A NOTE ON QUADRATIC FORMS AND THE u-INVARIANT

ROGER WARE

The u-invariant of a field $F, u=u(F)$, is defined to be the maximum of the dimensions of anisotropic quadratic forms over F. If F is a non-formally real field with a finite number q of square classes then it is known that $u \leqq q$. The purpose of this note is to give some necessary and sufficient conditions for equality in terms of the structure of the Witt ring of F.

In what follows, F will be a field of characteristic different from two and \dot{F} denotes the multiplicative group of F. The subgroup of nonzero squares in F is denoted \dot{F}^{2} and G denotes the square class group \dot{F} / \dot{F}^{2}. If $a \in F$ we let [a] denote the image of a in G. The order of G will be written $q=q(F)$. Note that if $q<\infty$ then $q=2^{n}$ for some $n \geqq 0$. If F is not formally real then the level (or stufe) of F is the smallest positive integer $s=s(F)$ such that -1 is a sum of s squares in F. If ϕ is a quadratic form over F we write $\phi \cong\left\langle a_{1}, \ldots, a_{n}\right\rangle$ to mean ϕ is isometric to an orthogonal sum $\left\langle a_{1}\right\rangle \perp \ldots \perp\left\langle a_{n}\right\rangle$ where $\left\langle a_{i}\right\rangle$ denotes the one dimensional space F with form $(x, y) \mapsto a_{i} x y$. The Witt ring of anisotropic forms over F is denoted by $W(F)$ (for a definition, see [5, pp. 14-15]) and $I(F)$ denotes the ideal of $W(F)$ consisting of all even dimensional forms. For any $n \geqq 1$, the ideal $I^{n}(F)=I(F) \ldots I(F), n$ times, is generated by the 2^{n}-dimensional forms

$$
\stackrel{i}{i=1}_{\otimes}^{\otimes}\left\langle 1, a_{i}\right\rangle, a_{i} \in \dot{F} \quad \text { (Pfister forms). }
$$

The mapping $[a] \mapsto\langle a\rangle$ of G into $W(F)$ is injective and induces a surjective ring homomorphism from the integral group ring $\mathbf{Z}[G]$ onto $W(F)$ which will be denoted by Ψ. Finally, if the level s of F is finite then by a theorem of Pfister, $W(F)$ is a $\mathbf{Z} / 2 s \mathbf{Z}$-algebra [5, 8.1, p. 45].

As mentioned, the u-invariant of F is defined to be the maximum of the dimensions of anisotropic forms over F (for a more general definition, see [4]). If no such maximum exists, $u(F)$ is taken to be ∞; for example, when F is formally real. Thus $u(F)$ is the least positive integer (or ∞) such every $u+1$ dimensional quadatic form over F is isotropic. If $u<2^{n}$ then 2^{n}-dimensional forms $\otimes_{i=1}^{n}\left\langle 1, a_{i}\right\rangle, a_{i} \in \dot{F}$, must be isotropic and hence, by a result of Witt, equal to 0 in $W(F)[5, \mathrm{pp} .22-23]$. Thus $I^{n}(F)=0$, so whenever u is finite, $I(F)$ is a nilpotent ideal.

Kneser has shown that if F is a non-formally real field with $q=q(F)<\infty$

Received April 11, 1973 and in revised form, August 17, 1973.
then $u \leqq q$ (For a proof, see Math. Review 15-500, [5, 8.4, p. 47], or [4, Proposition A1]). Thus if $q=2^{n}$ then $I^{n+1}(F)=0$.

Theorem. Let F be a non-formally real field with $q=2^{n}$. Then the following statements are equivalent:
(1) $u=q$.
(2) Either $s=1$ and $W(F)$ is an \mathbf{F}_{2}-vector space of dimension q or $s=2$ and $W(F)$ is a free $\mathbf{Z} / 4 \mathbf{Z}$-module of rank $q / 2$.
(3) Either $s=1$ and $W(F) \cong \mathbf{F}_{2}[G]$ or $s=2$ and $W(F) \cong(\mathbf{Z} / 4 \mathbf{Z})[H]$, where H is any subgroup of index 2 in G with $[-1] \notin H$.
(4) $I^{n}(F) \neq 0$, i.e. $n+1$ is the index of nilpotency of $I(F)$.

Proof. The equivalence of (1) and (2) follows from [7, Proposition 5.10, Theorem 5.13, Proposition 5.15].
(2) \Rightarrow (3) Let $\Psi: \mathbf{Z}[G] \rightarrow W(F)$ be the natural surjection.

If $s=1$ then Ψ induces a surjective mapping $\Psi^{*}: \mathbf{F}_{2}[G] \rightarrow W(F)$. Since $\operatorname{dim}_{\mathbf{F}_{2}} \mathbf{F}_{2}[G]=q=\operatorname{dim}_{\mathbf{F}_{2}} W(F), \mathbf{\Psi}^{*}$ is an isomorphism.

If $s=2$ then Ψ induces a surjection $\Psi^{*}: \mathbf{Z} / 4 \mathbf{Z}[G] \rightarrow W(F)$. Let H be any subgroup of index 2 in G with [-1] $\notin H$. Then $G=H \times\{[1],[-1]\}$ so if $\Psi^{* *}: \mathbf{Z} / 4 \mathbf{Z}[H] \rightarrow W(F)$ is the restriction of Ψ to $\mathbf{Z} / 4 \mathbf{Z}[H]$ then $\Psi^{* *}$ is also surjective. Since H has $q / 2$ elements $\mathbf{Z} / 4 \mathbf{Z}[H]$ and $W(F)$ are both finite sets with the same number of elements. Hence $\Psi^{* *}$ is an isomorphism.
(3) $\Rightarrow(4)$ is immediate.
(4) \Rightarrow (1). If $u<q=2^{n}$ then as remarked earlier, $I^{n}(F)=0$.

Remarks. (1) In [7, §5], C. Cordes investigated fields satisfying the conditions of the theorem and called them \bar{C}-fields. In that paper he gave several other equivalent conditions. In particular, he has shown that F is a \bar{C}-field if and only if for any anisotropic form ϕ over F, $\operatorname{Card} D(\phi)=\operatorname{dim} \phi$, where $D(\phi)=\{[a] \in G \mid a$ is represented by $\phi\}$.
(2) Let A be a complete discrete valuation ring with field of fractions F and residue field k of characteristic not 2. Then an easy application of Hensel's lemma shows that $q(k)=2^{n}$ if and only if $q(F)=2^{n+1}$. Moreover, a theorem of Springer [5, 7.1, p. 43] gives an isomorphism $W(F) \cong W(k) \oplus W(k)$ of abelian groups. From this it is easy to see that k satisfies the conditions of the theorem with $u(k)=q(k)=2^{n}$ if and only if F does with $u(F)=q(F)=$ 2^{n+1}.

Examples. (0) If F is algebraically closed then $u(F)=q(F)=1$.
(1) Any finite field (of char $\neq 2$) satisfies the conditions of the theorem with $u=q=2$.
(2) If F is a local field with finite residue field of characteristic not 2 then $u(F)=q(F)=4$.
(3) If $F=Q_{2}$, the field of 2-adic numbers, then $u(F)=4, q(F)=8$.
(4) If k is a field with $u(k)=q(k)=2^{n}$ and $F=k\left(\left(t_{1}\right)\right) \ldots\left(\left(t_{r}\right)\right)$, the field of iterated power series over k then $u(F)=q(F)=2^{n+r}$.

The paper concludes with a related result regarding the values of quadratic forms over F.

Proposition. For a field F the following statements are equivalent:
(1) For $a \notin-\dot{F}^{2}, D(\langle 1, a\rangle)=\{[1],[a]\}$.
(2) If $\phi \cong\left\langle a_{1}, \ldots, a_{n}\right\rangle$ is anisotropic then $D(\phi)=\left\{\left[a_{1}\right], \ldots,\left[a_{n}\right]\right\}$.
(3) The kernel of the mapping $\Psi: \mathbf{Z}[G] \rightarrow W(F)$ is generated by $[1]+[-1]$.
(4) Either F is formally real, pythagorean, and $W(F) \cong \mathbf{Z}[H]$, where H is a subgroup of index two in G with $[-1] \notin H$ or $s(F)=1$ and $W(F) \cong \mathbf{F}_{2}[G]$.

Proof. An easy induction gives the equivalence of (1) and (2). It -1 $\in \dot{F}^{2}$ then by [6, Theorem 1], (1), (3), and the formally real case of (4) are equivalent. Thus it suffices to assume $-1 \in \dot{F}^{2}$, i.e., $s(F)=1$, and show the equivalence of (1), (3), and the non-formally real case of (4).
$(1) \Rightarrow(3)$. As is well-known, the kernel of Ψ is generated by $[1]+[-1]$ and all elements of the form

$$
g(a, x, y)=([1]+[a])\left([1]-\left[x^{2}+a y^{2}\right]\right)
$$

with $x, y \in F$ and $a, x^{2}+a y^{2} \in \dot{F}$ (see, for example, [5, 6.1, p. 41]). If $a \notin-\dot{F}^{2}$ then by (1), $\left[x^{2}+a y^{2}\right]=[a]$ or [1], so in either case $g(a, x, y)=0$. Hence any non zero generator is either $[1]+[-1]$ or has the form $([1]+[-1])$ ([1] - [b]), with $b \in \dot{F}$, proving (3).
$(3) \Rightarrow(4)$. Since $-1 \in \dot{F}^{2},[1]+[-1]=2$ in $\mathbf{Z}[G]$ so $W(F) \cong$ $\mathbf{Z}[G] / 2 \mathbf{Z}[G] \cong \mathbf{F}_{2}[G]$.
$(4) \Rightarrow(1)$. If $[b] \in D(\langle 1, a\rangle)$ then $\langle 1, a\rangle \cong\langle b, a b\rangle$ so $\langle 1\rangle+\langle a\rangle=\langle b\rangle+$ $\langle a b\rangle$ in $W(F)$. Since $\{\langle x\rangle\}_{x \in \dot{F}}$ is a basis for $W(F)$ over \mathbf{F}_{2} and $\langle a\rangle \neq\langle-1\rangle=$ $\langle 1\rangle$ it follows that $\langle b\rangle=\langle 1\rangle$ or $\langle b\rangle=\langle a\rangle$, i.e. $[b]=[1]$ or $[b]=[a]$, proving (1).

Remark. Formally real fields satisfying the conditions of the proposition have been studied in $[\mathbf{1 ; 2 ; 3 ; 6]}$. Elman and Lam have called such fields superpythagorean.

References

1. L. Bröcker, Über eine Klasse pythagoreischer Körper, Arch. Math. 23 (1972), 405-407.
2. J. Diller and A. Dress, Zür Galoistheorie pythagoreischer Körper, Arch. Math. 16 (1965), 148-152.
3. R. Elman and T. Y. Lam, Quadratic forms over formally real and pythagorean fields, Amer. J. Math. 94 (1972), 1155-1194.
4. ——Quadratic forms and the u-invariant, I, Math. Z. 131 (1973), 283-304.
5. F. Lorenz, Quadratische Formen uber Korpern, Springer Lecture Notes 130 (1970).
6. R. Ware, When are Witt rings group rings, Pacific J. Math. 49 (1973), 279-284.
7. C. Cordes, The Witt group and the equivalence of fields with respect to quadratic forms, J. Algebra 26 (1973), 400-421.

University of Kansas,
Lawrence, Kansas;
The Pennsylvania State University, University Park, Pennsylvania

