A NOTE ON QUADRATIC FORMS AND THE *u*-INVARIANT

ROGER WARE

The *u*-invariant of a field F, u = u(F), is defined to be the maximum of the dimensions of anisotropic quadratic forms over F. If F is a non-formally real field with a finite number q of square classes then it is known that $u \leq q$. The purpose of this note is to give some necessary and sufficient conditions for equality in terms of the structure of the Witt ring of F.

In what follows, F will be a field of characteristic different from two and \dot{F} denotes the multiplicative group of F. The subgroup of nonzero squares in F is denoted \dot{F}^2 and G denotes the square class group \dot{F}/\dot{F}^2 . If $a \in F$ we let [a] denote the image of a in G. The order of G will be written q = q(F). Note that if $q < \infty$ then $q = 2^n$ for some $n \ge 0$. If F is not formally real then the *level* (or stufe) of F is the smallest positive integer s = s(F) such that -1 is a sum of s squares in F. If ϕ is a quadratic form over F we write $\phi \cong \langle a_1, \ldots, a_n \rangle$ to mean ϕ is isometric to an orthogonal sum $\langle a_1 \rangle \perp \ldots \perp \langle a_n \rangle$ where $\langle a_i \rangle$ denotes the one dimensional space F with form $(x, y) \mapsto a_i xy$. The Witt ring of anisotropic forms over F is denoted by W(F) (for a definition, see [5, pp. 14–15]) and I(F) denotes the ideal of $W(F) = I(F) \ldots I(F)$, n times, is generated by the 2^n -dimensional forms

$$\bigotimes_{i=1}^{n} \langle 1, a_i \rangle, a_i \in \dot{F} \qquad \text{(Pfister forms).}$$

The mapping $[a] \mapsto \langle a \rangle$ of G into W(F) is injective and induces a surjective ring homomorphism from the integral group ring $\mathbb{Z}[G]$ onto W(F) which will be denoted by Ψ . Finally, if the level s of F is finite then by a theorem of Pfister, W(F) is a $\mathbb{Z}/2s\mathbb{Z}$ -algebra [5, 8.1, p. 45].

As mentioned, the *u*-invariant of *F* is defined to be the maximum of the dimensions of anisotropic forms over *F* (for a more general definition, see [4]). If no such maximum exists, u(F) is taken to be ∞ ; for example, when *F* is formally real. Thus u(F) is the least positive integer (or ∞) such every u + 1 dimensional quadatic form over *F* is isotropic. If $u < 2^n$ then 2^n -dimensional forms $\bigotimes_{i=1}^n \langle 1, a_i \rangle$, $a_i \in \dot{F}$, must be isotropic and hence, by a result of Witt, equal to 0 in W(F) [5, pp. 22–23]. Thus $I^n(F) = 0$, so whenever *u* is finite, I(F) is a nilpotent ideal.

Kneser has shown that if F is a non-formally real field with $q = q(F) < \infty$

Received April 11, 1973 and in revised form, August 17, 1973.

then $u \leq q$ (For a proof, see Math. Review 15-500, [5, 8.4, p. 47], or [4, Proposition A1]). Thus if $q = 2^n$ then $I^{n+1}(F) = 0$.

THEOREM. Let F be a non-formally real field with $q = 2^n$. Then the following statements are equivalent:

(1) u = q.

(2) Either s = 1 and W(F) is an \mathbf{F}_2 -vector space of dimension q or s = 2 and W(F) is a free $\mathbb{Z}/4\mathbb{Z}$ -module of rank q/2.

(3) Either s = 1 and $W(F) \cong \mathbf{F}_2[G]$ or s = 2 and $W(F) \cong (\mathbb{Z}/4\mathbb{Z})[H]$, where H is any subgroup of index 2 in G with $[-1] \notin H$.

(4) $I^n(F) \neq 0$, i.e. n + 1 is the index of nilpotency of I(F).

Proof. The equivalence of (1) and (2) follows from [7, Proposition 5.10, Theorem 5.13, Proposition 5.15].

(2) \Rightarrow (3) Let Ψ : **Z**[G] \rightarrow W(F) be the natural surjection.

If s = 1 then Ψ induces a surjective mapping $\Psi^* : \mathbf{F}_2[G] \to W(F)$. Since $\dim_{\mathbf{F}_2}\mathbf{F}_2[G] = q = \dim_{\mathbf{F}_2}W(F)$, Ψ^* is an isomorphism.

If s = 2 then Ψ induces a surjection $\Psi^* : \mathbb{Z}/4\mathbb{Z}[G] \to W(F)$. Let H be any subgroup of index 2 in G with $[-1] \notin H$. Then $G = H \times \{[1], [-1]\}$ so if $\Psi^{**} : \mathbb{Z}/4\mathbb{Z}[H] \to W(F)$ is the restriction of Ψ to $\mathbb{Z}/4\mathbb{Z}[H]$ then Ψ^{**} is also surjective. Since H has q/2 elements $\mathbb{Z}/4\mathbb{Z}[H]$ and W(F) are both finite sets with the same number of elements. Hence Ψ^{**} is an isomorphism.

 $(3) \Rightarrow (4)$ is immediate.

(4) \Rightarrow (1). If $u < q = 2^n$ then as remarked earlier, $I^n(F) = 0$.

Remarks. (1) In [7, § 5], C. Cordes investigated fields satisfying the conditions of the theorem and called them \overline{C} -fields. In that paper he gave several other equivalent conditions. In particular, he has shown that F is a \overline{C} -field if and only if for any anisotropic form ϕ over F, Card $D(\phi) = \dim \phi$, where $D(\phi) = \{[a] \in G | a \text{ is represented by } \phi\}$.

(2) Let A be a complete discrete valuation ring with field of fractions F and residue field k of characteristic not 2. Then an easy application of Hensel's lemma shows that $q(k) = 2^n$ if and only if $q(F) = 2^{n+1}$. Moreover, a theorem of Springer [5, 7.1, p. 43] gives an isomorphism $W(F) \cong W(k) \oplus W(k)$ of abelian groups. From this it is easy to see that k satisfies the conditions of the theorem with $u(k) = q(k) = 2^n$ if and only if F does with $u(F) = q(F) = 2^{n+1}$.

Examples. (0) If F is algebraically closed then u(F) = q(F) = 1.

(1) Any finite field (of char $\neq 2$) satisfies the conditions of the theorem with u = q = 2.

(2) If F is a local field with finite residue field of characteristic not 2 then u(F) = q(F) = 4.

(3) If $F = Q_2$, the field of 2-adic numbers, then u(F) = 4, q(F) = 8.

(4) If k is a field with $u(k) = q(k) = 2^n$ and $F = k((t_1)) \dots ((t_r))$, the field of iterated power series over k then $u(F) = q(F) = 2^{n+r}$.

The paper concludes with a related result regarding the values of quadratic forms over F.

PROPOSITION. For a field F the following statements are equivalent:

(1) For $a \notin -\dot{F}^2$, $D(\langle 1, a \rangle) = \{[1], [a]\}$.

(2) If $\phi \cong \langle a_1, \ldots, a_n \rangle$ is anisotropic then $D(\phi) = \{ [a_1], \ldots, [a_n] \}$.

(3) The kernel of the mapping $\Psi : \mathbb{Z}[G] \to W(F)$ is generated by [1] + [-1]. (4) Either F is formally real, pythagorean, and $W(F) \cong \mathbb{Z}[H]$, where H is a

subgroup of index two in G with $[-1] \notin H$ or s(F) = 1 and $W(F) \cong \mathbf{F}_2[G]$. *Proof.* An easy induction gives the equivalence of (1) and (2). If $-1 \notin \dot{F}^2$ then by [6, Theorem 1], (1), (3), and the formally real case of (4) are equivalent. Thus it suffices to assume $-1 \in \dot{F}^2$, i.e., s(F) = 1, and show the equiv-

alence of (1), (3), and the non-formally real case of (4). (1) \Rightarrow (3). As is well-known, the kernel of Ψ is generated by [1] + [-1] and all elements of the form

$$g(a, x, y) = ([1] + [a]) ([1] - [x^2 + ay^2])$$

with $x, y \in F$ and $a, x^2 + ay^2 \in \dot{F}$ (see, for example, [5, 6.1, p. 41]). If $a \notin -\dot{F}^2$ then by (1), $[x^2 + ay^2] = [a]$ or [1], so in either case g(a, x, y) = 0. Hence any non zero generator is either [1] + [-1] or has the form ([1] + [-1]) ([1] - [b]), with $b \in \dot{F}$, proving (3).

(3) \Rightarrow (4). Since $-1 \in \dot{F}^2$, [1] + [-1] = 2 in $\mathbb{Z}[G]$ so $W(F) \cong \mathbb{Z}[G]/2\mathbb{Z}[G] \cong \mathbb{F}_2[G]$.

(4) \Rightarrow (1). If $[b] \in D(\langle 1, a \rangle)$ then $\langle 1, a \rangle \cong \langle b, ab \rangle$ so $\langle 1 \rangle + \langle a \rangle = \langle b \rangle + \langle ab \rangle$ in W(F). Since $\{\langle x \rangle\}_{x \in F}$ is a basis for W(F) over \mathbf{F}_2 and $\langle a \rangle \neq \langle -1 \rangle = \langle 1 \rangle$ it follows that $\langle b \rangle = \langle 1 \rangle$ or $\langle b \rangle = \langle a \rangle$, i.e. [b] = [1] or [b] = [a], proving (1).

Remark. Formally real fields satisfying the conditions of the proposition have been studied in [1; 2; 3; 6]. Elman and Lam have called such fields superpythagorean.

References

- 1. L. Bröcker, Über eine Klasse pythagoreischer Körper, Arch. Math. 23 (1972), 405-407.
- 2. J. Diller and A. Dress, Zür Galoistheorie pythagoreischer Körper, Arch. Math. 16 (1965), 148-152.
- R. Elman and T. Y. Lam, Quadratic forms over formally real and pythagorean fields, Amer. J. Math. 94 (1972), 1155-1194.
- 4. Quadratic forms and the u-invariant, I, Math. Z. 131 (1973), 283-304.
- 5. F. Lorenz, Quadratische Formen uber Korpern, Springer Lecture Notes 130 (1970).
- 6. R. Ware, When are Witt rings group rings, Pacific J. Math. 49 (1973), 279-284.
- 7. C. Cordes, The Witt group and the equivalence of fields with respect to quadratic forms, J. Algebra 26 (1973), 400-421.

University of Kansas, Lawrence, Kansas; The Pennsylvania State University, University Park, Pennsylvania

1244