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Abstract. Proper homogeneous G-spaces (where G is semisimple algebraic group) over positive
characteristic fields k can be divided into two classes, the first one being the flag varieties G=P
and the second one consisting of varieties of unseparated flags (proper homogeneous spaces not
isomorphic to flag varieties as algebraic varieties). In this paper we compute the Chow ring of
varieties of unseparated flags, show that the Hodge cohomology of usual flag varieties extends to the
general setting of proper homogeneous spaces and give an example showing (by geometric means)
that the D-affinity of Beilinson and Bernstein fails for varieties of unseparated flags.
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LetG be a semisimple and simply connected algebraic group over an algebraically
closed field k of characteristic p > 0. Projective homogeneous G-spaces can be
divided into isomorphism classes of algebraic varieties. Contrary to the behavior
over the complex numbers, there are several isomorphism classes not containing
the flag varieties G=P , where P is a parabolic subgroup. We call a projective
homogeneousG-spaceX a variety of unseparated flags (vuf) if it does not admit an
isomorphism to a flag variety. A typical example of a vuf is the divisorX � P

n�Pn
defined by the equation x0y

p
0 + � � � xnypn = 0, where p > n + 1. Now X is a

projective homogeneous space for SLn+1(k) and using standard exact sequences
one may prove that�(X;!�1

X ) = 0. Unlike flag varieties, vufs do not have vanishing
cohomology for effective line bundles (Kempf vanishing). Moreover there are vufs
not satisfying Kodaira’s vanishing theorem [12] (by the result of Deligne, Illusie
and Raynaud ([3], Corollaire 2.8), these do not admit a flat lift to Z). In general
vufs can be realized as the G-orbit of the highest weight line in P(L(�)), where
L(�) denotes the modular simple G-representation of a certain highest weight �
[11].

In this paper we show that the Hodge cohomology of flag varieties carries over
to vufs in a natural way and give examples showing that theD-affinity of Beilinson
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2 NIELS LAURITZEN

and Bernstein breaks down in the general setting of projective homogeneous G-
spaces. If X is a vuf, we prove that

Hi(X;

j
X) = 0; (�)

if i 6= j and that the cycle map

CHi(X)
Zk ! Hi(X;
i
X)

is an isomorphism. A vuf is isomorphic to a coset space G= eP , where eP is non-
reduced subgroup scheme containing a Borel subgroup. There is a purely insepa-
rable finite morphism

f : G=P ! G= eP

from a flag variety G=P , where P = ePred. A natural Z-basis of the Chow ring
CH(G=P ) is given by the Schubert cycles f[X(w)]g inG=P . Using f�, CH(G= eP )
gets identified with a subring of CH(G=P ) with Z-basis fpvw [X(w)]g for certain
vw > 0.

In most cases there is a nice smooth fibration G= eP ! G=Q, where Q is
a parabolic subgroup. This fibration is the basis of our proof. For X = G=Q

the result (*) is well-known by a representation theoretic proof of Marlin [13].
Marlin’s proof was originally in characteristic zero but using the linkage principle
for cohomology groups of line bundles onG=B, Andersen showed [1] that it carries
over to prime characteristic (see also [10], II.6.18). Using cell decompositions and
the flat Z-liftings of flag varieties, Srinivas has also obtained this result [14].

The linkage principle is however not available for vufs and vufs do not in general
admit flatZ-liftings. Our proof is an induction using the structure of vufs, filtrations
of differentials coming from the above fibrations and the Leray spectral sequence.

In the last section of the paper we give examples of vufs with an effective divisor
D such that Hi(U;OU ) 6= 0, where U = X � SuppD and i > 0. These are (using
[8]) examples of projective homogeneous G-spaces, which are not D-affine in the
sense of Beilinson and Bernstein [2]. For flag varieties in prime characteristic it
is still though (as pointed out by Haastert in [8]) an intriguing question whether
D-affinity holds. The paper is organized as follows
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1. Preliminaries

Let k be an algebraically closed field of prime characteristic p. We will only
consider schemes and morphisms over k. Let X(A) = Mork(SpecA;X) denote
the set of A-points of X , where A is a k-algebra. Let G be a simply connected and
semisimple algebraic group. We will assume that p > 3 if G has a component of
type G2 and p > 2 if G has a component of type Bn, Cn or F4.

1.1. G-SPACES

A G-space is an algebraic variety X endowed with a morphism G � X ! X

inducing an action of G(A) on X(A) for all k-algebras A. A G-space X is called
homogeneous if the action G(k) � X(k) ! X(k) on k-points is transitive. A
k-point x 2 X(k) gives a natural morphism G ! X . The fiber product Gx =

G�X Spec(k) is easily seen to be a closed subgroup scheme of G. It is called the
stabilizer group scheme of x.

1.2. THE FROBENIUS SUBCOVER

An algebraic variety X gives rise to a new algebraic variety X(n) with the same
underlying point space as X , but where the k-multiplication is twisted via the ring
homomorphism: a 7! p

np
a. The n-th order Frobenius homomorphism induces a

natural morphism F n
X : X ! X(n). As X is reduced, OX(n) can be identified

with the k-subalgebra of pn-th powers of regular functions on X . We call X(n)

the nth Frobenius subcover of X . Recall that X is said to be defined over Z=p if
there exists an Z=p-varietyX 0, such that X �= X 0 �SpecZ=p Speck. If X is defined
over Z=p, then X is isomorphic to X(n) (the isomorphism is given locally by
f 
 a 7! f 
 ap

n

, where a 2 k).
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4 NIELS LAURITZEN

1.3. THE FROBENIUS KERNEL AND HOMOGENEOUS G(n)-SPACES

Now G(n) is an algebraic group of the same type as G and F n
G : G ! G(n) is a

homomorphism of algebraic groups. The kernel of F n
G is called the nth Frobenius

kernel of G and denoted Gn.
LetX be a homogeneousG-space and x a closed point of X . If Gn � Gx, then

X is a homogeneousG=Gn
�= G(n)-space with stabilizer group scheme G(n)

x .

1.4. HOMOGENEOUS SPACES FOR UNIPOTENT GROUPS

Recall the following nice result from Demazure–Gabriel [6]. If U is a connected,
unipotent and smooth algebraic group, then U has a central composition series

U = U0 � U1 � U2 � : : :

with quotients Ui=Ui+1
�= G a [6], pp. 530–535), where G a denotes the affine line

A
1
k with +. This implies ([6], IV.3.16 Corollaire) that if V is a closed subgroup

scheme of U of codimension n, then U=V is isomorphic to affine n-space A nk as
schemes.

2. On the structure of vufs

Fix a projective homogeneousG-spaceX and let x 2 G(k). By Borel’s fixed point
theorem the stabilizer group scheme eP = Gx contains a Borel subgroup B. We
will identify X with G= eP . Let P = ePred. Notice that P is a parabolic subgroup of
G, since the reduced part of a subgroup scheme over a perfect field is a subgroup.
Let T be a maximal torus in B and R = R(T;G) the root system of G wrt. T .
Let the negative roots R� be the roots of B and denote by S � R+ the simple
roots. Let x� : G a ! G denote the root homomorphism corresponding to the root
� 2 R. The root subgroupU� � G is x�(G a ). When� 2 S we let P (�) denote the
maximal parabolic subgroup not containing U�. Any parabolic subgroup P � B

in G is an intersection of maximal parabolic subgroups.

2.1. PARABOLIC SUBGROUP SCHEMES

Keeping the assumption on p and using the notation above, we can now state the
following

THEOREM 1. Suppose thatP = P (�1)\: : :\P (�r) for simple roots�1; : : : ; �r 2
S. Then there are unique integers n1; : : : ; nr such that

eP = Gn1P (�1) \ � � � \GnrP (�r):
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Proof. ([11], 3.1). 2

Let �( eP ) = maxfn 2 N>0 jGnP � ePg. If �( eP ) = m > 0, then Q = eP (m) is
a parabolic subgroup scheme of G(m) such that

Q = G
(m)

n1�m
P (�1)

(m) \ � � � \G(m)

nr�mP (�r)
(m)

and �(Q) = 0.
We let U�;n = x�((G a )n), with the p-adic convention that (G a )1 = G a (and

(G a)0 = 0). Now if H is a connected subgroup scheme of G, then H \U� = U�;n
for somen 2 Z[f1gand toH we associate (following Wenzel [15]) a W-function
nH : R+ ! Z[ f1g given by

nH(�) = n; if H \ U� = U�;n:

If � 2 R is a root we let Supp� denote the simple roots occuring with non-zero
coefficients when � is expressed in the basis S. We have the following [9]

PROPOSITION 1. Let eP = Gn1P (�1)\ : : :\GnrP (�r) be a parabolic subgroup
scheme and let n = neP . Then n(�1) = n1; : : : ; n(�r) = nr and if � 2 S n
f�1; : : : ; �rg then n(�) =1. The function n is uniquely determined by its values
on S in the sense that for � 2 R+ we have

n(�) = minfn(�)j� 2 Supp�g:

2.2. CELL DECOMPOSITIONS OF VUFS

A Schubert cell in G=P is a B-orbit. Schubert cells in G=P are parametrized by
the finitely many T -fixed points in G=P , which again are given by representatives
of cosets in the Weyl groupW . Let C(w) be a Schubert cell in G=P . Since T fixes
a point, C(w) is a homogeneous U -space, where U denotes the unipotent radical
of B. By applying the U -equivariant map

f : G=P ! G= eP

to C(w) we get a homogeneous U -space gC(w) = f(C(w)), which by Section 1.4
is an affine space. A Schubert variety X(w) in G=P is the closure of a Schubert
cell C(w). We denote the scheme theoretic image f(X(w)) by gX(w) and call it a
Schubert variety in G= eP . In this way we get a cell decomposition

X = X0 � X1 � X2 � � � �
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6 NIELS LAURITZEN

of X = G= eP , where Xi is the union of the codimension i Schubert varieties in
X and Xi n Xi+1 is a union of affine spaces. From this it follows that CH(X) is
generated by [ gX(w)] as an abelian group ([7], Example 1.9.1) .

2.3. THE CHOW RING OF A VUF

If H is a T -invariant subgroup scheme of G, we let R(H;T ) denote the roots of
H . First assume that ePred = P = B. In this case we have eB = B eU , where eU
is an infinitesimal subgroup scheme of U+ (the opposite unipotent radical of B),
such that eB \ U+ = eU . Let w 2 W and by abuse of notation, let wB denote the
T -fixed point corresponding to w. Then C(w) = UwB and gC(w) = Uw eB. Let
C(w) = U=Nw and gC(w) = U=gNw, where Nw �gNw are the stabilizers of wB
under the action of U . Now gNw is a product of U�;n. Denote by Mw the part of
gNw with 0 6 n <1. Then R(Mw; T ) = f� 2 R+jw�1(�) 2 R( eU; T )g = f� 2
R+ja 2 w(R( eU; T ))g = R+ \ w(R( eU; T )). Now let dw = �w(�)<0n(�) where
the sum is over � 2 R+. By computing on the level of Schubert cells we get that
the induced morphism X(w)! gX(w) is of degree pdw . In the general case where
ePred is some parabolic subgroup P , where R(P; T ) = RI for I � S, we let

dw =
X

�2R+nR
I

w(�)<0

n(�);

for a representative w of a coset of WI in W . Now for the Schubert variety
X(w) � G=P , the degree of X(w) ! gX(w) is pdw . If f is G=P ! G= eP , then
f�[X(w)] = pdw [ gX(w)] and by the projection formula ([7], Proposition 8.3 (c))
one gets f�[ gX(w)] = pdw0�dw [X(w)]. By letting vw = dw0 � dw, we get that
CH(G= eP ) gets identified via the ring homomorphism

f� : CH(G= eP )! CH(G=P );

with the subring of CH(G=P ) generated by fpvw [X(w)]g. In particular it follows
from the fact that f[X(w)]g is a Z-basis of CH(G=P ) [5], that fpvw [X(w)]g is
a Z-basis of CH(G= eP ). So CH(G= eP ) and CH(G=P ) are isomorphic as abelian
groups (but not as rings in general). It would be interesting to find an algebraic
description of the ring CH(G= eP ) like the one in [4].
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EXAMPLE 1. Let G = SL3(k) and S = f�; �g. Let eB be the parabolic subgroup
scheme given by n(�) = 0 and n(�) = 1. The Chow ring CH(G=B) is a free
Z-module with basis 1; a; b; c; d; e corresponding to the Schubert cycles

s

e
�
�
�

@
@
@

sdsc @
@

@
@

@
@

�
�
�
�
�
�

sbsa �
�
�

@
@

@
s

1

where 1 = [X(w0)], a = [X(w0s�)], b = [X(w0s�)], c = [X(s�)], d = [X(s�)],
e = [f�g], with relations a2 = d, b2 = c, ab = c + d, ac = e, bd = e (all other
products are 0). Now the Chow ring CH(G= eB) is the subring with Z-basis 1, a,
p � b, p � c, d, p � e.

3. Hodge cohomology

In the case of flag varieties we have the following result [13, 1]:

THEOREM 2. Let P be a parabolic subgroup of G and let X = G=P . Then
Hi(X;


j
X) = 0; if i 6= j and Hi(X;
i

X ) is the trivial G-representation of
dimension rk CHi(X).

3.1. FILTRATIONS OF 
n
X

If f : X ! Y is a smooth morphism, there is a short exact sequence

0 ! f�
Y ! 
X ! 
X=Y ! 0:

This induces a filtration F0 � F1 � � � � of 
n
X = ^n
X . The associated graded

OX-module to this filtration is

Gr
n
X =

M
i

Gri
n
X =

M
i

Fi=Fi+1
�=

nM
i=0

f�
i
Y 
 
n�i

X=Y
:
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3.2. HOMOGENEOUS G(m)-SPACES

Let eP be a parabolic subgroup scheme of G. Suppose that m = �( eP ). Then there
is a G-equivariant diagram

G - G= eP

G(m)

?
- G(m)=Q

wwwwwwwwwww
;

where Q = eP (m) � G(m) and �(Q) = 0.

3.3. FIBRATIONS OF VUFS

In this section we prove:

THEOREM 3. Let X = G= eP be a projective homogeneous G-space, where eP is
a parabolic subgroup scheme of G. Then

Hi(X;

j
X) = 0; if i 6= j:

The G-module Hi(X;
i
X) is trivial and the cycle map

CHi(X)
O
Z

k ! Hi(X;
i
X)

is an isomorphism.
Proof. The result will follow from Theorem 2 using ([14], Applications 3.1)

and Section 2.3 for the last part if we can prove that

Hi(X;

j
X) = Hi(G=P;


j
G=P

)

asG-modules, whereP = ePred. This is done by induction on the rank ofG (the rank
one case beingX = P

1 and only one maximal parabolic subgroup). By Section 3.2
we may assume that �( eP ) = 0, so that the minimal reduced parabolic subgroupQ
containing eP is 6= G. The inclusion eP � Q gives a smooth morphism

f : X ! Y;

where X = G= eP and Y = G=Q. If eP = Q the result follows from Theorem
2. Using the projection formula, the E2-term in the Leray spectral sequence for
Gri
n

X (Section 3.1) is
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E
pq
2 = Hp(Y;Rqf�(f

�
i
Y 
 
n�i

X=Y ))

= Hp(Y;
i
Y 
Rqf�


n�i
X=Y

):

Now Rqf�

n�i
X=Y

is a homogeneous bundle induced by the Q-representation

V = Hq(Q= eP ;
n�i

Q=eP )

and since the reductive part of Q has rank less than G, it follows by induction that
V is the trivial Q-representation

Hq(Q=P;
n�i
Q=P

)

and that Epq
2 6= 0 () p = i and q = n� i. This means that

Hj(X; f�
i
X 
 
n�i

X=Y
)

=

8<
:

0 if j 6= n;

Hn(G=P;
i
G=P 
Rn�1f�


n�i
G=P=G=Q

) if j = n:

In any case 
n
X has a filtration where the graded pieces has Hj 6= 0 () j = n

andHn of a graded piece is a trivialG-representation. In conclusion Hi(X;

j
X) =

0 if i 6= j and Hi(X;
i
X) has the same filtration with trivial G-modules as

Hi(G=P;
i
G=P ). This shows that

Hi(X;
i
X) = Hi(G=P;
i

G=P )

as G-modules. 2

4. D-modules

In this section we give examples showing that there are projective homogeneous
spaces in prime characteristic, which are not D-affine.

4.1. DIFFERENTIAL OPERATORS

Let X be a smooth variety over k and let D = DX be the sheaf of differential
operators onX . Denote byM(D) the category of leftD-modules, which are quasi-
coherent as OX -modules (for the module structure coming from OX ,! D). We
say thatX isD-affine if everyF 2M(D) is generated as aD-module by its global
sections and Hi(X;F) = 0, i > 0.
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Remark 1. LetM(D) denote the category ofD-modules, whereD = �(X;DX ).
When X is D-affine, the global section functor � : M(D)!M(D) is an equiva-
lence of categories.

One remarkable fact is that flag varieties G=P in characteristic zero are D-
affine as proved by Beilinson and Bernstein [2]. In fact the only smooth complete
varieties known to be D-affine are flag varieties?. Haastert [8] has proved that
D-modules over full flag varieties in prime characteristics are generated by their
global sections, which reduces the question ofD-affinity for flag varieties in prime
characteristics to proving thatDG=B has vanishing higher cohomology. This seems
to be a difficult problem known only in the special case SL3=B.

4.2. OPEN AFFINE IMMERSIONS

If D is an effective divisor in X , then j : U ,! X is an affine morphism, where
U = X n SuppD. This means that for any quasi-coherent sheaf F on U , we have
Hi(U;F) = Hi(X; j�F). If F is a DU -module, then j�F is a DX-module, since
there is an OX -algebra homomorphism DX ,! j�DU . In particular if X is D-
affine then every DU -module F on U has vanishing higher cohomology. One has
the formula j�F = lim

�!n
F 
O(nD), so that

Hi(U;F) = lim
�!n

Hi(X;F 
O(nD))

4.3. THE UNSEPARATED INCIDENCE VARIETY

We review the definition of unseparated incidence varieties from [11].
Let n > 1 and G = SLn+1(k). The natural action of G on V = kn+1 makes

P(V ) and P(V �) into homogeneous spaces for G. We fix points x1 2 P(V ) and
x2 2 P(V �), such thatGx1 = P1 andGx2 = P2 are appropriate parabolic subgroups
containing the subgroup of upper triangular matricesB inG. The orbitY of (x1; x2)

in P(V ) � P(V �) is a projective homogeneous space for G isomorphic to G=P ,
where P = P1 \ P2. Notice that the points of Y are just pairs of incident lines
and hyperplanes and that Y = Z(s), where s is the section x0y0 + � � � + xnyn of
O(1)�O(1).

Let X be the G-orbit of of (x1; F
r(x2)) in P(V )� P(V �)(r). Now X �= G= eP ,

where eP = P1 \ GrP2. There is a natural equivariant morphism ' : P(V ) �
P(V �) ! P(V ) � P(V �)(r) and X is the scheme theoretic image '(Y ). The
induced morphism ' : Y ! X is the natural morphism G=P ! G= eP given
by the inclusion P � eP . One gets that X is the zero scheme of the section
�s = x

pr

0 �y0 + � � � + xp
r

n �yn of O(pr) � �O(1). Using the isomorphism from 1.2,

? Funch Thomsen has recently proved (Bull. London Math. Soc. 29 (1997) 317–321) that the
D-affinity of a smooth complete toric variety implies that it is a product of projective spaces.
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X = Z(�s) is isomorphic to its scheme theoretic image Z(es) � P(V ) � P(V �),
where es = x

pr

0 y0 + � � � xprn yn is a section of O(pr)�O(1).
Let a; b 2 Z. The restriction to Y of the line bundle O(a) �O(b) on P

n � P
n

will be denoted L(a; b). The restriction to X of the line bundle O(a) � �O(b) on
P
n � (Pn)(r) will be denoted L(a;�b). Notice that the isomorphism in 1.2 maps
L(a;�b) to L(a; b). For a; b > 0 and the effective line bundle L = L(a;�b) on X we
get:

Hn�1(X;L) �= Hn(Pn;O(a� pr))
 H0(Pn;O(b� 1))

�= H0(Pn;O(pr � a� n� 1))
 H0(Pn;O(b� 1)):

4.4. NON D-AFFINITY

Let X be the unseparated incidence variety G= eP , where G = SLn+1(k) and
eP = P1 \ GrP2. Assume that pr > n + 1 (this ensures precisely that X is not
Fano). Let X(!n) � G=P be the codimension one Schubert variety coming from
pulling back the hyperplane in G=P2. LetD be the image of X(!n) in G= eP . Then
OX(D) = L(0; �1) and if U = X n SuppD, we get

Hn�1(U;OU ) �= lim
�!m

Hn�1(X;L(0; �m))

�= lim
�!m

H0(Pn;O(pr � n� 1))
 H0(Pn;O(m� 1))

6= 0:

By Section 4.2 this means that X is not D-affine.
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