

27

15

11

37

15

15

11

13

19

33

19

25

HP)

11

21

17

11

indicates only one exceptional case with class number h(p) = 1.
indicates that the prime has appeared in the case of q = 3

6) For this purpose we referred to Wada's table of class numbers of real quad-
ratic fields in [7].
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